siat 2.14.1__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
siat/stock_china.py CHANGED
@@ -676,7 +676,7 @@ def price_direction_knn(ticker,df,ndays=1,diff=0.01,min_score=0.9,votes=100,max_
676
676
  if not printout: return decision,today_close,today
677
677
 
678
678
  print(" Model voting for stock price after "+str(ndays)+" trading days: Higher("+str(zhang)+'), Lower('+str(die)+')')
679
- print(" "+codetranslate(ticker)+': previously closed '+str(known_close)+' @ '+str(known_day))
679
+ print(" "+ticker_name(ticker)+': previously closed '+str(known_close)+' @ '+str(known_day))
680
680
 
681
681
  ndate=date_adjust(known_day,adjust=ndays)
682
682
  print(" Prediction to close at",decision_text,"price trend ("+decision+') @',ndate)
@@ -726,7 +726,7 @@ def forecast_direction_knn(ticker,ndays=1,diff=0.01,min_score=0.9,votes=100,max_
726
726
  max_RS=max_RS)
727
727
  decisionlist=decisionlist+[decision]
728
728
 
729
- print("\nStock information:",codetranslate(ticker),'\b, closed',known_close,'@',known_day)
729
+ print("\nStock information:",ticker_name(ticker),'\b, closed',known_close,'@',known_day)
730
730
  for nd in list(range(1,ndays+1)):
731
731
  ndate=date_adjust(known_day, adjust=nd)
732
732
  print("Forecasting stock close price trend on",ndate,end=': ')
@@ -952,7 +952,7 @@ def price_price_knn(ticker,df,ndays=1,max_neighbours=10,max_RS=20,printout=True)
952
952
  if not printout: return decision,decision_score,today_close,today
953
953
 
954
954
  print(" Model poll for stock price after "+str(ndays)+" trading days:",decision)
955
- print(" Last close price: "+codetranslate(ticker)+', closed '+str(known_close)+', '+str(known_day))
955
+ print(" Last close price: "+ticker_name(ticker)+', closed '+str(known_close)+', '+str(known_day))
956
956
 
957
957
  ndate=date_adjust(known_day,adjust=ndays)
958
958
 
@@ -1009,7 +1009,7 @@ def forecast_price_knn(ticker,ndays=1,max_neighbours=10,max_RS=20,end='latest'):
1009
1009
  decisionlist=decisionlist+[decision]
1010
1010
  confidencelist=confidencelist+[confidence]
1011
1011
 
1012
- print("\nStock information:",codetranslate(ticker),'\b, closed',known_close,'@',known_day)
1012
+ print("\nStock information:",ticker_name(ticker),'\b, closed',known_close,'@',known_day)
1013
1013
 
1014
1014
  for nd in list(range(1,ndays+1)):
1015
1015
  ndate=date_adjust(known_day, adjust=nd)
@@ -1228,7 +1228,7 @@ def stock_profile_china(ticker,category='profile', \
1228
1228
  dftmp15=dftmp14.T
1229
1229
  dftmp15.reset_index(inplace=True)
1230
1230
 
1231
- titletxt=codetranslate(ticker)+":基本信息"
1231
+ titletxt=ticker_name(ticker)+":基本信息"
1232
1232
  if prettytab:
1233
1233
  pandas2prettytable(dftmp15,titletxt,firstColSpecial=False,leftColAlign='l',otherColAlign='l',tabborder=tabborder)
1234
1234
  print(' ','数据来源:巨潮资讯,',str(today))
@@ -1296,7 +1296,7 @@ def stock_profile_china(ticker,category='profile', \
1296
1296
  cols2=['分类方向','分类','营业收入-同比增长','营业成本-同比增长','毛利率','毛利率-同比增长']
1297
1297
 
1298
1298
  dftmp1=dftmp[cols1]
1299
- titletxt1=codetranslate(ticker)+':主营业务构成,'+period+'财报'
1299
+ titletxt1=ticker_name(ticker)+':主营业务构成,'+period+'财报'
1300
1300
  if prettytab:
1301
1301
  pandas2prettytable(dftmp1,titletxt1,firstColSpecial=True,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
1302
1302
  print(' ','数据来源:益盟-F10,',str(today))
@@ -1306,7 +1306,7 @@ def stock_profile_china(ticker,category='profile', \
1306
1306
  print('\n数据来源:益盟-F10,',str(today))
1307
1307
 
