siat 3.0.35__py3-none-any.whl → 3.0.40__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- siat/common.py +36 -16
- siat/financials2.py +29 -17
- siat/financials_china.py +33 -9
- siat/financials_china2.py +184 -75
- siat/risk_adjusted_return2.py +11 -6
- siat/sector_china.py +210 -59
- siat/security_prices.py +8 -0
- siat/stock_china.py +35 -13
- siat/translate.py +492 -149
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/METADATA +1 -1
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/RECORD +13 -13
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/WHEEL +0 -0
- {siat-3.0.35.dist-info → siat-3.0.40.dist-info}/top_level.txt +0 -0
siat/common.py
CHANGED
@@ -1594,7 +1594,8 @@ def print_progress_percent(current,total,steps=5,leading_blanks=2):
|
|
1594
1594
|
pct=pct_list[pos]
|
1595
1595
|
|
1596
1596
|
if pct=="100%":
|
1597
|
-
print("100% completing")
|
1597
|
+
#print("100% completing")
|
1598
|
+
print("100%, wrapping up ...")
|
1598
1599
|
else:
|
1599
1600
|
print(pct,end=' ')
|
1600
1601
|
|
@@ -1704,7 +1705,7 @@ if __name__ == '__main__':
|
|
1704
1705
|
'26', '27', '28']
|
1705
1706
|
printInLine_md(aList,numberPerLine=8,colalign='center')
|
1706
1707
|
|
1707
|
-
def printInLine_md(aList,numberPerLine=5,colalign='left'):
|
1708
|
+
def printInLine_md(aList,numberPerLine=5,colalign='left',font_size='16px'):
|
1708
1709
|
"""
|
1709
1710
|
功能:将一个长列表等行分组打印,使用df.to_markdown方式打印,实现自动对齐
|
1710
1711
|
aList:用于打印的数据列表
|
@@ -1739,11 +1740,16 @@ def printInLine_md(aList,numberPerLine=5,colalign='left'):
|
|
1739
1740
|
alignlist=[colalign]*numberPerLine
|
1740
1741
|
print(df.to_markdown(index=False,tablefmt='plain',colalign=alignlist))
|
1741
1742
|
"""
|
1743
|
+
|
1744
|
+
#确定表格字体大小
|
1745
|
+
titile_font_size=font_size
|
1746
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
1747
|
+
|
1742
1748
|
df_display_CSS(df,titletxt='',footnote='',facecolor='papayawhip',decimals=2, \
|
1743
1749
|
first_col_align='left',second_col_align='left', \
|
1744
1750
|
last_col_align='left',other_col_align='left', \
|
1745
|
-
titile_font_size=
|
1746
|
-
data_font_size=
|
1751
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
1752
|
+
data_font_size=data_font_size)
|
1747
1753
|
|
1748
1754
|
return
|
1749
1755
|
|
@@ -1900,7 +1906,8 @@ if __name__=='__main__':
|
|
1900
1906
|
footnote="This is the footnote"
|
1901
1907
|
|
1902
1908
|
def descriptive_statistics(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
1903
|
-
recommend_only=False,trailing=7,trend_threshhold=0.01
|
1909
|
+
recommend_only=False,trailing=7,trend_threshhold=0.01, \
|
1910
|
+
facecolor='papayawhip',font_size='16px'):
|
1904
1911
|
"""
|
1905
1912
|
功能:进行描述性统计,并打印结果
|
1906
1913
|
df的要求:
|
@@ -2135,6 +2142,7 @@ def descriptive_statistics(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
|
2135
2142
|
dst6.reset_index(drop=True,inplace=True)
|
2136
2143
|
dst6.index=dst6.index+1
|
2137
2144
|
|
2145
|
+
"""
|
2138
2146
|
print("\n"+titletxt+"\n")
|
2139
2147
|
#alignlist=['right','left']+['center']*(len(list(dst4))-1)
|
2140
2148
|
alignlist=['right','left']+['center']*(len(list(dst6))-3)+['center','left']
|
@@ -2145,8 +2153,16 @@ def descriptive_statistics(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
|
2145
2153
|
dst7=dst6.to_markdown(index=True,tablefmt='plain',colalign=alignlist)
|
2146
2154
|
dst8=dst7.encode("utf-8",errors="strict")
|
2147
2155
|
print(dst8)
|
2148
|
-
|
2149
2156
|
print("\n"+footnote)
|
2157
|
+
"""
|
2158
|
+
|
