sglang 0.5.4__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +73 -14
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/launch_server.py +2 -0
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +221 -4
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/compilation/backend.py +1 -1
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +30 -7
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -12
 - sglang/srt/entrypoints/engine.py +31 -20
 - sglang/srt/entrypoints/grpc_server.py +0 -1
 - sglang/srt/entrypoints/http_server.py +94 -94
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +23 -2
 - sglang/srt/eplb/expert_distribution.py +64 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/function_call/function_call_parser.py +2 -0
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/activation.py +6 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +19 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +10 -1
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +21 -11
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +11 -15
 - sglang/srt/layers/attention/utils.py +78 -0
 - sglang/srt/layers/communicator.py +24 -1
 - sglang/srt/layers/deep_gemm_wrapper/compile_utils.py +1 -1
 - sglang/srt/layers/layernorm.py +35 -6
 - sglang/srt/layers/logits_processor.py +9 -20
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +138 -0
 - sglang/srt/layers/moe/ep_moe/kernels.py +194 -0
 - sglang/srt/layers/moe/ep_moe/layer.py +78 -289
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +3 -3
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +7 -4
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +340 -55
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +4 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +11 -5
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +25 -18
 - sglang/srt/layers/moe/token_dispatcher/standard.py +1 -1
 - sglang/srt/layers/moe/topk.py +35 -10
 - sglang/srt/layers/moe/utils.py +3 -4
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +13 -84
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/awq.py +0 -3
 - sglang/srt/layers/quantization/base_config.py +7 -0
 - sglang/srt/layers/quantization/fp8.py +68 -63
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/quantization/mxfp4.py +30 -38
 - sglang/srt/layers/quantization/unquant.py +23 -45
 - sglang/srt/layers/quantization/w4afp8.py +38 -2
 - sglang/srt/layers/radix_attention.py +5 -2
 - sglang/srt/layers/rotary_embedding.py +130 -46
 - sglang/srt/layers/sampler.py +12 -1
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +29 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +22 -1
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +185 -144
 - sglang/srt/managers/scheduler_metrics_mixin.py +22 -14
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_profiler_mixin.py +3 -4
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +165 -78
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/hicache_storage.py +7 -1
 - sglang/srt/mem_cache/memory_pool.py +253 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +55 -14
 - sglang/srt/model_executor/model_runner.py +77 -170
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +22 -12
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +296 -78
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4_moe.py +322 -354
 - sglang/srt/models/glm4_moe_nextn.py +4 -14
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +29 -197
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/qwen2.py +23 -2
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +35 -5
 - sglang/srt/models/qwen3_moe.py +18 -12
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multimodal/processors/base_processor.py +1 -0
 - sglang/srt/multimodal/processors/glm4v.py +1 -1
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/points_v15_chat.py +2 -2
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/parser/reasoning_parser.py +28 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +459 -199
 - sglang/srt/single_batch_overlap.py +2 -4
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +142 -74
 - sglang/srt/utils/hf_transformers_utils.py +38 -12
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_deterministic.py +235 -12
 - sglang/test/test_deterministic_utils.py +2 -1
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +15 -28
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +194 -175
 - sglang/srt/models/vila.py +0 -306
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
| 
         @@ -9,6 +9,22 @@ import torch 
     | 
|
| 
       9 
9 
     | 
    
         
             
            import triton
         
     | 
| 
       10 
10 
     | 
    
         
             
            import triton.language as tl
         
     | 
| 
       11 
11 
     | 
    
         | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.layers.deep_gemm_wrapper.configurer import ENABLE_JIT_DEEPGEMM
         
     | 
| 
      
 13 
     | 
    
         
            +
            from sglang.srt.utils.common import calc_diff, get_bool_env_var
         
     | 
| 
      
 14 
     | 
    
         
            +
             
     | 
| 
      
 15 
     | 
    
         
            +
            if ENABLE_JIT_DEEPGEMM:
         
     | 
| 
      
 16 
     | 
    
         
            +
                import deep_gemm
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            _ENABLE_MM_DEEPGEMM = get_bool_env_var(
         
     | 
| 
      
 19 
     | 
    
         
            +
                "SGLANG_BATCH_INVARIANT_OPS_ENABLE_MM_DEEPGEMM", "1"
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
      
 21 
     | 
    
         
            +
            _ENABLE_MM_COMPARISON_TEST = get_bool_env_var(
         
     | 
| 
      
 22 
     | 
    
         
            +
                "SGLANG_BATCH_INVARIANT_OPS_ENABLE_MM_COMPARISON_TEST"
         
     | 
| 
      
 23 
     | 
    
         
            +
            )
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            if not _ENABLE_MM_DEEPGEMM:
         
     | 
| 
      
 26 
     | 
    
         
            +
                print("Disable DeepGEMM in batch invariant ops. Performance may be suboptimal.")
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
       12 
28 
     | 
    
         
             
            __all__ = [
         
     | 
| 
       13 
29 
     | 
    
         
             
                "set_batch_invariant_mode",
         
     | 
| 
       14 
30 
     | 
    
         
             
                "is_batch_invariant_mode_enabled",
         
     | 
| 
         @@ -140,7 +156,7 @@ def matmul_kernel_persistent( 
     | 
|
| 
       140 
156 
     | 
    
         
             
                    tl.store(c_ptrs, c, mask=c_mask)
         
     | 
| 
       141 
157 
     | 
    
         | 
| 
       142 
158 
     | 
    
         | 
| 
       143 
     | 
    
         
            -
            def  
     | 
| 
      
 159 
     | 
    
         
            +
            def _matmul_persistent_triton(
         
     | 
| 
       144 
160 
     | 
    
         
             
                a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor | None = None
         
     | 
| 
       145 
161 
     | 
    
         
             
            ):
         
     | 
| 
       146 
162 
     | 
    
         
             
                # Check constraints.
         
     | 
| 
         @@ -217,6 +233,54 @@ def matmul_persistent( 
     | 
|
| 
       217 
233 
     | 
    
         
             
                return c
         
     | 
| 
       218 
234 
     | 
    
         | 
| 
       219 
235 
     | 
    
         | 
| 
      
 236 
     | 
    
         
            +
            def _matmul_persistent_deepgemm(
         
     | 
| 
      
 237 
     | 
    
         
            +
                a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor | None = None
         
     | 
| 
      
 238 
     | 
    
         
            +
            ):
         
     | 
| 
      
 239 
     | 
    
         
            +
                M, K = a.shape
         
     | 
| 
      
 240 
     | 
    
         
            +
                K, N = b.shape
         
     | 
| 
      
 241 
     | 
    
         
            +
                dtype = a.dtype
         
     | 
| 
      
 242 
     | 
    
         
            +
                out = torch.empty((M, N), device=a.device, dtype=dtype)
         
     | 
| 
      
 243 
     | 
    
         
            +
             
     | 
| 
      
 244 
     | 
    
         
            +
                deep_gemm.bf16_gemm_nn(a, b, out)
         
     | 
| 
      
 245 
     | 
    
         
            +
             
     | 
| 
      
 246 
     | 
    
         
            +
                # TODO can this be put in DeepGEMM's `c`?
         