1308
1308
  dftmp2=dftmp[cols2]
1309
- titletxt2=codetranslate(ticker)+':主营业务增长,'+period+'财报'
1309
+ titletxt2=ticker_name(ticker)+':主营业务增长,'+period+'财报'
1310
1310
  if prettytab:
1311
1311
  pandas2prettytable(dftmp2,titletxt2,firstColSpecial=True,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
1312
1312
  print(' ','数据来源:益盟-F10,',str(today))
@@ -1348,7 +1348,7 @@ def stock_profile_china(ticker,category='profile', \
1348
1348
  dftmp2=dftmp1.replace(0,'')
1349
1349
  dftmp3=dftmp2.replace('','--')
1350
1350
 
1351
- titletxt=codetranslate(ticker)+':股利发放历史'
1351
+ titletxt=ticker_name(ticker)+':股利发放历史'
1352
1352
  if prettytab:
1353
1353
  pandas2prettytable(dftmp3,titletxt,firstColSpecial=False,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
1354
1354
  print(' ','数据来源:巨潮资讯,',str(today))
@@ -1359,7 +1359,7 @@ def stock_profile_china(ticker,category='profile', \
1359
1359
  """
1360
1360
  if category == 'dividend':
1361
1361
  # 分红
1362
- titletxt=codetranslate(ticker)+':分红历史'
1362
+ titletxt=ticker_name(ticker)+':分红历史'
1363
1363
  try:
1364
1364
  #df3=ak.stock_dividents_cninfo(symbol=ticker1)
1365
1365
  df3=ak.stock_history_dividend_detail(symbol=ticker1, indicator="分红")
@@ -1383,7 +1383,7 @@ def stock_profile_china(ticker,category='profile', \
1383
1383
  newcols=['公告日期','送股','转增','派息','股权登记日','除权除息日']
1384
1384
  dftmp3=dftmp[newcols]
1385
1385
 
1386
- titletxt=codetranslate(ticker)+':分红历史'
1386
+ titletxt=ticker_name(ticker)+':分红历史'
1387
1387
  if prettytab:
1388
1388
  pandas2prettytable(dftmp3,titletxt,firstColSpecial=False,leftColAlign='l',otherColAlign='c',tabborder=tabborder)
1389
1389
  print('【注】送股/转增:股数/10股,派息:元(税前)/10股,数据来源:新浪财经,',str(today))
@@ -1394,7 +1394,7 @@ def stock_profile_china(ticker,category='profile', \
1394
1394
  print('【注】送股/转增:股数/10股,派息:元(税前)/10股,数据来源:新浪财经,',str(today))
1395
1395
 
1396
1396
  # 配股
1397
- titletxt=codetranslate(ticker)+':配股历史'
1397
+ titletxt=ticker_name(ticker)+':配股历史'
1398
1398
  try:
1399
1399
  df3p=ak.stock_history_dividend_detail(symbol=ticker1, indicator="配股")
1400
1400
  except:
@@ -1476,7 +1476,7 @@ def stock_profile_china(ticker,category='profile', \
1476
1476
  enddate=str(dftmp.head(1)['截至日期'][0])
1477
1477
  shareholder_num=dftmp.head(1)['股东总数'][0]
1478
1478
  avg_shares=dftmp.head(1)['平均持股数'][0]
1479
- titletxt=codetranslate(ticker)+':十大股东(截至'+str(enddate)+',股东总数'+str(int(shareholder_num))+',平均持股数'+str(int(avg_shares))+')'
1479
+ titletxt=ticker_name(ticker)+':十大股东(截至'+str(enddate)+',股东总数'+str(int(shareholder_num))+',平均持股数'+str(int(avg_shares))+')'
1480
1480
 
1481
1481
  dftmp.drop(['截至日期','公告日期','股东说明','股东总数','平均持股数'],axis=1,inplace=True)
1482
1482
 
@@ -1538,7 +1538,7 @@ def stock_profile_china(ticker,category='profile', \
1538
1538
  mv_min=round(dftmp2['total_mv(yi)'].min(),1)
1539
1539
  mv_txt="总市值(亿元):"+str(mv_min)+'-'+str(mv_max)+",均值"+str(mv_mean)+",中位数"+str(mv_median)
1540
1540
 
1541
- titletxt=codetranslate(ticker)+':估值与市值'
1541
+ titletxt=ticker_name(ticker)+':估值与市值'
1542
1542
  import datetime as dt
1543
1543
  today=dt.date.today()
1544
1544
  footnote3="数据来源:乐咕乐股,"+str(today)
@@ -1636,7 +1636,7 @@ def stock_profile_china(ticker,category='profile', \
1636
1636
  if numOfQ > 8:
1637
1637
  numOfQ=8
1638
1638
 
