sglang 0.5.4__py3-none-any.whl → 0.5.4.post2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +149 -34
 - sglang/bench_serving.py +73 -14
 - sglang/compile_deep_gemm.py +13 -7
 - sglang/launch_server.py +2 -0
 - sglang/srt/batch_invariant_ops/__init__.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +221 -4
 - sglang/srt/checkpoint_engine/__init__.py +9 -0
 - sglang/srt/checkpoint_engine/update.py +317 -0
 - sglang/srt/compilation/backend.py +1 -1
 - sglang/srt/configs/__init__.py +2 -0
 - sglang/srt/configs/deepseek_ocr.py +542 -10
 - sglang/srt/configs/deepseekvl2.py +95 -194
 - sglang/srt/configs/kimi_linear.py +160 -0
 - sglang/srt/configs/mamba_utils.py +66 -0
 - sglang/srt/configs/model_config.py +30 -7
 - sglang/srt/constants.py +7 -0
 - sglang/srt/debug_utils/tensor_dump_forward_hook.py +149 -0
 - sglang/srt/disaggregation/decode.py +34 -6
 - sglang/srt/disaggregation/nixl/conn.py +2 -2
 - sglang/srt/disaggregation/prefill.py +25 -3
 - sglang/srt/distributed/device_communicators/custom_all_reduce.py +3 -1
 - sglang/srt/distributed/parallel_state.py +9 -12
 - sglang/srt/entrypoints/engine.py +31 -20
 - sglang/srt/entrypoints/grpc_server.py +0 -1
 - sglang/srt/entrypoints/http_server.py +94 -94
 - sglang/srt/entrypoints/openai/protocol.py +7 -1
 - sglang/srt/entrypoints/openai/serving_chat.py +42 -0
 - sglang/srt/entrypoints/openai/serving_completions.py +10 -0
 - sglang/srt/entrypoints/openai/serving_embedding.py +1 -0
 - sglang/srt/environ.py +23 -2
 - sglang/srt/eplb/expert_distribution.py +64 -1
 - sglang/srt/eplb/expert_location.py +106 -36
 - sglang/srt/function_call/function_call_parser.py +2 -0
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/grpc/compile_proto.py +3 -0
 - sglang/srt/layers/activation.py +6 -0
 - sglang/srt/layers/attention/ascend_backend.py +233 -5
 - sglang/srt/layers/attention/attention_registry.py +3 -0
 - sglang/srt/layers/attention/fla/chunk_delta_h.py +61 -32
 - sglang/srt/layers/attention/fla/fused_recurrent.py +17 -4
 - sglang/srt/layers/attention/fla/kda.py +1359 -0
 - sglang/srt/layers/attention/fla/layernorm_gated.py +7 -1
 - sglang/srt/layers/attention/flashattention_backend.py +19 -8
 - sglang/srt/layers/attention/flashinfer_backend.py +10 -1
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +21 -11
 - sglang/srt/layers/attention/flashmla_backend.py +1 -1
 - sglang/srt/layers/attention/hybrid_linear_attn_backend.py +223 -0
 - sglang/srt/layers/attention/mamba/mamba.py +20 -11
 - sglang/srt/layers/attention/nsa/dequant_k_cache.py +138 -6
 - sglang/srt/layers/attention/nsa/nsa_indexer.py +45 -22
 - sglang/srt/layers/attention/nsa/quant_k_cache.py +44 -12
 - sglang/srt/layers/attention/nsa/transform_index.py +1 -1
 - sglang/srt/layers/attention/nsa_backend.py +157 -23
 - sglang/srt/layers/attention/triton_backend.py +4 -1
 - sglang/srt/layers/attention/trtllm_mha_backend.py +10 -4
 - sglang/srt/layers/attention/trtllm_mla_backend.py +11 -15
 - sglang/srt/layers/attention/utils.py +78 -0
 - sglang/srt/layers/communicator.py +24 -1
 - sglang/srt/layers/deep_gemm_wrapper/compile_utils.py +1 -1
 - sglang/srt/layers/layernorm.py +35 -6
 - sglang/srt/layers/logits_processor.py +9 -20
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +138 -0
 - sglang/srt/layers/moe/ep_moe/kernels.py +194 -0
 - sglang/srt/layers/moe/ep_moe/layer.py +78 -289
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
 - sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=257,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128]_down.json +164 -0
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +68 -22
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +43 -3
 - sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +106 -26
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +3 -3
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +7 -4
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +340 -55
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +4 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +11 -5
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +25 -18
 - sglang/srt/layers/moe/token_dispatcher/standard.py +1 -1
 - sglang/srt/layers/moe/topk.py +35 -10
 - sglang/srt/layers/moe/utils.py +3 -4
 - sglang/srt/layers/pooler.py +21 -2
 - sglang/srt/layers/quantization/__init__.py +13 -84
 - sglang/srt/layers/quantization/auto_round.py +394 -0
 - sglang/srt/layers/quantization/awq.py +0 -3
 - sglang/srt/layers/quantization/base_config.py +7 -0
 - sglang/srt/layers/quantization/fp8.py +68 -63
 - sglang/srt/layers/quantization/fp8_kernel.py +1 -1
 - sglang/srt/layers/quantization/fp8_utils.py +2 -2
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/modelopt_quant.py +168 -11
 - sglang/srt/layers/quantization/mxfp4.py +30 -38
 - sglang/srt/layers/quantization/unquant.py +23 -45