     | 
| 
      
 247 
     | 
    
         
            +
                if bias is not None:
         
     | 
| 
      
 248 
     | 
    
         
            +
                    out += bias
         
     | 
| 
      
 249 
     | 
    
         
            +
             
     | 
| 
      
 250 
     | 
    
         
            +
                return out
         
     | 
| 
      
 251 
     | 
    
         
            +
             
     | 
| 
      
 252 
     | 
    
         
            +
             
     | 
| 
      
 253 
     | 
    
         
            +
            def matmul_persistent(
         
     | 
| 
      
 254 
     | 
    
         
            +
                a: torch.Tensor, b: torch.Tensor, bias: torch.Tensor | None = None
         
     | 
| 
      
 255 
     | 
    
         
            +
            ):
         
     | 
| 
      
 256 
     | 
    
         
            +
                if (
         
     | 
| 
      
 257 
     | 
    
         
            +
                    _ENABLE_MM_DEEPGEMM
         
     | 
| 
      
 258 
     | 
    
         
            +
                    and ENABLE_JIT_DEEPGEMM
         
     | 
| 
      
 259 
     | 
    
         
            +
                    and (a.dtype == torch.bfloat16)
         
     | 
| 
      
 260 
     | 
    
         
            +
                    and (b.dtype == torch.bfloat16)
         
     | 
| 
      
 261 
     | 
    
         
            +
                    and a.is_contiguous()
         
     | 
| 
      
 262 
     | 
    
         
            +
                    and b.transpose(0, 1).is_contiguous()
         
     | 
| 
      
 263 
     | 
    
         
            +
                ):
         
     | 
| 
      
 264 
     | 
    
         
            +
                    if _ENABLE_MM_COMPARISON_TEST:
         
     | 
| 
      
 265 
     | 
    
         
            +
                        out_triton = _matmul_persistent_triton(a=a, b=b, bias=bias)
         
     | 
| 
      
 266 
     | 
    
         
            +
                        out_deepgemm = _matmul_persistent_deepgemm(a=a, b=b, bias=bias)
         
     | 
| 
      
 267 
     | 
    
         
            +
                        diff = calc_diff(out_triton, out_deepgemm)
         
     | 
| 
      
 268 
     | 
    
         
            +
                        assert diff < 0.0001, f"{diff=} {out_triton=} {out_deepgemm=}"
         
     | 
| 
      
 269 
     | 
    
         
            +
                        # can be enabled for debugging
         
     | 
| 
      
 270 
     | 
    
         
            +
                        # print(
         
     | 
| 
      
 271 
     | 
    
         
            +
                        #     f"{diff=} "
         
     | 
| 
      
 272 
     | 
    
         
            +
                        #     f"{(out_triton - out_deepgemm).abs().mean()=} "
         
     | 
| 
      
 273 
     | 
    
         
            +
                        #     f"{(out_triton - out_deepgemm).abs().sum()=} "
         
     | 
| 
      
 274 
     | 
    
         
            +
                        #     f"{torch.sum(out_triton != out_deepgemm)=} "
         
     | 
| 
      
 275 
     | 
    
         
            +
                        # )
         
     | 
| 
      
 276 
     | 
    
         
            +
                        # print(f"{a=} {b=} {bias=} {out_triton=} {out_deepgemm=}")
         
     | 
| 
      
 277 
     | 
    
         
            +
                        return out_deepgemm
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                    return _matmul_persistent_deepgemm(a=a, b=b, bias=bias)
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                return _matmul_persistent_triton(a=a, b=b, bias=bias)
         
     | 
| 
      
 282 
     | 
    
         
            +
             
     | 
| 
      
 283 
     | 
    
         
            +
             
     | 
| 
       220 
284 
     | 
    
         
             
            @triton.jit
         
     | 
| 
       221 
285 
     | 
    
         
             
            def _log_softmax_kernel(
         
     | 
| 
       222 
286 
     | 
    
         
             
                input_ptr,
         
     | 
| 
         @@ -495,16 +559,159 @@ def mean_batch_invariant(input, dim, keepdim=False, dtype: torch.dtype | None = 
     | 
|
| 
       495 
559 
     | 
    
         
             
                    return torch.sum(input, dim=dim, keepdim=keepdim, dtype=torch.float32) / n_elems
         
     | 
| 
       496 
560 
     | 
    
         | 
| 
       497 
561 
     | 
    
         | 
| 
      
 562 
     | 
    
         
            +
            def bmm_batch_invariant(a, b, *, out=None):
         
     | 
| 
      
 563 
     | 
    
         
            +
                # Batched matrix multiply: (B, M, K) x (B, K, N) -> (B, M, N)
         
     | 
| 
      
 564 
     | 
    
         
            +
                # Process each batch separately with our persistent kernel
         
     | 
| 
      
 565 
     | 
    
         
            +
                if a.ndim == 3 and b.ndim == 3:
         
     | 
| 
      
 566 
     | 
    
         
            +
                    results = []
         
     | 
| 
      
 567 
     | 
    
         
            +
                    for i in range(a.shape[0]):
         
     | 
| 
      
 568 
     | 
    
         
            +
                        results.append(matmul_persistent(a[i], b[i]))
         
     | 
| 
      
 569 
     | 
    
         
            +
                    result = torch.stack(results, dim=0)
         
     | 
| 
      
 570 
     | 
    
         
            +
             
     | 
| 
      
 571 
     | 
    
         
            +
                    if out is not None:
         
     | 
| 
      
 572 
     | 
    
         
            +
                        out.copy_(result)
         
     | 
| 
      
 573 
     | 
    
         
            +
                        return out
         
     | 
| 
      
 574 
     | 
    
         
            +
                    return result
         
     | 
| 
      
 575 
     | 
    
         
            +
                else:
         
     | 
| 
      
 576 
     | 
    
         
            +
                    raise ValueError(
         
     | 
| 
      
 577 
     | 
    
         
            +
                        f"bmm_batch_invariant expects 3D tensors, "
         
     | 
| 
      
 578 
     | 
    
         
            +
                        f"got shapes {a.shape} and {b.shape}"
         
     | 
| 
      
 579 
     | 
    
         
            +
                    )
         
     | 
| 
      
 580 
     | 
    
         
            +
             
     | 
| 
      
 581 
     | 
    
         
            +
             
     | 
| 
      
 582 
     | 
    
         
            +
            @triton.jit
         
     | 
| 
      
 583 
     | 
    
         
            +
            def _rms_norm_kernel(
         
     | 
| 
      
 584 
     | 
    
         
            +
                input_ptr,
         
     | 
| 
      
 585 
     | 
    
         
            +
                weight_ptr,
         
     | 
| 
      
 586 
     | 
    
         
            +
                output_ptr,
         
     | 
| 
      
 587 
     | 
    
         
            +
                input_row_stride,
         
     | 
| 
      
 588 
     | 
    
         
            +
                output_row_stride,
         
     | 
| 
      
 589 
     | 
    
         
            +
                n_cols,
         
     | 
| 
      
 590 
     | 
    
         
            +
                eps,
         
     | 
| 
      
 591 
     | 
    
         
            +
                BLOCK_SIZE: tl.constexpr,
         
     | 
| 
      
 592 
     | 
    
         
            +
            ):
         
     | 
| 
      
 593 
     | 
    
         
            +
                """
         
     | 
| 
      
 594 
     | 
    
         
            +
                Compute RMS normalization along the last dimension of a 2D tensor.
         
     | 
| 
      
 595 
     | 
    
         
            +
                RMS Norm: y = x / sqrt(mean(x^2) + eps) * weight
         
     | 
| 
      
 596 
     | 
    
         
            +
                Each block handles one row of the input tensor.
         
     | 
| 
      
 597 
     | 
    
         
            +
                """
         
     | 
| 
      
 598 
     | 
    
         
            +
                row_idx = tl.program_id(0).to(tl.int64)
         
     | 
| 
      
 599 
     | 
    
         
            +
                row_start_ptr = input_ptr + row_idx * input_row_stride
         
     | 
| 
      
 600 
     | 
    
         
            +
                output_row_start_ptr = output_ptr + row_idx * output_row_stride
         
     | 
| 
      
 601 
     | 
    
         
            +
             
     | 
| 
      
 602 
     | 
    
         
            +
                # Step 1: Compute sum of squares in float32 to avoid overflow
         
     | 
| 
      
 603 
     | 
    
         
            +
                sum_sq = tl.zeros([1], dtype=tl.float32)
         
     | 
| 
      
 604 
     | 
    
         
            +
                for col_offset in range(0, n_cols, BLOCK_SIZE):
         
     | 
| 
      
 605 
     | 
    
         
            +
                    col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 606 
     | 
    