2159
|
+
#确定表格字体大小
|
2160
|
+
titile_font_size=font_size
|
2161
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
2162
|
+
|
2163
|
+
df_display_CSS(dst6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
2164
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
2165
|
+
data_font_size=data_font_size)
|
2150
2166
|
|
2151
2167
|
return dst5
|
2152
2168
|
|
@@ -2170,8 +2186,8 @@ if __name__=='__main__':
|
|
2170
2186
|
|
2171
2187
|
def descriptive_statistics2(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
2172
2188
|
recommend_only=False,trailing=7,trend_threshhold=0.01, \
|
2173
|
-
printout=True,style_print=
|
2174
|
-
facecolor='whitesmoke',
|
2189
|
+
printout=True,style_print=True, \
|
2190
|
+
facecolor='whitesmoke',font_size='16px'):
|
2175
2191
|
"""
|
2176
2192
|
功能:进行描述性统计,并打印结果
|
2177
2193
|
df的要求:
|
@@ -2381,7 +2397,7 @@ def descriptive_statistics2(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
|
2381
2397
|
pass
|
2382
2398
|
#确保display显示时不再自动在数值尾部添加零至6位小数
|
2383
2399
|
dst6[c]=dst6[c].apply(lambda x: str(x))
|
2384
|
-
|
2400
|
+
"""
|
2385
2401
|
if not style_print: #markdown打印
|
2386
2402
|
print("\n"+titletxt+"\n")
|
2387
2403
|
#如果index=True则显示index,这样alignlist的长度就需要dst6列数+1
|
@@ -2396,14 +2412,11 @@ def descriptive_statistics2(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
|
2396
2412
|
print("\n"+footnote)
|
2397
2413
|
|
2398
2414
|
else: #style打印
|
2399
|
-
"""
|
2400
2415
|
print("\n"+titletxt)
|
2401
2416
|
dst6sd= dst6.style.set_properties(**{'text-align': 'center'})
|
2402
2417
|
from IPython.display import display
|
2403
2418
|
display(dst6sd)
|
2404
2419
|
print(footnote+"\n")
|
2405
|
-
"""
|
2406
|
-
|
2407
2420
|
disph=dst6.style.hide() #不显示索引列
|
2408
2421
|
dispp=disph.format(precision=3) #设置带有小数点的列精度调整为小数点后3位
|
2409
2422
|
#设置标题/列名
|
@@ -2417,15 +2430,22 @@ def descriptive_statistics2(df,titletxt,footnote,decimals=4,sortby='tpw_mean', \
|
|
2417
2430
|
dispf=dispt1.set_properties(**{'text-align':'center'})
|
2418
2431
|
#设置前景背景颜色
|
2419
2432
|
try:
|
2420
|
-
dispf2=dispf.set_properties(**{'background-color':facecolor,'color':
|
2433
|
+
dispf2=dispf.set_properties(**{'background-color':facecolor,'color':'black'})
|
2421
2434
|
except:
|
2422
2435
|
print(" #Warning(descriptive_statistics2): color",facecolor,"is unsupported, changed to default setting")
|
2423
2436
|
dispf2=dispf.set_properties(**{'background-color':'whitesmoke','color':'black'})
|
2424
2437
|
|
2425
2438
|
from IPython.display import display
|
2426
2439
|
display(dispf2)
|
2427
|
-
|
2428
2440
|
print(footnote+"\n")
|
2441
|
+
"""
|
2442
|
+
#确定表格字体大小
|
2443
|
+
titile_font_size=font_size
|
2444
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
2445
|
+
|
2446
|
+
df_display_CSS(dst6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
2447
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
2448
|
+
data_font_size=data_font_size)
|
2429
2449
|
|
2430
2450
|
return dst5
|
2431
2451
|
|
@@ -3695,8 +3715,8 @@ if __name__=='__main__':
|
|
3695
3715
|
def df_display_CSS(df,titletxt='',footnote='',facecolor='papayawhip',decimals=2, \
|
3696
3716
|
first_col_align='left',second_col_align='right', \
|
3697
3717
|
last_col_align='right',other_col_align='right', \
|
3698
|
-
titile_font_size='
|
3699
|
-
data_font_size='
|
3718
|
+
titile_font_size='16px',heading_font_size='15px', \
|
3719
|
+
data_font_size='15px'):
|
3700
3720
|
"""
|
3701
3721
|
功能:采样CSS式样显示df,适用于Jupyter环境,整齐紧凑,不挑浏览器
|
3702
3722
|