 - sglang/srt/layers/quantization/w4afp8.py +38 -2
 - sglang/srt/layers/radix_attention.py +5 -2
 - sglang/srt/layers/rotary_embedding.py +130 -46
 - sglang/srt/layers/sampler.py +12 -1
 - sglang/srt/lora/lora_registry.py +9 -0
 - sglang/srt/managers/async_mm_data_processor.py +122 -0
 - sglang/srt/managers/data_parallel_controller.py +30 -3
 - sglang/srt/managers/detokenizer_manager.py +3 -0
 - sglang/srt/managers/io_struct.py +29 -4
 - sglang/srt/managers/multi_tokenizer_mixin.py +22 -1
 - sglang/srt/managers/schedule_batch.py +74 -15
 - sglang/srt/managers/scheduler.py +185 -144
 - sglang/srt/managers/scheduler_metrics_mixin.py +22 -14
 - sglang/srt/managers/scheduler_output_processor_mixin.py +40 -3
 - sglang/srt/managers/scheduler_pp_mixin.py +7 -2
 - sglang/srt/managers/scheduler_profiler_mixin.py +3 -4
 - sglang/srt/managers/scheduler_runtime_checker_mixin.py +45 -0
 - sglang/srt/managers/scheduler_update_weights_mixin.py +18 -3
 - sglang/srt/managers/session_controller.py +6 -5
 - sglang/srt/managers/tokenizer_manager.py +165 -78
 - sglang/srt/managers/tp_worker.py +24 -1
 - sglang/srt/mem_cache/base_prefix_cache.py +23 -4
 - sglang/srt/mem_cache/common.py +1 -0
 - sglang/srt/mem_cache/hicache_storage.py +7 -1
 - sglang/srt/mem_cache/memory_pool.py +253 -57
 - sglang/srt/mem_cache/memory_pool_host.py +12 -5
 - sglang/srt/mem_cache/radix_cache.py +4 -0
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +1 -1
 - sglang/srt/metrics/collector.py +46 -3
 - sglang/srt/model_executor/cuda_graph_runner.py +15 -3
 - sglang/srt/model_executor/forward_batch_info.py +55 -14
 - sglang/srt/model_executor/model_runner.py +77 -170
 - sglang/srt/model_executor/npu_graph_runner.py +7 -3
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +22 -12
 - sglang/srt/model_loader/weight_utils.py +1 -1
 - sglang/srt/models/bailing_moe.py +9 -2
 - sglang/srt/models/deepseek_nextn.py +11 -2
 - sglang/srt/models/deepseek_v2.py +296 -78
 - sglang/srt/models/glm4.py +391 -77
 - sglang/srt/models/glm4_moe.py +322 -354
 - sglang/srt/models/glm4_moe_nextn.py +4 -14
 - sglang/srt/models/glm4v.py +196 -55
 - sglang/srt/models/glm4v_moe.py +29 -197
 - sglang/srt/models/gpt_oss.py +1 -10
 - sglang/srt/models/kimi_linear.py +678 -0
 - sglang/srt/models/llama4.py +1 -1
 - sglang/srt/models/llama_eagle3.py +11 -1
 - sglang/srt/models/longcat_flash.py +2 -2
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/qwen2.py +23 -2
 - sglang/srt/models/qwen2_moe.py +30 -15
 - sglang/srt/models/qwen3.py +35 -5
 - sglang/srt/models/qwen3_moe.py +18 -12
 - sglang/srt/models/qwen3_next.py +7 -0
 - sglang/srt/multimodal/customized_mm_processor_utils.py +35 -0
 - sglang/srt/multimodal/processors/base_processor.py +1 -0
 - sglang/srt/multimodal/processors/glm4v.py +1 -1
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/points_v15_chat.py +2 -2
 - sglang/srt/multiplex/multiplexing_mixin.py +209 -0
 - sglang/srt/multiplex/pdmux_context.py +164 -0
 - sglang/srt/parser/conversation.py +7 -1
 - sglang/srt/parser/reasoning_parser.py +28 -1
 - sglang/srt/sampling/custom_logit_processor.py +67 -1
 - sglang/srt/sampling/penaltylib/frequency_penalty.py +6 -8
 - sglang/srt/sampling/penaltylib/min_new_tokens.py +7 -8
 - sglang/srt/sampling/penaltylib/orchestrator.py +43 -3
 - sglang/srt/sampling/penaltylib/presence_penalty.py +6 -8
 - sglang/srt/server_args.py +459 -199
 - sglang/srt/single_batch_overlap.py +2 -4
 - sglang/srt/speculative/draft_utils.py +16 -0
 - sglang/srt/speculative/eagle_info.py +42 -36
 - sglang/srt/speculative/eagle_info_v2.py +68 -25
 - sglang/srt/speculative/eagle_utils.py +261 -16
 - sglang/srt/speculative/eagle_worker.py +11 -3
 - sglang/srt/speculative/eagle_worker_v2.py +15 -9
 - sglang/srt/speculative/spec_info.py +305 -31
 - sglang/srt/speculative/spec_utils.py +44 -8
 - sglang/srt/tracing/trace.py +121 -12
 - sglang/srt/utils/common.py +142 -74
 - sglang/srt/utils/hf_transformers_utils.py +38 -12
 - sglang/srt/utils/torch_memory_saver_adapter.py +20 -0
 - sglang/test/kits/radix_cache_server_kit.py +50 -0
 - sglang/test/runners.py +31 -7
 - sglang/test/simple_eval_common.py +5 -3
 - sglang/test/simple_eval_humaneval.py +1 -0
 - sglang/test/simple_eval_math.py +1 -0
 - sglang/test/simple_eval_mmlu.py +1 -0
 - sglang/test/simple_eval_mmmu_vlm.py +1 -0
 - sglang/test/test_deterministic.py +235 -12
 - sglang/test/test_deterministic_utils.py +2 -1
 - sglang/test/test_utils.py +7 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/METADATA +15 -28
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/RECORD +194 -175
 - sglang/srt/models/vila.py +0 -306
 - /sglang/test/{kit_matched_stop.py → kits/matched_stop_kit.py} +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post2.dist-info}/top_level.txt +0 -0
 