         
            +
                    mask = col_idx < n_cols
         
     | 
| 
      
 607 
     | 
    
         
            +
             
     | 
| 
      
 608 
     | 
    
         
            +
                    vals = tl.load(row_start_ptr + col_idx, mask=mask, other=0.0)
         
     | 
| 
      
 609 
     | 
    
         
            +
                    # Convert to float32 for accumulation to prevent overflow
         
     | 
| 
      
 610 
     | 
    
         
            +
                    vals_f32 = vals.to(tl.float32)
         
     | 
| 
      
 611 
     | 
    
         
            +
                    sq_vals = vals_f32 * vals_f32
         
     | 
| 
      
 612 
     | 
    
         
            +
                    sum_sq += tl.sum(tl.where(mask, sq_vals, 0.0))
         
     | 
| 
      
 613 
     | 
    
         
            +
             
     | 
| 
      
 614 
     | 
    
         
            +
                # Step 2: Compute RMS (root mean square) in float32
         
     | 
| 
      
 615 
     | 
    
         
            +
                mean_sq = sum_sq / n_cols
         
     | 
| 
      
 616 
     | 
    
         
            +
                rms = tl.sqrt(mean_sq + eps)
         
     | 
| 
      
 617 
     | 
    
         
            +
                inv_rms = 1.0 / rms
         
     | 
| 
      
 618 
     | 
    
         
            +
             
     | 
| 
      
 619 
     | 
    
         
            +
                # Step 3: Normalize and apply weight
         
     | 
| 
      
 620 
     | 
    
         
            +
                for col_offset in range(0, n_cols, BLOCK_SIZE):
         
     | 
| 
      
 621 
     | 
    
         
            +
                    col_idx = col_offset + tl.arange(0, BLOCK_SIZE)
         
     | 
| 
      
 622 
     | 
    
         
            +
                    mask = col_idx < n_cols
         
     | 
| 
      
 623 
     | 
    
         
            +
                    vals = tl.load(row_start_ptr + col_idx, mask=mask, other=0.0)
         
     | 
| 
      
 624 
     | 
    
         
            +
                    weight = tl.load(weight_ptr + col_idx, mask=mask, other=1.0)
         
     | 
| 
      
 625 
     | 
    
         
            +
                    # Compute in float32 then convert back to input dtype
         
     | 
| 
      
 626 
     | 
    
         
            +
                    vals_f32 = vals.to(tl.float32)
         
     | 
| 
      
 627 
     | 
    
         
            +
                    weight_f32 = weight.to(tl.float32)
         
     | 
| 
      
 628 
     | 
    
         
            +
                    output_f32 = vals_f32 * inv_rms * weight_f32
         
     | 
| 
      
 629 
     | 
    
         
            +
                    output = output_f32.to(vals.dtype)
         
     | 
| 
      
 630 
     | 
    
         
            +
                    tl.store(output_row_start_ptr + col_idx, output, mask=mask)
         
     | 
| 
      
 631 
     | 
    
         
            +
             
     | 
| 
      
 632 
     | 
    
         
            +
             
     | 
| 
      
 633 
     | 
    
         
            +
            def rms_norm(
         
     | 
| 
      
 634 
     | 
    
         
            +
                input: torch.Tensor, weight: torch.Tensor, eps: float = 1e-6
         
     | 
| 
      
 635 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 636 
     | 
    
         
            +
                """
         
     | 
| 
      
 637 
     | 
    
         
            +
                Compute RMS normalization using Triton kernel.
         
     | 
| 
      
 638 
     | 
    
         
            +
             
     | 
| 
      
 639 
     | 
    
         
            +
                RMS Norm normalizes the input by the root mean square and scales by weight:
         
     | 
| 
      
 640 
     | 
    
         
            +
                output = input / sqrt(mean(input^2) + eps) * weight
         
     | 
| 
      
 641 
     | 
    
         
            +
             
     | 
| 
      
 642 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 643 
     | 
    
         
            +
                    input: Input tensor of shape (..., hidden_size)
         
     | 
| 
      
 644 
     | 
    
         
            +
                    weight: Weight tensor of shape (hidden_size,)
         
     | 
| 
      
 645 
     | 
    
         
            +
                    eps: Small constant for numerical stability
         
     | 
| 
      
 646 
     | 
    
         
            +
             
     | 
| 
      
 647 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 648 
     | 
    
         
            +
                    Tensor with RMS normalization applied along the last dimension
         
     | 
| 
      
 649 
     | 
    
         
            +
                """
         
     | 
| 
      
 650 
     | 
    
         
            +
                assert weight.dim() == 1, "Weight must be 1-dimensional"
         
     | 
| 
      
 651 
     | 
    
         
            +
                assert input.shape[-1] == weight.shape[0], (
         
     | 
| 
      
 652 
     | 
    
         
            +
                    f"Input last dimension ({input.shape[-1]}) must match "
         
     | 
| 
      
 653 
     | 
    
         
            +
                    f"weight dimension ({weight.shape[0]})"
         
     | 
| 
      
 654 
     | 
    
         
            +
                )
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
      
 656 
     | 
    
         
            +
                # Flatten all dimensions except the last one
         
     | 
| 
      
 657 
     | 
    
         
            +
                original_shape = input.shape
         
     | 
| 
      
 658 
     | 
    
         
            +
                input_2d = input.reshape(-1, input.shape[-1])
         
     | 
| 
      
 659 
     | 
    
         
            +
                input_2d = input_2d.contiguous()
         
     | 
| 
      
 660 
     | 
    
         
            +
                weight = weight.contiguous()
         
     | 
| 
      
 661 
     | 
    
         
            +
             
     | 
| 
      
 662 
     | 
    
         
            +
                n_rows, n_cols = input_2d.shape
         
     | 
| 
      
 663 
     | 
    
         
            +
             
     | 
| 
      
 664 
     | 
    
         
            +
                output = torch.empty_like(input_2d)
         
     | 
| 
      
 665 
     | 
    
         
            +
                BLOCK_SIZE = 1024
         
     | 
| 
      
 666 
     | 
    
         
            +
                grid = (n_rows,)
         
     | 
| 
      
 667 
     | 
    
         
            +
                _rms_norm_kernel[grid](
         
     | 
| 
      
 668 
     | 
    
         
            +
                    input_2d,
         
     | 
| 
      
 669 
     | 
    
         
            +
                    weight,
         
     | 
| 
      
 670 
     | 
    
         
            +
                    output,
         
     | 
| 
      
 671 
     | 
    
         
            +
                    input_2d.stride(0),
         
     | 
| 
      
 672 
     | 
    
         
            +
                    output.stride(0),
         
     | 
| 
      
 673 
     | 
    
         
            +
                    n_cols,
         
     | 
| 
      
 674 
     | 
    
         
            +
                    eps,
         
     | 
| 
      
 675 
     | 
    
         
            +
                    BLOCK_SIZE=BLOCK_SIZE,
         
     | 
| 
      
 676 
     | 
    
         
            +
                )
         
     | 
| 
      
 677 
     | 
    
         
            +
                return output.reshape(original_shape)
         
     | 
| 
      
 678 
     | 
    
         
            +
             
     | 
| 
      
 679 
     | 
    
         
            +
             
     | 
| 
      
 680 
     | 
    
         
            +
            def rms_norm_batch_invariant(
         
     | 
| 
      
 681 
     | 
    
         
            +
                input: torch.Tensor, weight: torch.Tensor, eps: float = 1e-6
         
     | 
| 
      
 682 
     | 
    
         
            +
            ) -> torch.Tensor:
         
     | 
| 
      
 683 
     | 
    
         
            +
                """
         
     | 
| 
      
 684 
     | 
    
         
            +
                Batch-invariant wrapper for RMS normalization.
         