注意:若facecolor不被支持,则自动改为papayawhip
|
siat/financials2.py
CHANGED
@@ -93,7 +93,7 @@ if __name__=='__main__':
|
|
93
93
|
def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
94
94
|
category='profile',business_period='annual', \
|
95
95
|
scale1=10,scale2=10,sort='PM',
|
96
|
-
printout=True,
|
96
|
+
printout=True,facecolor='papayawhip',font_size='16px'
|
97
97
|
):
|
98
98
|
"""
|
99
99
|
功能:tickers为股票列表,fsdates为财报日期,可为单个日期或日期列表
|
@@ -128,6 +128,10 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
128
128
|
million=1000000
|
129
129
|
billion=million * 1000
|
130
130
|
|
131
|
+
#确定表格字体大小
|
132
|
+
titile_font_size=font_size
|
133
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
134
|
+
|
131
135
|
# 基于analysis_type1的类型分别处理
|
132
136
|
if ('profile' in analysis_type1):
|
133
137
|
# 股票需为单只股票,若为列表则仅取第一个
|
@@ -249,8 +253,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
249
253
|
footnote2="Data source: Yahoo Finance, "+str(todaydt)
|
250
254
|
footnote='Note:\n'+footnote1+'\n'+footnote2
|
251
255
|
#print('\n',footnote1,'\n',footnote2)
|
252
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
253
|
-
titile_font_size=
|
256
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
257
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
258
|
+
data_font_size=data_font_size)
|
254
259
|
|
255
260
|
return fsdf6
|
256
261
|
|
@@ -330,8 +335,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
330
335
|
footnote2="Data source: Yahoo Finance, "+str(todaydt)
|
331
336
|
footnote='Note:\n'+footnote1+'\n'+footnote2
|
332
337
|
#print('\n',footnote1,'\n',footnote2)
|
333
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
334
|
-
titile_font_size=
|
338
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
339
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
340
|
+
data_font_size=data_font_size)
|
335
341
|
|
336
342
|
return fsdf6
|
337
343
|
|
@@ -409,8 +415,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
409
415
|
footnote2="Data source: Yahoo Finance, "+str(todaydt)
|
410
416
|
footnote='Note:\n'+footnote1+'\n'+footnote2
|
411
417
|
#print('\n',footnote1,'\n',footnote2)
|
412
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
413
|
-
titile_font_size=
|
418
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
419
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
420
|
+
data_font_size=data_font_size)
|
414
421
|
return fsdf6
|
415
422
|
|
416
423
|
return fsdf2
|
@@ -519,8 +526,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
519
526
|
footnote3="Data source: Yahoo Finance, "+todaydt
|
520
527
|
footnote='Note:\n'+footnote1+'\n'+footnote2+'\n'+footnote3
|
521
528
|
#print('\n',footnote1,'\n',footnote2,'\n',footnote3)
|
522
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
523
|
-
titile_font_size=
|
529
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
530
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
531
|
+
data_font_size=data_font_size)
|
524
532
|
return fsdf6
|
525
533
|
|
526
534
|
return fsdf2
|
@@ -620,8 +628,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
620
628
|
footnote3="Data source: Yahoo Finance, "+str(todaydt)
|
621
629
|
footnote='Note:\n'+footnote1+'\n'+footnote2+'\n'+footnote3
|
622
630
|
#print('\n',footnote1,'\n',footnote2,'\n',footnote3)
|
623
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
624
|
-
titile_font_size=
|
631
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
632
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
633
|
+
data_font_size=data_font_size)