    
        sglang/bench_one_batch.py
    CHANGED
    
    | 
         @@ -11,6 +11,11 @@ python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruc 
     | 
|
| 
       11 
11 
     | 
    
         
             
            python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --output-len 32 256 --run-name test_run
         
     | 
| 
       12 
12 
     | 
    
         
             
            ## run with profiling:
         
     | 
| 
       13 
13 
     | 
    
         
             
            python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 12 14 --input-len 256 512 --profile
         
     | 
| 
      
 14 
     | 
    
         
            +
            ## run with profiling to custom directory:
         
     | 
| 
      
 15 
     | 
    
         
            +
            export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
         
     | 
| 
      
 16 
     | 
    
         
            +
            python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 --input-len 256 --profile
         
     | 
| 
      
 17 
     | 
    
         
            +
            ## run with CUDA profiler (nsys):
         
     | 
| 
      
 18 
     | 
    
         
            +
            nsys profile --force-overwrite=true -o bench_one_batch python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3-8B-Instruct --batch 1 --input-len 256 --profile --profiler_activities CUDA_PROFILER
         
     | 
| 
       14 
19 
     | 
    
         
             
            # Usage (correctness test):
         
     | 
| 
       15 
20 
     | 
    
         
             
            python -m sglang.bench_one_batch --model-path TinyLlama/TinyLlama-1.1B-Chat-v0.4 --correct
         
     | 
| 
       16 
21 
     | 
    
         | 
| 
         @@ -93,6 +98,68 @@ profile_activities = [torch.profiler.ProfilerActivity.CPU] + [ 
     | 
|
| 
       93 
98 
     | 
    
         
             
            ]
         
     | 
| 
       94 
99 
     | 
    
         | 
| 
       95 
100 
     | 
    
         | 
| 
      
 101 
     | 
    
         
            +
            def start_profile(profiler_activities, profile_record_shapes=False, rank_print=print):
         
     | 
| 
      
 102 
     | 
    
         
            +
                """
         
     | 
| 
      
 103 
     | 
    
         
            +
                Abstracted function to start profiling based on profiler_activities.
         
     | 
| 
      
 104 
     | 
    
         
            +
                Returns profiler object (or None).
         