     | 
| 
      
 685 
     | 
    
         
            +
             
     | 
| 
      
 686 
     | 
    
         
            +
                This function provides a deterministic, batch-invariant implementation
         
     | 
| 
      
 687 
     | 
    
         
            +
                of RMS normalization for use with the batch_invariant mode.
         
     | 
| 
      
 688 
     | 
    
         
            +
             
     | 
| 
      
 689 
     | 
    
         
            +
                Adapted from @https://github.com/vllm-project/vllm/blob/66a168a197ba214a5b70a74fa2e713c9eeb3251a/vllm/model_executor/layers/batch_invariant.py#L649
         
     | 
| 
      
 690 
     | 
    
         
            +
             
     | 
| 
      
 691 
     | 
    
         
            +
                Args:
         
     | 
| 
      
 692 
     | 
    
         
            +
                    input: Input tensor of shape (..., hidden_size)
         
     | 
| 
      
 693 
     | 
    
         
            +
                    weight: Weight tensor of shape (hidden_size,)
         
     | 
| 
      
 694 
     | 
    
         
            +
                    eps: Small constant for numerical stability
         
     | 
| 
      
 695 
     | 
    
         
            +
             
     | 
| 
      
 696 
     | 
    
         
            +
                Returns:
         
     | 
| 
      
 697 
     | 
    
         
            +
                    RMS normalized tensor
         
     | 
| 
      
 698 
     | 
    
         
            +
                """
         
     | 
| 
      
 699 
     | 
    
         
            +
                return rms_norm(input, weight, eps=eps)
         
     | 
| 
      
 700 
     | 
    
         
            +
             
     | 
| 
      
 701 
     | 
    
         
            +
             
     | 
| 
       498 
702 
     | 
    
         
             
            _batch_invariant_MODE = False
         
     | 
| 
       499 
703 
     | 
    
         
             
            _batch_invariant_LIB = None
         
     | 
| 
      
 704 
     | 
    
         
            +
            _original_torch_bmm = None
         
     | 
| 
       500 
705 
     | 
    
         | 
| 
       501 
706 
     | 
    
         | 
| 
       502 
707 
     | 
    
         
             
            def is_batch_invariant_mode_enabled():
         
     | 
| 
       503 
708 
     | 
    
         
             
                return _batch_invariant_MODE
         
     | 
| 
       504 
709 
     | 
    
         | 
| 
       505 
710 
     | 
    
         | 
| 
       506 
     | 
    
         
            -
            def enable_batch_invariant_mode( 
     | 
| 
       507 
     | 
    
         
            -
                 
     | 
| 
      
 711 
     | 
    
         
            +
            def enable_batch_invariant_mode(
         
     | 
| 
      
 712 
     | 
    
         
            +
                enable_bmm: bool = True,
         
     | 
| 
      
 713 
     | 
    
         
            +
            ):
         
     | 
| 
      
 714 
     | 
    
         
            +
                global _batch_invariant_MODE, _batch_invariant_LIB, _original_torch_bmm
         
     | 
| 
       508 
715 
     | 
    
         
             
                if _batch_invariant_MODE:
         
     | 
| 
       509 
716 
     | 
    
         
             
                    return
         
     | 
| 
       510 
717 
     | 
    
         | 
| 
         @@ -517,11 +724,21 @@ def enable_batch_invariant_mode(): 
     | 
|
| 
       517 
724 
     | 
    
         
             
                )
         
     | 
| 
       518 
725 
     | 
    
         
             
                _batch_invariant_LIB.impl("aten::mean.dim", mean_batch_invariant, "CUDA")
         
     | 
| 
       519 
726 
     | 
    
         | 
| 
      
 727 
     | 
    
         
            +
                if enable_bmm:
         
     | 
| 
      
 728 
     | 
    
         
            +
                    _batch_invariant_LIB.impl("aten::bmm", bmm_batch_invariant, "CUDA")
         
     | 
| 
      
 729 
     | 
    
         
            +
             
     | 
| 
      
 730 
     | 
    
         
            +
                    # Also monkeypatch torch.bmm directly as a fallback
         
     | 
| 
      
 731 
     | 
    
         
            +
                    _original_torch_bmm = torch.bmm
         
     | 
| 
      
 732 
     | 
    
         
            +
                    torch.bmm = bmm_batch_invariant
         
     | 
| 
      
 733 
     | 
    
         
            +
             
     | 
| 
       520 
734 
     | 
    
         | 
| 
       521 
735 
     | 
    
         
             
            def disable_batch_invariant_mode():
         
     | 
| 
       522 
     | 
    
         
            -
                global _batch_invariant_MODE, _batch_invariant_LIB
         
     | 
| 
      
 736 
     | 
    
         
            +
                global _batch_invariant_MODE, _batch_invariant_LIB, _original_torch_bmm
         
     | 
| 
       523 
737 
     | 
    
         
             
                if _batch_invariant_LIB is not None:
         
     | 
| 
       524 
738 
     | 
    
         
             
                    _batch_invariant_LIB._destroy()
         
     | 
| 
      
 739 
     | 
    
         
            +
                if _original_torch_bmm is not None:
         
     | 
| 
      
 740 
     | 
    
         
            +
                    torch.bmm = _original_torch_bmm
         
     | 
| 
      
 741 
     | 
    
         
            +
                    _original_torch_bmm = None
         
     | 
| 
       525 
742 
     | 
    
         
             
                _batch_invariant_MODE = False
         
     | 
| 
       526 
743 
     | 
    
         
             
                _batch_invariant_LIB = None
         
     | 
| 
       527 
744 
     | 
    
         | 
| 
         @@ -0,0 +1,317 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            """
         
     | 
| 
      
 2 
     | 
    
         
            +
            Usage:
         
     | 
| 
      
 3 
     | 
    
         
            +
            1) Launch the server with wait-for-initial-weights option in one terminal:
         
     | 
| 
      
 4 
     | 
    
         
            +
               python -m sglang.launch_server --model-path /workspace/Qwen/Qwen3-4B/ --tensor-parallel-size 2 --port 19730 --load-format dummy --checkpoint-engine-wait-weights-before-ready --mem-fraction-static 0.7
         
     | 
| 
      
 5 
     | 
    
         
            +
             
     | 
| 
      
 6 
     | 
    
         
            +
            2) Torchrun this script in another terminal:
         
     | 
| 
      
 7 
     | 
    
         
            +
                torchrun --nproc-per-node 2 update.py --update-method broadcast --checkpoint-path /workspace/Qwen/Qwen3-4B/  --inference-parallel-size 2
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            Or use the integrated entry point:
         
     | 
| 
      
 10 
     | 
    
         
            +
                python -m sglang.srt.checkpoint_engine.update --update-method broadcast --checkpoint-path /workspace/Qwen/Qwen3-4B/  --inference-parallel-size 2
         
     | 
| 
      
 11 
     | 
    
         
            +
            """
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
            import argparse
         
