siat 2.14.1__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/financials_china2.py CHANGED
@@ -212,7 +212,7 @@ def get_fin_stmt_ak_multi(tickers,fsdates):
212
212
  df.rename(columns={'endDate_期初':'endDate_上期'},inplace=True)
213
213
 
214
214
  #标注股票简称,去掉其中的(A股)字样
215
- df["股票简称"]=df['ticker'].apply(lambda x: codetranslate(x).replace("(A股)",''))
215
+ df["股票简称"]=df['ticker'].apply(lambda x: ticker_name(x).replace("(A股)",''))
216
216
 
217
217
  """
218
218
  # 替换nan为-
@@ -504,7 +504,7 @@ def fs_item_analysis_1(df,ticker,fsdate,items,title_txt='',notes=''):
504
504
 
505
505
  #无序号打印
506
506
  if title_txt=='':
507
- ticker_name=codetranslate(ticker).replace("(A股)",'')
507
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
508
508
  title_txt=ticker_name+"财报分析:重要项目的变动情况\n(截至"+fsdate+")"
509
509
  import datetime; today=datetime.date.today()
510
510
  #footnote="*单位:亿元,数据来源:新浪财经,"+str(today)
@@ -565,7 +565,7 @@ def fs_item_analysis_2(df,ticker,fsdates,items,title_txt='',notes=''):
565
565
 
566
566
  #无序号打印
567
567
  if title_txt=='':
568
- ticker_name=codetranslate(ticker).replace("(A股)",'')
568
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
569
569
  title_txt=ticker_name+"财报分析:重要项目占比的变动趋势"
570
570
  import datetime; today=datetime.date.today()
571
571
  footnote="*数据来源:新浪财经,"+str(today)
@@ -620,7 +620,7 @@ def fs_item_analysis_3(df,ticker,fsdates,title_txt='',notes=''):
620
620
 
621
621
  #无序号打印
622
622
  if title_txt=='':
623
- ticker_name=codetranslate(ticker).replace("(A股)",'')
623
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
624
624
  title_txt=ticker_name+"财报分析:流动比率的变动趋势"
625
625
  import datetime; today=datetime.date.today()
626
626
  footnote="*数据来源:新浪财经,"+str(today)
@@ -695,7 +695,7 @@ def fs_item_analysis_4(df,ticker,fsdates,title_txt='',notes=''):
695
695
 
696
696
  #无序号打印
697
697
  if title_txt=='':
698
- ticker_name=codetranslate(ticker).replace("(A股)",'')
698
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
699
699
  title_txt=ticker_name+"财报分析:速动比率的变动趋势"
700
700
  import datetime; today=datetime.date.today()
701
701
  footnote="*数据来源:新浪财经,"+str(today)
@@ -750,7 +750,7 @@ def fs_item_analysis_5(df,ticker,fsdates,title_txt='',notes=''):
750
750
 
751
751
  #无序号打印
752
752
  if title_txt=='':
753
- ticker_name=codetranslate(ticker).replace("(A股)",'')
753
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
754
754
  title_txt=ticker_name+"财报分析:资产负债率的变动趋势"
755
755
  import datetime; today=datetime.date.today()
756
756
  footnote="*数据来源:新浪财经,"+str(today)
@@ -811,7 +811,7 @@ def fs_item_analysis_6_original(df,ticker,fsdates,items,title_txt='',notes=''):
811
811
 
812
812
  #无序号打印
813
813
  if title_txt=='':
814
- ticker_name=codetranslate(ticker).replace("(A股)",'')
814
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
815
815
  title_txt=ticker_name+"财报分析:重要关联项目的增幅对比"
816
816
  import datetime; today=datetime.date.today()
817
817
  footnote="*数据来源:新浪财经,"+str(today)
@@ -870,7 +870,7 @@ def fs_item_analysis_6(df,ticker,fsdates,items,title_txt='',notes=''):
870
870
 
871
871
  #无序号打印
872
872
  if title_txt=='':
873
- ticker_name=codetranslate(ticker).replace("(A股)",'')
873
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
874
874
  title_txt=ticker_name+"财报分析:重要关联项目的增幅对比"
875
875
  import datetime; today=datetime.date.today()
876
876
  if yiyuan_foot:
@@ -919,7 +919,7 @@ def fs_item_analysis_7_original(df,tickers,fsdate,items,title_txt=''):
919
919
  yiyuan_foot=False
920
920
 