     | 
| 
      
 105 
     | 
    
         
            +
                """
         
     | 
| 
      
 106 
     | 
    
         
            +
                if "CUDA_PROFILER" in profiler_activities:
         
     | 
| 
      
 107 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 108 
     | 
    
         
            +
                        torch.cuda.cudart().cudaProfilerStart()
         
     | 
| 
      
 109 
     | 
    
         
            +
                        rank_print("CUDA Profiler started (nsys will begin capturing)")
         
     | 
| 
      
 110 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 111 
     | 
    
         
            +
                        rank_print(f"Failed to start CUDA profiler: {e}")
         
     | 
| 
      
 112 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 113 
     | 
    
         
            +
                else:
         
     | 
| 
      
 114 
     | 
    
         
            +
                    activities = []
         
     | 
| 
      
 115 
     | 
    
         
            +
                    if "CPU" in profiler_activities:
         
     | 
| 
      
 116 
     | 
    
         
            +
                        activities.append(torch.profiler.ProfilerActivity.CPU)
         
     | 
| 
      
 117 
     | 
    
         
            +
                    if "GPU" in profiler_activities:
         
     | 
| 
      
 118 
     | 
    
         
            +
                        activities.append(torch.profiler.ProfilerActivity.CUDA)
         
     | 
| 
      
 119 
     | 
    
         
            +
                    if activities:
         
     | 
| 
      
 120 
     | 
    
         
            +
                        profiler = torch.profiler.profile(
         
     | 
| 
      
 121 
     | 
    
         
            +
                            activities=activities,
         
     | 
| 
      
 122 
     | 
    
         
            +
                            with_stack=True,
         
     | 
| 
      
 123 
     | 
    
         
            +
                            record_shapes=profile_record_shapes,
         
     | 
| 
      
 124 
     | 
    
         
            +
                        )
         
     | 
| 
      
 125 
     | 
    
         
            +
                        profiler.start()
         
     | 
| 
      
 126 
     | 
    
         
            +
                        return profiler
         
     | 
| 
      
 127 
     | 
    
         
            +
                    return None
         
     | 
| 
      
 128 
     | 
    
         
            +
             
     | 
| 
      
 129 
     | 
    
         
            +
             
     | 
| 
      
 130 
     | 
    
         
            +
            def stop_profile(
         
     | 
| 
      
 131 
     | 
    
         
            +
                profiler,
         
     | 
| 
      
 132 
     | 
    
         
            +
                profiler_activities,
         
     | 
| 
      
 133 
     | 
    
         
            +
                rank_print=print,
         
     | 
| 
      
 134 
     | 
    
         
            +
                save_trace=False,
         
     | 
| 
      
 135 
     | 
    
         
            +
                trace_filename=None,
         
     | 
| 
      
 136 
     | 
    
         
            +
                stage=None,
         
     | 
| 
      
 137 
     | 
    
         
            +
            ):
         
     | 
| 
      
 138 
     | 
    
         
            +
                """
         
     | 
| 
      
 139 
     | 
    
         
            +
                Abstracted function to stop profiling based on profiler_activities.
         
     | 
| 
      
 140 
     | 
    
         
            +
                Optionally saves trace results and prints completion messages.
         
     | 
| 
      
 141 
     | 
    
         
            +
                """
         
     | 
| 
      
 142 
     | 
    
         
            +
                if "CUDA_PROFILER" in profiler_activities:
         
     | 
| 
      
 143 
     | 
    
         
            +
                    try:
         
     | 
| 
      
 144 
     | 
    
         
            +
                        torch.cuda.cudart().cudaProfilerStop()
         
     | 
| 
      
 145 
     | 
    
         
            +
                        rank_print("CUDA Profiler stopped (nsys should dump traces)")
         
     | 
| 
      
 146 
     | 
    
         
            +
                    except Exception as e:
         
     | 
| 
      
 147 
     | 
    
         
            +
                        rank_print(f"Failed to stop CUDA profiler: {e}")
         
     | 
| 
      
 148 
     | 
    
         
            +
                elif profiler is not None:
         
     | 
| 
      
 149 
     | 
    
         
            +
                    profiler.stop()
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                if save_trace:
         
     | 
| 
      
 152 
     | 
    
         
            +
                    if profiler is not None:
         
     | 
| 
      
 153 
     | 
    
         
            +
                        if trace_filename:
         
     | 
| 
      
 154 
     | 
    
         
            +
                            _save_profile_trace_results(profiler, trace_filename)
         
     | 
| 
      
 155 
     | 
    
         
            +
                            stage_desc = f"for {stage}" if stage else ""
         
     | 
| 
      
 156 
     | 
    
         
            +
                            rank_print(
         
     | 
| 
      
 157 
     | 
    
         
            +
                                f"torch profiler chrome trace {stage_desc} saved to {trace_filename}"
         
     | 
| 
      
 158 
     | 
    
         
            +
                            )
         
     | 
| 
      
 159 
     | 
    
         
            +
                    if "CUDA_PROFILER" in profiler_activities:
         
     | 
| 
      
 160 
     | 
    
         
            +
                        rank_print(f"CUDA profiler trace for {stage} completed")
         
     | 
| 
      
 161 
     | 
    
         
            +
             
     | 
| 
      
 162 
     | 
    
         
            +
             
     | 
| 
       96 
163 
     | 
    
         
             