     | 
| 
      
 14 
     | 
    
         
            +
            import json
         
     | 
| 
      
 15 
     | 
    
         
            +
            import os
         
     | 
| 
      
 16 
     | 
    
         
            +
            import pickle
         
     | 
| 
      
 17 
     | 
    
         
            +
            import subprocess
         
     | 
| 
      
 18 
     | 
    
         
            +
            import sys
         
     | 
| 
      
 19 
     | 
    
         
            +
            import time
         
     | 
| 
      
 20 
     | 
    
         
            +
            from collections import defaultdict
         
     | 
| 
      
 21 
     | 
    
         
            +
            from collections.abc import Callable
         
     | 
| 
      
 22 
     | 
    
         
            +
            from contextlib import contextmanager
         
     | 
| 
      
 23 
     | 
    
         
            +
            from typing import Literal
         
     | 
| 
      
 24 
     | 
    
         
            +
             
     | 
| 
      
 25 
     | 
    
         
            +
            import httpx
         
     | 
| 
      
 26 
     | 
    
         
            +
            import torch
         
     | 
| 
      
 27 
     | 
    
         
            +
            import torch.distributed as dist
         
     | 
| 
      
 28 
     | 
    
         
            +
            from safetensors import safe_open
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
            try:
         
     | 
| 
      
 31 
     | 
    
         
            +
                from checkpoint_engine.ps import ParameterServer
         
     | 
| 
      
 32 
     | 
    
         
            +
                from loguru import logger
         
     | 
| 
      
 33 
     | 
    
         
            +
            except ImportError:
         
     | 
| 
      
 34 
     | 
    
         
            +
                # Fallback for when checkpoint_engine is not available
         
     | 
| 
      
 35 
     | 
    
         
            +
                ParameterServer = None
         
     | 
| 
      
 36 
     | 
    
         
            +
                import logging
         
     | 
| 
      
 37 
     | 
    
         
            +
             
     | 
| 
      
 38 
     | 
    
         
            +
                logger = logging.getLogger(__name__)
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
             
     | 
| 
      
 41 
     | 
    
         
            +
            @contextmanager
         
     | 
| 
      
 42 
     | 
    
         
            +
            def timer(msg: str):
         
     | 
| 
      
 43 
     | 
    
         
            +
                start = time.perf_counter()
         
     | 
| 
      
 44 
     | 
    
         
            +
                yield
         
     | 
| 
      
 45 
     | 
    
         
            +
                end = time.perf_counter()
         
     | 
| 
      
 46 
     | 
    
         
            +
                logger.info(f"{msg} duration: {end - start:.2f} seconds")
         
     | 
| 
      
 47 
     | 
    
         
            +
             
     | 
| 
      
 48 
     | 
    
         
            +
             
     | 
| 
      
 49 
     | 
    
         
            +
            def check_sglang_ready(
         
     | 
| 
      
 50 
     | 
    
         
            +
                endpoint: str, inference_parallel_size: int, uds: str | None = None
         
     | 
| 
      
 51 
     | 
    
         
            +
            ):
         
     | 
| 
      
 52 
     | 
    
         
            +
                rank = int(os.getenv("RANK", 0))
         
     | 
| 
      
 53 
     | 
    
         
            +
                if rank != rank // inference_parallel_size * inference_parallel_size:
         
     | 
| 
      
 54 
     | 
    
         
            +
                    return
         
     | 
| 
      
 55 
     | 
    
         
            +
                retry_num = 0
         
     | 
| 
      
 56 
     | 
    
         
            +
                transport = None
         
     | 
| 
      
 57 
     | 
    
         
            +
                if uds is not None:
         
     | 
| 
      
 58 
     | 
    
         
            +
                    transport = httpx.HTTPTransport(uds=uds)
         
     | 
| 
      
 59 
     | 
    
         
            +
                with httpx.Client(transport=transport) as client:
         
     | 
| 
      
 60 
     | 
    
         
            +
                    while True:
         
     | 
| 
      
 61 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 62 
     | 
    
         
            +
                            response = client.get(f"{endpoint}/ping", timeout=10)
         
     | 
| 
      
 63 
     | 
    
         
            +
                            response.raise_for_status()
         
     | 
| 
      
 64 
     | 
    
         
            +
                            break
         
     | 
| 
      
 65 
     | 
    
         
            +
                        except (httpx.ConnectError, httpx.HTTPStatusError) as e:
         
     | 
| 
      
 66 
     | 
    
         
            +
                            if retry_num % 10 == 0:
         
     | 
| 
      
 67 
     | 
    
         
            +
                                logger.warning(
         
     | 
| 
      
 68 
     | 
    
         
            +
                                    f"fail to check sglang ready, retry {retry_num} times, error: {e}"
         
     | 
| 
      
 69 
     | 
    
         
            +
                                )
         
     | 
| 
      
 70 
     | 
    
         
            +
                            retry_num += 1
         
     | 
| 
      
 71 
     | 
    
         
            +
                            time.sleep(0.1)
         
     | 
| 
      
 72 
     | 
    
         
            +
             
     | 
| 
      
 73 
     | 
    
         
            +
             
     | 
| 
      
 74 
     | 
    
         
            +
            def split_checkpoint_files(
         
     | 
| 
      
 75 
     | 
    
         
            +
                checkpoint_path: str, rank: int, world_size: int
         
     | 
| 
      
 76 
     | 
    
         
            +
            ) -> list[str]:
         
     | 
| 
      
 77 
     | 
    
         
            +
                checkpoint_files = [
         
     | 
| 
      
 78 
     | 
    
         
            +
                    os.path.join(checkpoint_path, f)
         
     | 
| 
      
 79 
     | 
    
         
            +
                    for f in filter(
         
     | 
| 
      
 80 
     | 
    
         
            +
                        lambda x: x.endswith(".safetensors"), os.listdir(checkpoint_path)
         
     | 
| 
      
 81 
     | 
    
         
            +
                    )
         
     | 
| 
      
 82 
     | 
    
         
            +
                ]
         
     | 
| 
      
 83 
     | 
    
         
            +
                files_per_rank = (len(checkpoint_files) + world_size - 1) // world_size
         
     | 
| 
      
 84 
     | 
    
         
            +
                return checkpoint_files[rank * files_per_rank : (rank + 1) * files_per_rank]
         
     | 
| 
      
 85 
     | 
    
         
            +
             
     | 
| 
      
 86 
     | 
    
         
            +
             
     | 
| 
      
 87 
     | 
    
         
            +
            def split_tensors(
         
     | 
| 
      
 88 
     | 
    
         
            +
                checkpoint_path: str, rank: int, world_size: int
         
     | 
| 
      
 89 
     | 
    
         
            +
            ) -> dict[str, torch.Tensor]:
         
     | 
| 
      
 90 
     | 
    
         
            +
                index_fn = os.path.join(checkpoint_path, "model.safetensors.index.json")
         
     | 
| 
      
 91 
     | 
    
         
            +
                with open(index_fn) as f:
         
     | 
| 
      
 92 
     | 
    
         
            +
                    weight_map: dict[str, str] = json.load(f)["weight_map"]
         
     | 
| 
      
 93 
     | 
    
         
            +
                weights_per_rank = (len(weight_map) + world_size - 1) // world_size
         
     | 
| 
      
 94 
     | 
    
         
            +
                fn_tensors: dict[str, list[str]] = defaultdict(list)
         
     | 
| 
      
 95 
     | 
    
         
            +
                weight_keys = list(weight_map.items())
         
     | 
| 
      
 96 
     | 
    
         
            +
                for name, file in weight_keys[
         
     | 
| 
      
 97 
     | 
    
         
            +
                    rank * weights_per_rank : (rank + 1) * weights_per_rank
         
     | 
| 
      
 98 
     | 
    
         
            +
                ]:
         
     | 
| 
      
 99 
     | 
    
         
            +
                    fn_tensors[file].append(name)
         
     | 
| 
      
 100 
     | 
    
         
            +
                named_tensors = {}
         
     | 
| 
      
 101 
     | 
    
         
            +
                for file, names in fn_tensors.items():
         