|
625
634
|
return fsdf6
|
626
635
|
|
627
636
|
return fsdf2
|
@@ -728,8 +737,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
728
737
|
footnote3="Data source: Yahoo Finance, "+str(todaydt)
|
729
738
|
footnote='Note:\n'+footnote1+'\n'+footnote2+'\n'+footnote3
|
730
739
|
#print('\n',footnote1,'\n',footnote2,'\n',footnote3)
|
731
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
732
|
-
titile_font_size=
|
740
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
741
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
742
|
+
data_font_size=data_font_size)
|
733
743
|
return fsdf6
|
734
744
|
|
735
745
|
return fsdf2
|
@@ -830,8 +840,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
830
840
|
footnote3="Data source: Yahoo Finance, "+str(todaydt)
|
831
841
|
footnote='Note:\n'+footnote1+'\n'+footnote2+'\n'+footnote3
|
832
842
|
#print('\n',footnote1,'\n',footnote2,'\n',footnote3)
|
833
|
-
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote, \
|
834
|
-
titile_font_size=
|
843
|
+
df_display_CSS(fsdf6,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
844
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
845
|
+
data_font_size=data_font_size)
|
835
846
|
return fsdf6
|
836
847
|
|
837
848
|
return fsdf2
|
@@ -960,8 +971,9 @@ def fs_analysis(tickers,fsdates=[],analysis_type='balance sheet', \
|
|
960
971
|
footnote2="Data source: Yahoo Finance, "+str(todaydt)
|
961
972
|
footnote='Note:\n'+footnote1+'\n'+footnote2
|
962
973
|
#print('\n',footnote1,'\b.',footnote2)
|
963
|
-
df_display_CSS(df,titletxt=titletxt,footnote=footnote, \
|
964
|
-
titile_font_size=
|
974
|
+
df_display_CSS(df,titletxt=titletxt,footnote=footnote,facecolor=facecolor, \
|
975
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
976
|
+
data_font_size=data_font_size)
|
965
977
|
return df2
|
966
978
|
|
967
979
|
else: # analysis_type1
|
siat/financials_china.py
CHANGED
@@ -655,7 +655,7 @@ if __name__=='__main__':
|
|
655
655
|
|
656
656
|
def compare_dupont_china(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10, \
|
657
657
|
hatchlist=['.', 'o', '\\'],printout=True,sort='PM', \
|
658
|
-
facecolor='papayawhip'):
|
658
|
+
facecolor='papayawhip',font_size='16px'):
|
659
659
|
"""
|
660
660
|
功能:获得tickerlist中每只股票的杜邦分析项目,绘制柱状叠加比较图
|
661
661
|
tickerlist:股票代码列表,建议在10只以内
|
@@ -799,11 +799,17 @@ def compare_dupont_china(tickerlist,fsdate='latest',scale1 = 10,scale2 = 10, \
|
|
799
799
|
footnote1="2、表中数值基于期末数字直接计算,而非期初期末均值,可能与公告数字存在差异。"
|
800
800
|
footnote2="*** 数据来源:sina/EM,"+str(today)
|
801
801
|
footnote=footnote0+'\n'+footnote1+'\n'+footnote2
|
802
|
-
|
802
|
+
|
803
|
+
#确定表格字体大小
|
804
|
+
titile_font_size=font_size
|
805
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
806
|
+
|
803
807
|
#print(df.to_string(index=False))
|
804
808
|
#df_directprint(df,title_txt,footnote)
|
805
809
|
df_display_CSS(df=df,titletxt=title_txt,footnote=footnote, \
|
806
|
-
facecolor=facecolor,decimals=4
|
810
|
+
facecolor=facecolor,decimals=4, \
|
811
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
812
|
+
data_font_size=data_font_size)
|
807
813
|
|
808
814
|
|
809
815
|
#合并所有历史记录
|
@@ -3539,7 +3545,7 @@ if __name__=='__main__':
|
|
3539
3545
|
tickers=['000002.SZ','600048.SS','001979.SZ','600325.SS','000069.SZ','600383.SS','600895.SS','601155.SS']
|
3540
3546
|
fsdates='2022-12-31'
|
3541
3547
|
|
3542
|
-
def compare_fin_summary_china(tickers,fsdates,facecolor='whitesmoke'):
|
3548
|
+