            @dataclasses.dataclass
         
     | 
| 
       97 
164 
     | 
    
         
             
            class BenchArgs:
         
     | 
| 
       98 
165 
     | 
    
         
             
                run_name: str = "default"
         
     | 
| 
         @@ -107,6 +174,8 @@ class BenchArgs: 
     | 
|
| 
       107 
174 
     | 
    
         
             
                log_decode_step: int = 0
         
     | 
| 
       108 
175 
     | 
    
         
             
                profile: bool = False
         
     | 
| 
       109 
176 
     | 
    
         
             
                profile_record_shapes: bool = False
         
     | 
| 
      
 177 
     | 
    
         
            +
                profiler_activities: Tuple[str] = ("CPU", "GPU")
         
     | 
| 
      
 178 
     | 
    
         
            +
                profile_stage: str = "all"
         
     | 
| 
       110 
179 
     | 
    
         
             
                profile_filename_prefix: str = "profile"
         
     | 
| 
       111 
180 
     | 
    
         | 
| 
       112 
181 
     | 
    
         
             
                @staticmethod
         
     | 
| 
         @@ -135,14 +204,27 @@ class BenchArgs: 
     | 
|
| 
       135 
204 
     | 
    
         
             
                        default=BenchArgs.log_decode_step,
         
     | 
| 
       136 
205 
     | 
    
         
             
                        help="Log decode latency by step, default is set to zero to disable.",
         
     | 
| 
       137 
206 
     | 
    
         
             
                    )
         
     | 
| 
       138 
     | 
    
         
            -
                    parser.add_argument(
         
     | 
| 
       139 
     | 
    
         
            -
                        "--profile", action="store_true", help="Use Torch Profiler."
         
     | 
| 
       140 
     | 
    
         
            -
                    )
         
     | 
| 
      
 207 
     | 
    
         
            +
                    parser.add_argument("--profile", action="store_true", help="Enable profiling.")
         
     | 
| 
       141 
208 
     | 
    
         
             
                    parser.add_argument(
         
     | 
| 
       142 
209 
     | 
    
         
             
                        "--profile-record-shapes",
         
     | 
| 
       143 
210 
     | 
    
         
             
                        action="store_true",
         
     | 
| 
       144 
211 
     | 
    
         
             
                        help="Record tensor shapes in profiling results.",
         
     | 
| 
       145 
212 
     | 
    
         
             
                    )
         
     | 
| 
      
 213 
     | 
    
         
            +
                    parser.add_argument(
         
     | 
| 
      
 214 
     | 
    
         
            +
                        "--profiler_activities",
         
     | 
| 
      
 215 
     | 
    
         
            +
                        type=str,
         
     | 
| 
      
 216 
     | 
    
         
            +
                        nargs="+",
         
     | 
| 
      
 217 
     | 
    
         
            +
                        default=["CPU", "GPU"],
         
     | 
| 
      
 218 
     | 
    
         
            +
                        choices=["CPU", "GPU", "CUDA_PROFILER"],
         
     | 
| 
      
 219 
     | 
    
         
            +
                        help="Profiler activities: CPU, GPU, CUDA_PROFILER. If CPU/GPU, use torch profiler. If CUDA_PROFILER, use CUDA profiler.",
         
     | 
| 
      
 220 
     | 
    
         
            +
                    )
         
     | 
| 
      
 221 
     | 
    
         
            +
                    parser.add_argument(
         
     | 
| 
      
 222 
     | 
    
         
            +
                        "--profile-stage",
         
     | 
| 
      
 223 
     | 
    
         
            +
                        type=str,
         
     | 
| 
      
 224 
     | 
    
         
            +
                        default=BenchArgs.profile_stage,
         
     | 
| 
      
 225 
     | 
    
         
            +
                        choices=["all", "prefill", "decode"],
         
     | 
| 
      
 226 
     | 
    
         
            +
                        help="Which stage to profile: all, prefill, or decode only.",
         
     | 
| 
      
 227 
     | 
    
         
            +
                    )
         
     | 
| 
       146 
228 
     | 
    
         
             
                    parser.add_argument(
         
     | 
| 
       147 
229 
     | 
    
         
             
                        "--profile-filename-prefix",
         
     | 
| 
       148 
230 
     | 
    
         
             
                        type=str,
         
     | 
| 
         @@ -337,6 +419,18 @@ def _read_prompts_from_file(prompt_file, rank_print): 
     | 
|
| 
       337 
419 
     | 
    