     | 
| 
      
 102 
     | 
    
         
            +
                    with safe_open(os.path.join(checkpoint_path, file), framework="pt") as f:
         
     | 
| 
      
 103 
     | 
    
         
            +
                        for name in names:
         
     | 
| 
      
 104 
     | 
    
         
            +
                            named_tensors[name] = f.get_tensor(name)
         
     | 
| 
      
 105 
     | 
    
         
            +
                return named_tensors
         
     | 
| 
      
 106 
     | 
    
         
            +
             
     | 
| 
      
 107 
     | 
    
         
            +
             
     | 
| 
      
 108 
     | 
    
         
            +
            def req_inference(
         
     | 
| 
      
 109 
     | 
    
         
            +
                endpoint: str,
         
     | 
| 
      
 110 
     | 
    
         
            +
                inference_parallel_size: int,
         
     | 
| 
      
 111 
     | 
    
         
            +
                timeout: float = 300.0,
         
     | 
| 
      
 112 
     | 
    
         
            +
                uds: str | None = None,
         
     | 
| 
      
 113 
     | 
    
         
            +
                weight_version: str | None = None,
         
     | 
| 
      
 114 
     | 
    
         
            +
            ) -> Callable[[list[tuple[str, str]]], None]:
         
     | 
| 
      
 115 
     | 
    
         
            +
                rank = int(os.getenv("RANK", 0))
         
     | 
| 
      
 116 
     | 
    
         
            +
                src = rank // inference_parallel_size * inference_parallel_size
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
                def req_func(socket_paths: list[tuple[str, str]]):
         
     | 
| 
      
 119 
     | 
    
         
            +
                    if rank == src:
         
     | 
| 
      
 120 
     | 
    
         
            +
                        with httpx.Client(transport=httpx.HTTPTransport(uds=uds)) as client:
         
     | 
| 
      
 121 
     | 
    
         
            +
                            resp = client.post(
         
     | 
| 
      
 122 
     | 
    
         
            +
                                f"{endpoint}/update_weights_from_ipc",
         
     | 
| 
      
 123 
     | 
    
         
            +
                                json={
         
     | 
| 
      
 124 
     | 
    
         
            +
                                    "zmq_handles": dict(
         
     | 
| 
      
 125 
     | 
    
         
            +
                                        socket_paths[src : src + inference_parallel_size]
         
     | 
| 
      
 126 
     | 
    
         
            +
                                    ),
         
     | 
| 
      
 127 
     | 
    
         
            +
                                    "flush_cache": True,
         
     | 
| 
      
 128 
     | 
    
         
            +
                                    "weight_version": weight_version,
         
     | 
| 
      
 129 
     | 
    
         
            +
                                },
         
     | 
| 
      
 130 
     | 
    
         
            +
                                timeout=timeout,
         
     | 
| 
      
 131 
     | 
    
         
            +
                            )
         
     | 
| 
      
 132 
     | 
    
         
            +
                            resp.raise_for_status()
         
     | 
| 
      
 133 
     | 
    
         
            +
             
     | 
| 
      
 134 
     | 
    
         
            +
                return req_func
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
             
     | 
| 
      
 137 
     | 
    
         
            +
            def update_weights(
         
     | 
| 
      
 138 
     | 
    
         
            +
                ps,
         
     | 
| 
      
 139 
     | 
    
         
            +
                checkpoint_name: str,
         
     | 
| 
      
 140 
     | 
    
         
            +
                checkpoint_files: list[str],
         
     | 
| 
      
 141 
     | 
    
         
            +
                named_tensors: dict[str, torch.Tensor],
         
     | 
| 
      
 142 
     | 
    
         
            +
                req_func: Callable[[list[tuple[str, str]]], None],
         
     | 
| 
      
 143 
     | 
    
         
            +
                inference_parallel_size: int,
         
     | 
| 
      
 144 
     | 
    
         
            +
                endpoint: str,
         
     | 
| 
      
 145 
     | 
    
         
            +
                save_metas_file: str | None = None,
         
     | 
| 
      
 146 
     | 
    
         
            +
                update_method: Literal["broadcast", "p2p", "all"] = "broadcast",
         
     | 
| 
      
 147 
     | 
    
         
            +
                uds: str | None = None,
         
     | 
| 
      
 148 
     | 
    
         
            +
            ):
         
     | 
| 
      
 149 
     | 
    
         
            +
                ps.register_checkpoint(
         
     | 
| 
      
 150 
     | 
    
         
            +
                    checkpoint_name, files=checkpoint_files, named_tensors=named_tensors
         
     | 
| 
      
 151 
     | 
    
         
            +
                )
         
     | 
| 
      
 152 
     | 
    
         
            +
                ps.init_process_group()
         
     | 
| 
      
 153 
     | 
    
         
            +
                check_sglang_ready(endpoint, inference_parallel_size, uds)
         
     | 
| 
      
 154 
     | 
    
         
            +
                dist.barrier()
         
     | 
| 
      
 155 
     | 
    
         
            +
                with timer("Gather metas"):
         
     | 
| 
      
 156 
     | 
    
         
            +
                    ps.gather_metas(checkpoint_name)
         
     | 
| 
      
 157 
     | 
    
         
            +
                if save_metas_file and int(os.getenv("RANK")) == 0:
         
     | 
| 
      
 158 
     | 
    
         
            +
                    with open(save_metas_file, "wb") as f:
         
     | 
| 
      
 159 
     | 
    
         
            +
                        pickle.dump(ps.get_metas(), f)
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                if update_method == "broadcast" or update_method == "all":
         
     | 
| 
      
 162 
     | 
    
         
            +
                    with timer("Update weights without setting ranks"):
         
     | 
| 
      
 163 
     | 
    
         
            +
                        ps.update(checkpoint_name, req_func)
         
     | 
| 
      
 164 
     | 
    
         
            +
             
     | 
| 
      
 165 
     | 
    
         
            +
                if update_method == "p2p" or update_method == "all":
         
     | 
| 
      
 166 
     | 
    
         
            +
                    if update_method:
         
     | 
| 
      
 167 
     | 
    
         
            +
                        # sleep 2s to wait destroy process group
         
     | 
| 
      
 168 
     | 
    
         
            +
                        time.sleep(2)
         
     | 
| 
      
 169 
     | 
    
         
            +
                    with timer("Update weights with setting ranks"):
         
     | 
| 
      
 170 
     | 
    
         
            +
                        ps.update(
         
     | 
| 
      
 171 
     | 
    
         
            +
                            checkpoint_name, req_func, ranks=list(range(inference_parallel_size))
         
     | 
| 
      
 172 
     | 
    
         
            +
                        )
         
     | 
| 
      
 173 
     | 
    
         
            +
             
     | 
| 
      
 174 
     | 
    
         
            +
             
     | 
| 
      
 175 
     | 
    
         
            +
            def join(
         
     | 
| 
      
 176 
     | 
    
         
            +
                ps: ParameterServer,
         
     | 
| 
      
 177 
     | 
    
         
            +
                checkpoint_name: str,
         
     | 
| 
      
 178 
     | 
    
         
            +
                load_metas_file: str,
         
     | 
| 
      
 179 
     | 
    
         
            +
                req_func: Callable[[list[tuple[str, str]]], None],
         
     | 
| 
      
 180 
     | 
    
         
            +
                inference_parallel_size: int,
         
     | 
| 
      
 181 
     | 
    
         
            +
                endpoint: str,
         
     | 
| 
      
 182 
     | 
    
         
            +
                uds: str | None = None,
         
     | 
| 
      
 183 
     | 
    
         
            +
            ):
         