def compare_fin_summary_china(tickers,fsdates,facecolor='whitesmoke',font_size='16px'):
|
3543
3549
|
"""
|
3544
3550
|
功能:分类别显示财报摘要中的指标
|
3545
3551
|
"""
|
@@ -3697,6 +3703,10 @@ def compare_fin_summary_china(tickers,fsdates,facecolor='whitesmoke'):
|
|
3697
3703
|
'说明:本表指标主要针对非金融普通企业,部分指标不完全适用于金融行业。 \n\n'+ \
|
3698
3704
|
'注意:财报比率统计口径可能存在差异(例如采用期末/期初期末均值/期间加权等),但不影响同一指标的可比性。',
|
3699
3705
|
}
|
3706
|
+
|
3707
|
+
#确定表格字体大小
|
3708
|
+
titile_font_size=font_size
|
3709
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
3700
3710
|
|
3701
3711
|
# 一只股票情形:多日期
|
3702
3712
|
if len(tickers_found) == 1:
|
@@ -3727,8 +3737,11 @@ def compare_fin_summary_china(tickers,fsdates,facecolor='whitesmoke'):
|
|
3727
3737
|
print(notesdict[ty])
|
3728
3738
|
"""
|
3729
3739
|
titletxt1=titletxt+','+ty
|
3740
|
+
|
3730
3741
|
df_display_CSS(df=dft2,titletxt=titletxt1,footnote=notesdict[ty], \
|
3731
|
-
facecolor=facecolor,decimals=2
|
3742
|
+
facecolor=facecolor,decimals=2, \
|
3743
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
3744
|
+
data_font_size=data_font_size)
|
3732
3745
|
|
3733
3746
|
# 多只股票情形:单日期
|
3734
3747
|
import pandas as pd
|
@@ -3780,8 +3793,11 @@ def compare_fin_summary_china(tickers,fsdates,facecolor='whitesmoke'):
|
|
3780
3793
|
print(notesdict[ty])
|
3781
3794
|
"""
|
3782
3795
|
titletxt1=titletxt+','+ty
|
3796
|
+
|
3783
3797
|
df_display_CSS(df=dft2,titletxt=titletxt1,footnote=notesdict[ty], \
|
3784
|
-
facecolor=facecolor,decimals=2
|
3798
|
+
facecolor=facecolor,decimals=2, \
|
3799
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
3800
|
+
data_font_size=data_font_size)
|
3785
3801
|
|
3786
3802
|
return dft2
|
3787
3803
|
|
@@ -3977,7 +3993,7 @@ if __name__=='__main__':
|
|
3977
3993
|
'2018-12-31',
|
3978
3994
|
]
|
3979
3995
|
|
3980
|
-
def compare_fin_indicator_china(tickers,fsdates,facecolor='papayawhip'):
|
3996
|
+
def compare_fin_indicator_china(tickers,fsdates,facecolor='papayawhip',font_size='16px'):
|
3981
3997
|
"""
|
3982
3998
|
功能:分类别显示财报摘要中的指标
|
3983
3999
|
"""
|
@@ -4187,6 +4203,10 @@ def compare_fin_indicator_china(tickers,fsdates,facecolor='papayawhip'):
|
|
4187
4203
|
'固定资产净值率=(固定资产原值-累计折旧)/固定资产原值*100%,反映企业全部固定资产平均新旧程度 \n'+ \
|
4188
4204
|
'资本固定化比率=非流动资产/净资产*100%,若超过100%说明固定资产资金投入超过自身能力,易造成财务状况恶化。\n',
|
4189
4205
|
}
|
4206
|
+
|
4207
|
+
#确定表格字体大小
|
4208
|
+
titile_font_size=font_size
|
4209
|
+
heading_font_size=data_font_size=str(int(font_size.replace('px',''))-1)+'px'
|
4190
4210
|
|
4191
4211
|
# 标记选项类型
|
4192
4212
|
typedict_keys=list(typedict.keys())
|
@@ -4239,7 +4259,9 @@ def compare_fin_indicator_china(tickers,fsdates,facecolor='papayawhip'):
|
|
4239
4259
|
"""
|
4240
4260
|
titletxt1=titletxt+','+ty
|
4241
4261
|
df_display_CSS(df=dft3,titletxt=titletxt1,footnote=notesdict[ty], \
|
4242
|
-
facecolor=facecolor,decimals=2
|
4262
|
+
facecolor=facecolor,decimals=2, \
|
4263
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
4264
|
+
data_font_size=data_font_size)
|
4243
4265
|
|
4244
4266
|
return dft3
|
4245
4267
|
|
@@ -4298,7 +4320,9 @@ def compare_fin_indicator_china(tickers,fsdates,facecolor='papayawhip'):
|
|
4298
4320
|
"""
|
4299
4321
|
titletxt1=titletxt+','+ty
|
4300
4322
|
df_display_CSS(df=dft3,titletxt=titletxt1,footnote=notesdict[ty], \
|
4301
|
-
facecolor=facecolor,decimals=2
|
4323
|
+
facecolor=facecolor,decimals=2, \
|
4324
|
+
titile_font_size=titile_font_size,heading_font_size=heading_font_size, \
|
4325
|
+
data_font_size=data_font_size)
|
4302
4326
|
|
4303
4327
|
return dft3
|
4304
4328
|
|