         
             
                    return pf.readlines()
         
     | 
| 
       338 
420 
     | 
    
         | 
| 
       339 
421 
     | 
    
         | 
| 
      
 422 
     | 
    
         
            +
            def _get_torch_profiler_output_dir():
         
     | 
| 
      
 423 
     | 
    
         
            +
                return os.environ.get("SGLANG_TORCH_PROFILER_DIR", "/tmp")
         
     | 
| 
      
 424 
     | 
    
         
            +
             
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
            def _create_torch_profiler_filename(
         
     | 
| 
      
 427 
     | 
    
         
            +
                profile_filename_prefix, batch_size, input_len, output_len, stage
         
     | 
| 
      
 428 
     | 
    
         
            +
            ):
         
     | 
| 
      
 429 
     | 
    
         
            +
                output_dir = _get_torch_profiler_output_dir()
         
     | 
| 
      
 430 
     | 
    
         
            +
                filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}_{stage}.trace.json.gz"
         
     | 
| 
      
 431 
     | 
    
         
            +
                return os.path.join(output_dir, filename)
         
     | 
| 
      
 432 
     | 
    
         
            +
             
     | 
| 
      
 433 
     | 
    
         
            +
             
     | 
| 
       340 
434 
     | 
    
         
             
            def _save_profile_trace_results(profiler, filename):
         
     | 
| 
       341 
435 
     | 
    
         
             
                parent_dir = os.path.dirname(os.path.abspath(filename))
         
     | 
| 
       342 
436 
     | 
    
         
             
                os.makedirs(parent_dir, exist_ok=True)
         
     | 
| 
         @@ -413,7 +507,10 @@ def latency_test_run_once( 
     | 
|
| 
       413 
507 
     | 
    
         
             
                log_decode_step,
         
     | 
| 
       414 
508 
     | 
    
         
             
                profile,
         
     | 
| 
       415 
509 
     | 
    
         
             
                profile_record_shapes,
         
     | 
| 
      
 510 
     | 
    
         
            +
                profiler_activities,
         
     | 
| 
       416 
511 
     | 
    
         
             
                profile_filename_prefix,
         
     | 
| 
      
 512 
     | 
    
         
            +
                profile_stage,
         
     | 
| 
      
 513 
     | 
    
         
            +
                tp_rank,
         
     | 
| 
       417 
514 
     | 
    
         
             
            ):
         
     | 
| 
       418 
515 
     | 
    
         
             
                max_batch_size = model_runner.max_total_num_tokens // (input_len + output_len)
         
     | 
| 
       419 
516 
     | 
    
         
             
                if batch_size > max_batch_size:
         
     | 
| 
         @@ -422,7 +519,6 @@ def latency_test_run_once( 
     | 
|
| 
       422 
519 
     | 
    
         
             
                    )
         
     | 
| 
       423 
520 
     | 
    
         
             
                    return
         
     | 
| 
       424 
521 
     | 
    
         | 
| 
       425 
     | 
    
         
            -
                # Clear the pools.
         
     | 
| 
       426 
522 
     | 
    
         
             
                model_runner.req_to_token_pool.clear()
         
     | 
| 
       427 
523 
     | 
    
         
             
                model_runner.token_to_kv_pool_allocator.clear()
         
     | 
| 
       428 
524 
     | 
    
         | 
| 
         @@ -436,20 +532,33 @@ def latency_test_run_once( 
     | 
|
| 
       436 
532 
     | 
    
         
             
                tot_latency = 0
         
     | 
| 
       437 
533 
     | 
    
         | 
| 
       438 
534 
     | 
    
         
             
                profiler = None
         
     | 
| 
       439 
     | 
    
         
            -
                 
     | 
| 
       440 
     | 
    
         
            -
             
     | 
| 
       441 
     | 
    
         
            -
             
     | 
| 
       442 
     | 
    
         
            -
                         
     | 
| 
       443 
     | 
    
         
            -
                         
     | 
| 
      
 535 
     | 
    
         
            +
                enable_profile_prefill = profile and profile_stage in ["all", "prefill"]
         
     | 
| 
      
 536 
     | 
    
         
            +
                if enable_profile_prefill:
         
     | 
| 
      
 537 
     | 
    
         
            +
                    profiler = start_profile(
         
     | 
| 
      
 538 
     | 
    
         
            +
                        profiler_activities,
         
     | 
| 
      
 539 
     | 
    
         
            +
                        profile_record_shapes=profile_record_shapes,
         
     | 
| 
      
 540 
     | 
    
         
            +
                        rank_print=rank_print,
         
     | 
| 
       444 
541 
     | 
    
         
             