     | 
| 
      
 184 
     | 
    
         
            +
                assert load_metas_file, "load_metas_file is required"
         
     | 
| 
      
 185 
     | 
    
         
            +
                with open(load_metas_file, "rb") as f:
         
     | 
| 
      
 186 
     | 
    
         
            +
                    metas = pickle.load(f)
         
     | 
| 
      
 187 
     | 
    
         
            +
                ps.init_process_group()
         
     | 
| 
      
 188 
     | 
    
         
            +
                check_sglang_ready(endpoint, inference_parallel_size, uds)
         
     | 
| 
      
 189 
     | 
    
         
            +
                dist.barrier()
         
     | 
| 
      
 190 
     | 
    
         
            +
                with timer("Gather metas before join"):
         
     | 
| 
      
 191 
     | 
    
         
            +
                    ps.gather_metas(checkpoint_name)
         
     | 
| 
      
 192 
     | 
    
         
            +
                ps.load_metas(metas)
         
     | 
| 
      
 193 
     | 
    
         
            +
                with timer(
         
     | 
| 
      
 194 
     | 
    
         
            +
                    f"Update weights with setting ranks as range(0, {inference_parallel_size}) by using p2p"
         
     | 
| 
      
 195 
     | 
    
         
            +
                ):
         
     | 
| 
      
 196 
     | 
    
         
            +
                    ps.update(checkpoint_name, req_func, ranks=list(range(inference_parallel_size)))
         
     | 
| 
      
 197 
     | 
    
         
            +
             
     | 
| 
      
 198 
     | 
    
         
            +
             
     | 
| 
      
 199 
     | 
    
         
            +
            def run_with_torchrun():
         
     | 
| 
      
 200 
     | 
    
         
            +
                """Run the update script with torchrun automatically."""
         
     | 
| 
      
 201 
     | 
    
         
            +
                # Parse inference_parallel_size from command line arguments to determine nproc-per-node
         
     | 
| 
      
 202 
     | 
    
         
            +
                inference_parallel_size = 8  # default
         
     | 
| 
      
 203 
     | 
    
         
            +
                args = sys.argv[1:]  # Skip the script name
         
     | 
| 
      
 204 
     | 
    
         
            +
             
     | 
| 
      
 205 
     | 
    
         
            +
                # Look for --inference-parallel-size in arguments
         
     | 
| 
      
 206 
     | 
    
         
            +
                for i, arg in enumerate(args):
         
     | 
| 
      
 207 
     | 
    
         
            +
                    if arg == "--inference-parallel-size" and i + 1 < len(args):
         
     | 
| 
      
 208 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 209 
     | 
    
         
            +
                            inference_parallel_size = int(args[i + 1])
         
     | 
| 
      
 210 
     | 
    
         
            +
                        except ValueError:
         
     | 
| 
      
 211 
     | 
    
         
            +
                            pass
         
     | 
| 
      
 212 
     | 
    
         
            +
                        break
         
     | 
| 
      
 213 
     | 
    
         
            +
                    elif arg.startswith("--inference-parallel-size="):
         
     | 
| 
      
 214 
     | 
    
         
            +
                        try:
         
     | 
| 
      
 215 
     | 
    
         
            +
                            inference_parallel_size = int(arg.split("=", 1)[1])
         
     | 
| 
      
 216 
     | 
    
         
            +
                        except ValueError:
         
     | 
| 
      
 217 
     | 
    
         
            +
                            pass
         
     | 
| 
      
 218 
     | 
    
         
            +
                        break
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                # Build torchrun command
         
     | 
| 
      
 221 
     | 
    
         
            +
                cmd = ["torchrun", f"--nproc-per-node={inference_parallel_size}", __file__] + args
         
     | 
| 
      
 222 
     | 
    
         
            +
             
     | 
| 
      
 223 
     | 
    
         
            +
                print(f"Running: {' '.join(cmd)}", file=sys.stderr)
         
     | 
| 
      
 224 
     | 
    
         
            +
             
     | 
| 
      
 225 
     | 
    
         
            +
                # Execute torchrun with the original script
         
     | 
| 
      
 226 
     | 
    
         
            +
                try:
         
     | 
| 
      
 227 
     | 
    
         
            +
                    result = subprocess.run(cmd, check=False)
         
     | 
| 
      
 228 
     | 
    
         
            +
                    sys.exit(result.returncode)
         
     | 
| 
      
 229 
     | 
    
         
            +
                except FileNotFoundError:
         
     | 
| 
      
 230 
     | 
    
         
            +
                    print(
         
     | 
| 
      
 231 
     | 
    
         
            +
                        "Error: torchrun command not found. Please ensure PyTorch is installed.",
         
     | 
| 
      
 232 
     | 
    
         
            +
                        file=sys.stderr,
         
     | 
| 
      
 233 
     | 
    
         
            +
                    )
         
     | 
| 
      
 234 
     | 
    
         
            +
                    sys.exit(1)
         
     | 
| 
      
 235 
     | 
    
         
            +
                except KeyboardInterrupt:
         
     | 
| 
      
 236 
     | 
    
         
            +
                    print("\nInterrupted by user", file=sys.stderr)
         
     | 
| 
      
 237 
     | 
    
         
            +
                    sys.exit(130)
         
     | 
| 
      
 238 
     | 
    
         
            +
             
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
            def main():
         
     | 
| 
      
 241 
     | 
    
         
            +
                # Check if we're running under torchrun or need to invoke it
         
     | 
| 
      
 242 
     | 
    
         
            +
                if os.getenv("RANK") is None:
         
     | 
| 
      
 243 
     | 
    
         
            +
                    # Not running under torchrun, so invoke it
         
     | 
| 
      
 244 
     | 
    
         
            +
                    run_with_torchrun()
         
     | 
| 
      
 245 
     | 
    
         
            +
                    return
         
     | 
| 
      
 246 
     | 
    
         
            +
             
     | 
| 
      
 247 
     | 
    
         
            +
                # Running under torchrun, proceed with normal execution
         
     | 
| 
      
 248 
     | 
    
         
            +
                parser = argparse.ArgumentParser(description="Update weights example")
         
     | 
| 
      
 249 
     | 
    
         
            +
                parser.add_argument("--checkpoint-path", type=str, default=None)
         
     | 
| 
      
 250 
     | 
    
         
            +
                parser.add_argument("--save-metas-file", type=str, default=None)
         
     | 
| 
      
 251 
     | 
    
         
            +
                parser.add_argument("--load-metas-file", type=str, default=None)
         
     | 
| 
      
 252 
     | 
    
         
            +
                parser.add_argument("--sleep-time", type=int, default=0)
         
     | 
| 
      
 253 
     | 
    
         
            +
                parser.add_argument("--endpoint", type=str, default="http://localhost:19730")
         
     | 
| 
      
 254 
     | 
    
         
            +
                parser.add_argument("--inference-parallel-size", type=int, default=8)
         
     | 
| 
      
 255 
     | 
    
         
            +
                parser.add_argument("--checkpoint-name", type=str, default="my-checkpoint-iter-0")
         
     | 
| 
      
 256 
     | 
    
         
            +
                parser.add_argument("--update-method", type=str, default="broadcast")
         
     | 
| 
      
 257 
     | 
    
         
            +
                parser.add_argument("--uds", type=str, default=None)
         
     | 
| 
      
 258 
     | 
    
         
            +
                parser.add_argument("--weight-version", type=str, default=None)
         
     | 
| 
      
 259 
     | 
    
         
            +
                args = parser.parse_args()
         
     | 
| 
      
 260 
     | 
    
         
            +
             
     | 
| 
      
 261 
     | 
    
         
            +
                # Get rank and world_size from environment (set by torchrun)
         
     | 
| 
      
 262 
     | 
    
         
            +
                rank = int(os.getenv("RANK", 0))
         