1639
- titletxt=codetranslate(ticker)+":主要财务信息,每股指标(元)"
1639
+ titletxt=ticker_name(ticker)+":主要财务信息,每股指标(元)"
1640
1640
  df7['加权每股收益']=df7['加权每股收益(元)']
1641
1641
  df7['每股收益_调整后']=df7['每股收益_调整后(元)']
1642
1642
  df7['扣非后每股收益']=df7['扣除非经常性损益后的每股收益(元)']
@@ -1681,7 +1681,7 @@ def stock_profile_china(ticker,category='profile', \
1681
1681
  为了准确评估每股收益,就必须用稀释每股收益。
1682
1682
  """
1683
1683
 
1684
- titletxt=codetranslate(ticker)+":主要财务信息,利润与成本"
1684
+ titletxt=ticker_name(ticker)+":主要财务信息,利润与成本"
1685
1685
  df7['扣非后净利润(元)']=df7['扣除非经常性损益后的净利润(元)']
1686
1686
  colList=['日期','财报类别','总资产利润率(%)','主营业务利润率(%)','总资产净利润率(%)','成本费用利润率(%)', \
1687
1687
  '营业利润率(%)','主营业务成本率(%)','销售净利率(%)', '销售毛利率(%)','三项费用比重','非主营比重', \
@@ -1724,7 +1724,7 @@ def stock_profile_china(ticker,category='profile', \
1724
1724
  成本费用利润率=利润总额/成本费用总额(即成本总额+费用总额)
1725
1725
  """
1726
1726
 
1727
- titletxt=codetranslate(ticker)+":主要财务信息,报酬与收益"
1727
+ titletxt=ticker_name(ticker)+":主要财务信息,报酬与收益"
1728
1728
  colList=['日期','财报类别', '股本报酬率(%)','净资产报酬率(%)','资产报酬率(%)', '股息发放率(%)','投资收益率(%)', \
1729
1729
  '净资产收益率(%)','加权净资产收益率(%)']
1730
1730
  dftmp=df7[colList].head(numOfQ)
@@ -1762,7 +1762,7 @@ def stock_profile_china(ticker,category='profile', \
1762
1762
  股本报酬率/回报率=净利润/期初期末总股本的均值。股本是实收资本,而股权是股东权益。
1763
1763
  """
1764
1764
 
1765
- titletxt=codetranslate(ticker)+":主要财务信息,增长率"
1765
+ titletxt=ticker_name(ticker)+":主要财务信息,增长率"
1766
1766
  colList=['日期','财报类别','主营业务收入增长率(%)','净利润增长率(%)','总资产增长率(%)','净资产增长率(%)']
1767
1767
  dftmp=df7[colList].head(numOfQ)
1768
1768
 
@@ -1791,7 +1791,7 @@ def stock_profile_china(ticker,category='profile', \
1791
1791
  """
1792
1792
  """
1793
1793
 
1794
- titletxt=codetranslate(ticker)+":主要财务信息,资产负债分析"
1794
+ titletxt=ticker_name(ticker)+":主要财务信息,资产负债分析"
1795
1795
  colList=['日期','财报类别','流动比率','速动比率','现金比率(%)','利息支付倍数','长期债务与营运资金比率(%)', \
1796
1796
  '股东权益比率(%)','长期负债比率(%)','股东权益与固定资产比率(%)','负债与所有者权益比率(%)', \
1797
1797
  '长期资产与长期资金比率(%)','资本化比率(%)','固定资产净值率(%)','资本固定化比率(%)', \
@@ -1836,7 +1836,7 @@ def stock_profile_china(ticker,category='profile', \
1836
1836
 
1837
1837
  """
1838
1838
 
1839
- titletxt=codetranslate(ticker)+":主要财务信息,现金流量指标(均为%)"
1839
+ titletxt=ticker_name(ticker)+":主要财务信息,现金流量指标(均为%)"
1840
1840
  colList=['日期','财报类别','经营现金净流量对销售收入比率(%)','资产的经营现金流量回报率(%)','经营现金净流量与净利润的比率(%)', \
1841
1841
  '经营现金净流量对负债比率(%)','现金流量比率(%)']
1842
1842
  dftmp=df7[colList].head(numOfQ)
siat/stock_info.pickle CHANGED
Binary file