                    )
         
     | 
| 
       445 
     | 
    
         
            -
                    profiler.start()
         
     | 
| 
       446 
542 
     | 
    
         | 
| 
       447 
     | 
    
         
            -
                # Prefill
         
     | 
| 
       448 
543 
     | 
    
         
             
                synchronize(device)
         
     | 
| 
       449 
544 
     | 
    
         
             
                tic = time.perf_counter()
         
     | 
| 
       450 
545 
     | 
    
         
             
                next_token_ids, _, batch = extend(reqs, model_runner)
         
     | 
| 
       451 
546 
     | 
    
         
             
                synchronize(device)
         
     | 
| 
       452 
547 
     | 
    
         
             
                prefill_latency = time.perf_counter() - tic
         
     | 
| 
      
 548 
     | 
    
         
            +
             
     | 
| 
      
 549 
     | 
    
         
            +
                if enable_profile_prefill:
         
     | 
| 
      
 550 
     | 
    
         
            +
                    trace_filename = _create_torch_profiler_filename(
         
     | 
| 
      
 551 
     | 
    
         
            +
                        profile_filename_prefix, batch_size, input_len, output_len, "prefill"
         
     | 
| 
      
 552 
     | 
    
         
            +
                    )
         
     | 
| 
      
 553 
     | 
    
         
            +
                    stop_profile(
         
     | 
| 
      
 554 
     | 
    
         
            +
                        profiler,
         
     | 
| 
      
 555 
     | 
    
         
            +
                        profiler_activities,
         
     | 
| 
      
 556 
     | 
    
         
            +
                        rank_print=rank_print,
         
     | 
| 
      
 557 
     | 
    
         
            +
                        save_trace=True,
         
     | 
| 
      
 558 
     | 
    
         
            +
                        trace_filename=trace_filename,
         
     | 
| 
      
 559 
     | 
    
         
            +
                        stage="prefill",
         
     | 
| 
      
 560 
     | 
    
         
            +
                    )
         
     | 
| 
      
 561 
     | 
    
         
            +
             
     | 
| 
       453 
562 
     | 
    
         
             
                tot_latency += prefill_latency
         
     | 
| 
       454 
563 
     | 
    
         
             
                throughput = input_len * batch_size / prefill_latency
         
     | 
| 
       455 
564 
     | 
    
         
             
                rank_print(
         
     | 
| 
         @@ -458,29 +567,37 @@ def latency_test_run_once( 
     | 
|
| 
       458 
567 
     | 
    
         
             
                measurement_results["prefill_latency"] = prefill_latency
         
     | 
| 
       459 
568 
     | 
    
         
             
                measurement_results["prefill_throughput"] = throughput
         
     | 
| 
       460 
569 
     | 
    
         | 
| 
       461 
     | 
    
         
            -
                if profile:
         
     | 
| 
       462 
     | 
    
         
            -
                    profiler.stop()
         
     | 
| 
       463 
     | 
    
         
            -
                    trace_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}_prefill.trace.json.gz"
         
     | 
| 
       464 
     | 
    
         
            -
                    _save_profile_trace_results(profiler, trace_filename)
         
     | 
| 
       465 
     | 
    
         
            -
                    rank_print(f"torch profiler chrome trace for prefill saved to {trace_filename}")
         
     | 
| 
       466 
     | 
    
         
            -
             
     | 
| 
       467 
     | 
    
         
            -
                # Decode
         
     | 
| 
       468 
570 
     | 
    
         
             
                decode_latencies = []
         
     | 
| 
      
 571 
     | 
    
         
            +
                profile_step_of_interest = output_len // 2
         
     | 
| 
      
 572 
     | 
    
         
            +
                enable_profile_decode = profile and profile_stage in ["all", "decode"]
         
     | 
| 
       469 
573 
     | 
    
         
             
                for i in range(output_len - 1):
         
     | 
| 
       470 
574 
     | 
    
         
             
                    synchronize(device)
         
     | 
| 
       471 
     | 
    
         
            -
                     
     | 
| 
       472 
     | 
    
         
            -
             
     | 
| 
       473 
     | 
    
         
            -
                        profiler =  
     | 
| 
       474 
     | 
    
         
            -
                             
     | 
| 
       475 
     | 
    
         
            -
                             
     | 
| 
       476 
     | 
    
         
            -
                             
     | 
| 
      
 575 
     | 
    
         
            +
                    profiler = None
         
     | 
| 
      
 576 
     | 
    
         
            +
                    if enable_profile_decode and i == profile_step_of_interest:
         
     | 
| 
      
 577 
     | 
    
         
            +
                        profiler = start_profile(
         
     | 
| 
      
 578 
     | 
    
         
            +
                            profiler_activities,
         
     | 
| 
      
 579 
     | 
    
         
            +
                            profile_record_shapes=profile_record_shapes,
         
     | 
| 
      
 580 
     | 
    
         
            +
                            rank_print=rank_print,
         
     | 
| 
       477 
581 
     | 
    
         
             