921
921
  for t in tickers:
922
- tname=codetranslate(t).replace("(A股)",'')
922
+ tname=ticker_name(t).replace("(A股)",'')
923
923
  row_list=[tname]
924
924
  for i in items:
925
925
  i_value,_,_=select_item(df,t,fsdate,i)
@@ -939,7 +939,7 @@ def fs_item_analysis_7_original(df,tickers,fsdate,items,title_txt=''):
939
939
  if title_txt=='':
940
940
  title_txt="=== 重要指标的同行业对比 ==="
941
941
  ticker=tickers[0]
942
- ticker_name=codetranslate(ticker).replace("(A股)",'')
942
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
943
943
  title_txt=ticker_name+"财报分析:重要指标的同行业对比\n(截至"+fsdate+")"
944
944
  import datetime; today=datetime.date.today()
945
945
  if yiyuan_foot:
@@ -972,7 +972,7 @@ def fs_item_analysis_7(df,tickers,fsdate,items,title_txt='',notes=''):
972
972
  yiyuan_foot=False
973
973
 
974
974
  for t in tickers:
975
- tname=codetranslate(t).replace("(A股)",'')
975
+ tname=ticker_name(t).replace("(A股)",'')
976
976
  row_list=[tname]
977
977
  for i in items:
978
978
  i_value,_,_=select_item(df,t,fsdate,i)
@@ -1009,7 +1009,7 @@ def fs_item_analysis_7(df,tickers,fsdate,items,title_txt='',notes=''):
1009
1009
  if title_txt=='':
1010
1010
  title_txt="=== 重要指标的同行业对比 ==="
1011
1011
  ticker=tickers[0]
1012
- ticker_name=codetranslate(ticker).replace("(A股)",'')
1012
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
1013
1013
  title_txt=ticker_name+"财报分析:重要指标的同行业对比\n(截至"+fsdate+")"
1014
1014
  import datetime; today=datetime.date.today()
1015
1015
  if yiyuan_foot:
@@ -1052,7 +1052,7 @@ def fs_item_analysis_8(df,tickers,fsdate,items,title_txt='',notes=''):
1052
1052
  yiyuan_foot=False
1053
1053
 
1054
1054
  for t in tickers:
1055
- tname=codetranslate(t).replace("(A股)",'')
1055
+ tname=ticker_name(t).replace("(A股)",'')
1056
1056
  row_list=[tname]
1057
1057
  for i in items:
1058
1058
  i_value,_,_=select_item(df,t,fsdate,i)
@@ -1088,7 +1088,7 @@ def fs_item_analysis_8(df,tickers,fsdate,items,title_txt='',notes=''):
1088
1088
  #无序号打印
1089
1089
  if title_txt=='':
1090
1090
  ticker=tickers[0]
1091
- ticker_name=codetranslate(ticker).replace("(A股)",'')
1091
+ ticker_name=ticker_name(ticker).replace("(A股)",'')
1092
1092
  title_txt=ticker_name+"财报分析:重要指标的同行业对比\n(截至"+fsdate+")"
1093
1093
 
1094
1094
  import datetime; today=datetime.date.today()
@@ -1156,11 +1156,11 @@ def asset_liab_structure_china(tickers,fsdates):
1156
1156
  comparator=tickers[0]
1157
1157
  comparee=tickers[1:]
1158
1158
  print(" Conducting asset-liability analysis ...")
1159
- print(" Comparator:",codetranslate(comparator))
1160
- #print(" Comparee :",codetranslate(comparee))
1159
+ print(" Comparator:",ticker_name(comparator))
1160
+ #print(" Comparee :",ticker_name(comparee))
1161
1161
  print(" Comparee :",end='')
1162
1162
  if comparee != []:
1163
- print_list(codetranslate(comparee))
1163
+ print_list(ticker_name(comparee))
1164
1164
  else:
1165
1165
  print(" N/A")
1166
1166
 
@@ -1196,7 +1196,7 @@ def asset_liab_structure_china(tickers,fsdates):
1196
1196
  print(" Solution: check ticker spelling and try at least 10 minutes later")
1197
1197
  return
1198
1198
 
1199
- title_head=codetranslate(comparator)+"资产负债分析:"
1199
+ title_head=ticker_name(comparator)+"资产负债分析:"
1200
1200
 