     | 
| 
      
 263 
     | 
    
         
            +
                world_size = int(os.getenv("WORLD_SIZE", 1))
         
     | 
| 
      
 264 
     | 
    
         
            +
             
     | 
| 
      
 265 
     | 
    
         
            +
                req_func = req_inference(
         
     | 
| 
      
 266 
     | 
    
         
            +
                    args.endpoint,
         
     | 
| 
      
 267 
     | 
    
         
            +
                    args.inference_parallel_size,
         
     | 
| 
      
 268 
     | 
    
         
            +
                    uds=args.uds,
         
     | 
| 
      
 269 
     | 
    
         
            +
                    weight_version=args.weight_version,
         
     | 
| 
      
 270 
     | 
    
         
            +
                )
         
     | 
| 
      
 271 
     | 
    
         
            +
             
     | 
| 
      
 272 
     | 
    
         
            +
                if ParameterServer is None:
         
     | 
| 
      
 273 
     | 
    
         
            +
                    print("Error: checkpoint_engine package not available", file=sys.stderr)
         
     | 
| 
      
 274 
     | 
    
         
            +
                    sys.exit(1)
         
     | 
| 
      
 275 
     | 
    
         
            +
             
     | 
| 
      
 276 
     | 
    
         
            +
                ps = ParameterServer(auto_pg=True)
         
     | 
| 
      
 277 
     | 
    
         
            +
                ps._p2p_store = None
         
     | 
| 
      
 278 
     | 
    
         
            +
                if args.load_metas_file:
         
     | 
| 
      
 279 
     | 
    
         
            +
                    join(
         
     | 
| 
      
 280 
     | 
    
         
            +
                        ps,
         
     | 
| 
      
 281 
     | 
    
         
            +
                        args.checkpoint_name,
         
     | 
| 
      
 282 
     | 
    
         
            +
                        args.load_metas_file,
         
     | 
| 
      
 283 
     | 
    
         
            +
                        req_func,
         
     | 
| 
      
 284 
     | 
    
         
            +
                        args.inference_parallel_size,
         
     | 
| 
      
 285 
     | 
    
         
            +
                        args.endpoint,
         
     | 
| 
      
 286 
     | 
    
         
            +
                        args.uds,
         
     | 
| 
      
 287 
     | 
    
         
            +
                    )
         
     | 
| 
      
 288 
     | 
    
         
            +
                else:
         
     | 
| 
      
 289 
     | 
    
         
            +
                    if args.checkpoint_path and os.path.exists(
         
     | 
| 
      
 290 
     | 
    
         
            +
                        os.path.join(args.checkpoint_path, "model.safetensors.index.json")
         
     | 
| 
      
 291 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 292 
     | 
    
         
            +
                        named_tensors = split_tensors(args.checkpoint_path, rank, world_size)
         
     | 
| 
      
 293 
     | 
    
         
            +
                        checkpoint_files = []
         
     | 
| 
      
 294 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 295 
     | 
    
         
            +
                        checkpoint_files = (
         
     | 
| 
      
 296 
     | 
    
         
            +
                            split_checkpoint_files(args.checkpoint_path, rank, world_size)
         
     | 
| 
      
 297 
     | 
    
         
            +
                            if args.checkpoint_path
         
     | 
| 
      
 298 
     | 
    
         
            +
                            else []
         
     | 
| 
      
 299 
     | 
    
         
            +
                        )
         
     | 
| 
      
 300 
     | 
    
         
            +
                        named_tensors = {}
         
     | 
| 
      
 301 
     | 
    
         
            +
                    update_weights(
         
     | 
| 
      
 302 
     | 
    
         
            +
                        ps,
         
     | 
| 
      
 303 
     | 
    
         
            +
                        args.checkpoint_name,
         
     | 
| 
      
 304 
     | 
    
         
            +
                        checkpoint_files,
         
     | 
| 
      
 305 
     | 
    
         
            +
                        named_tensors,
         
     | 
| 
      
 306 
     | 
    
         
            +
                        req_func,
         
     | 
| 
      
 307 
     | 
    
         
            +
                        args.inference_parallel_size,
         
     | 
| 
      
 308 
     | 
    
         
            +
                        args.endpoint,
         
     | 
| 
      
 309 
     | 
    
         
            +
                        args.save_metas_file,
         
     | 
| 
      
 310 
     | 
    
         
            +
                        args.update_method,
         
     | 
| 
      
 311 
     | 
    
         
            +
                        args.uds,
         
     | 
| 
      
 312 
     | 
    
         
            +
                    )
         
     | 
| 
      
 313 
     | 
    
         
            +
                time.sleep(args.sleep_time)
         
     | 
| 
      
 314 
     | 
    
         
            +
             
     | 
| 
      
 315 
     | 
    
         
            +
             
     | 
| 
      
 316 
     | 
    
         
            +
            if __name__ == "__main__":
         
     | 
| 
      
 317 
     | 
    
         
            +
                main()
         
     | 
| 
         @@ -392,7 +392,7 @@ class SGLangBackend: 
     | 
|
| 
       392 
392 
     | 
    
         
             
                    self.configure_post_pass()
         
     | 
| 
       393 
393 
     | 
    
         | 
| 
       394 
394 
     | 
    
         
             
                    self.split_gm, self.piecewise_graphs = split_graph(
         
     | 
| 
       395 
     | 
    
         
            -
                        graph, ["sglang.unified_attention_with_output"]
         
     | 
| 
      
 395 
     | 
    
         
            +
                        graph, ["sglang.unified_attention_with_output", "sglang.inplace_all_reduce"]
         
     | 
| 
       396 
396 
     | 
    
         
             
                    )
         
     | 
| 
       397 
397 
     | 
    
         | 
| 
       398 
398 
     | 
    
         
             
                    from torch._dynamo.utils import lazy_format_graph_code
         
     | 
    
        sglang/srt/configs/__init__.py
    CHANGED
    
    | 
         @@ -6,6 +6,7 @@ from sglang.srt.configs.dots_vlm import DotsVLMConfig 
     | 
|
| 
       6 
6 
     | 
    
         
             
            from sglang.srt.configs.exaone import ExaoneConfig
         
     | 
| 
       7 
7 
     | 
    
         
             
            from sglang.srt.configs.falcon_h1 import FalconH1Config
         
     | 
| 
       8 
8 
     | 
    
         
             
            from sglang.srt.configs.janus_pro import MultiModalityConfig
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.configs.kimi_linear import KimiLinearConfig
         
     | 
| 
       9 
10 
     | 
    
         
             
            from sglang.srt.configs.kimi_vl import KimiVLConfig
         
     | 
| 
       10 
11 
     | 
    
         
             
            from sglang.srt.configs.kimi_vl_moonvit import MoonViTConfig
         
     | 
| 
       11 
12 
     | 
    
         
             
            from sglang.srt.configs.longcat_flash import LongcatFlashConfig
         
     | 
| 
         @@ -31,6 +32,7 @@ __all__ = [ 
     | 
|
| 
       31 
32 
     | 
    
         
             
                "Step3TextConfig",
         
     | 
| 
       32 
33 
     | 
    
         
             
                "Step3VisionEncoderConfig",
         
     | 
| 
       33 
34 
     | 
    
         
             
                "Olmo3Config",
         
     | 
| 
      
 35 
     | 
    
         
            +
                "KimiLinearConfig",
         
     | 
| 
       34 
36 
     | 
    
         
             
                "Qwen3NextConfig",
         
     | 
| 
       35 
37 
     | 
    
         
             
                "DotsVLMConfig",
         
     | 
| 
       36 
38 
     | 
    
         
             
                "DotsOCRConfig",
         
     |