1201
1201
  ### 资产负债表的主要项目
1202
1202
  #资产变动趋势2
@@ -1357,11 +1357,11 @@ def income_cost_structure_china(tickers,fsdates):
1357
1357
  comparator=tickers[0]
1358
1358
  comparee=tickers[1:]
1359
1359
  print(" Conducting income-cost analysis ...")
1360
- print(" Comparator:",codetranslate(comparator))
1361
- #print(" Comparee :",codetranslate(comparee))
1360
+ print(" Comparator:",ticker_name(comparator))
1361
+ #print(" Comparee :",ticker_name(comparee))
1362
1362
  print(" Comparee :",end='')
1363
1363
  if comparee != []:
1364
- print_list(codetranslate(comparee))
1364
+ print_list(ticker_name(comparee))
1365
1365
  else:
1366
1366
  print(" N/A")
1367
1367
 
@@ -1378,7 +1378,7 @@ def income_cost_structure_china(tickers,fsdates):
1378
1378
  #print(" Possible reasons: no access to data source or invalid tickers")
1379
1379
  return
1380
1380
 
1381
- title_head=codetranslate(comparator)+"收入成本分析:"
1381
+ title_head=ticker_name(comparator)+"收入成本分析:"
1382
1382
 
1383
1383
  #收入成本总体变动趋势
1384
1384
  title_txt=title_head+"主要项目及其变动趋势"
@@ -1535,10 +1535,10 @@ def cash_flow_structure_china(tickers,fsdates):
1535
1535
  comparator=tickers[0]
1536
1536
  comparee=tickers[1:]
1537
1537
  print(" Conducting cash flow analysis ...")
1538
- print(" Comparator:",codetranslate(comparator))
1538
+ print(" Comparator:",ticker_name(comparator))
1539
1539
  print(" Comparee :",end='')
1540
1540
  if comparee != []:
1541
- print_list(codetranslate(comparee))
1541
+ print_list(ticker_name(comparee))
1542
1542
  else:
1543
1543
  print(" N/A")
1544
1544
 
@@ -1555,7 +1555,7 @@ def cash_flow_structure_china(tickers,fsdates):
1555
1555
  #print(" Possible reasons: no access to data source or invalid tickers")
1556
1556
  return
1557
1557
 
1558
- title_head=codetranslate(comparator)+"现金流分析:"
1558
+ title_head=ticker_name(comparator)+"现金流分析:"
1559
1559
 
1560
1560
  #总体变动趋势
1561
1561
  title_txt=title_head+"主要项目及其变动趋势"
siat/fund_china.pickle CHANGED
Binary file
siat/fund_china.py CHANGED
@@ -739,7 +739,8 @@ if __name__=='__main__':
739
739
  zeroline=False
740
740
 
741
741
  def oef_trend_china(fund,fromdate,todate,trend_type='净值', \
742
- power=0,twinx=False,loc1='upper left',loc2='lower left'):
742
+ power=0,twinx=False, \
743
+ loc1='upper left',loc2='lower left'):
743
744
  """
744
745
  功能:开放式基金业绩趋势,单位净值,累计净值,近三个月收益率,同类排名,总排名
745
746
  """
@@ -769,16 +770,16 @@ def oef_trend_china(fund,fromdate,todate,trend_type='净值', \
769
770
  source=texttranslate("数据来源:东方财富/天天基金")
770
771
 
771
772
  fund1=fund[:6]
772
- fund_name,_=get_oef_name_china(fund1)
773
+ fund_name=ticker_name(fund1,ticker_type)
773
774
 
774
775
  #绘制单位/累计净值对比图
775
776
  if trend_type == '净值':
776
- df1 = ak.fund_open_fund_info_em(fund=fund1, indicator="单位净值走势")
777
+ df1 = ak.fund_open_fund_info_em(fund1, indicator="单位净值走势")
777
778
  df1.rename(columns={'净值日期':'date','单位净值':'单位净值'}, inplace=True)
778
779
  df1['日期']=df1['date']
779
780
  df1.set_index(['date'],inplace=True)
780
781
 
781
- df2 = ak.fund_open_fund_info_em(fund=fund1, indicator="累计净值走势")
782
+ df2 = ak.fund_open_fund_info_em(fund1, indicator="累计净值走势")
782
783
  df2.rename(columns={'净值日期':'date','累计净值':'累计净值'}, inplace=True)
783
784
  df2.set_index(['date'],inplace=True)
784
785