                        )
         
     | 
| 
       478 
     | 
    
         
            -
                        profiler.start()
         
     | 
| 
       479 
582 
     | 
    
         | 
| 
       480 
583 
     | 
    
         
             
                    tic = time.perf_counter()
         
     | 
| 
       481 
584 
     | 
    
         
             
                    next_token_ids, _ = decode(next_token_ids, batch, model_runner)
         
     | 
| 
       482 
585 
     | 
    
         
             
                    synchronize(device)
         
     | 
| 
       483 
586 
     | 
    
         
             
                    latency = time.perf_counter() - tic
         
     | 
| 
      
 587 
     | 
    
         
            +
             
     | 
| 
      
 588 
     | 
    
         
            +
                    if enable_profile_decode and i == profile_step_of_interest:
         
     | 
| 
      
 589 
     | 
    
         
            +
                        trace_filename = _create_torch_profiler_filename(
         
     | 
| 
      
 590 
     | 
    
         
            +
                            profile_filename_prefix, batch_size, input_len, output_len, "decode"
         
     | 
| 
      
 591 
     | 
    
         
            +
                        )
         
     | 
| 
      
 592 
     | 
    
         
            +
                        stop_profile(
         
     | 
| 
      
 593 
     | 
    
         
            +
                            profiler,
         
     | 
| 
      
 594 
     | 
    
         
            +
                            profiler_activities,
         
     | 
| 
      
 595 
     | 
    
         
            +
                            rank_print=rank_print,
         
     | 
| 
      
 596 
     | 
    
         
            +
                            save_trace=True,
         
     | 
| 
      
 597 
     | 
    
         
            +
                            trace_filename=trace_filename,
         
     | 
| 
      
 598 
     | 
    
         
            +
                            stage="decode",
         
     | 
| 
      
 599 
     | 
    
         
            +
                        )
         
     | 
| 
      
 600 
     | 
    
         
            +
             
     | 
| 
       484 
601 
     | 
    
         
             
                    tot_latency += latency
         
     | 
| 
       485 
602 
     | 
    
         
             
                    throughput = batch_size / latency
         
     | 
| 
       486 
603 
     | 
    
         
             
                    decode_latencies.append(latency)
         
     | 
| 
         @@ -489,14 +606,6 @@ def latency_test_run_once( 
     | 
|
| 
       489 
606 
     | 
    
         
             
                            f"Decode {i}. Batch size: {batch_size}, latency: {latency:6.5f} s, throughput: {throughput:9.2f} token/s"
         
     | 
| 
       490 
607 
     | 
    
         
             
                        )
         
     | 
| 
       491 
608 
     | 
    
         | 
| 
       492 
     | 
    
         
            -
                    if profile and i == output_len / 2:
         
     | 
| 
       493 
     | 
    
         
            -
                        profiler.stop()
         
     | 
| 
       494 
     | 
    
         
            -
                        trace_filename = f"{profile_filename_prefix}_batch{batch_size}_input{input_len}_output{output_len}_decode.trace.json.gz"
         
     | 
| 
       495 
     | 
    
         
            -
                        _save_profile_trace_results(profiler, trace_filename)
         
     | 
| 
       496 
     | 
    
         
            -
                        rank_print(
         
     | 
| 
       497 
     | 
    
         
            -
                            f"torch profiler chrome trace for decoding 1 token saved to {trace_filename}"
         
     | 
| 
       498 
     | 
    
         
            -
                        )
         
     | 
| 
       499 
     | 
    
         
            -
             
     | 
| 
       500 
609 
     | 
    
         
             
                # Record decode timing from 2nd output
         
     | 
| 
       501 
610 
     | 
    
         
             
                if output_len > 1:
         
     | 
| 
       502 
611 
     | 
    
         
             
                    med_decode_latency = np.median(decode_latencies)
         
     | 
| 
         @@ -557,7 +666,10 @@ def latency_test( 
     | 
|
| 
       557 
666 
     | 
    
         
             
                    log_decode_step=0,
         
     | 
| 
       558 
667 
     | 
    
         
             
                    profile=False,
         
     | 
| 
       559 
668 
     | 
    
         
             
                    profile_record_shapes=False,
         
     | 
| 
       560 
     | 
    
         
            -
                     
     | 
| 
      
 669 
     | 
    
         
            +
                    profiler_activities=("CPU", "GPU"),
         
     | 
| 
      
 670 
     | 
    
         
            +
                    profile_filename_prefix="",
         
     | 
| 
      
 671 
     | 
    
         
            +
                    profile_stage="all",
         
     | 
| 
      
 672 
     | 
    
         
            +
                    tp_rank=tp_rank,
         
     | 
| 
       561 
673 
     | 
    
         
             
                )
         
     | 
| 
       562 
674 
     | 
    
         | 
| 
       563 
675 
     | 
    
         
             
                rank_print("Benchmark ...")
         
     | 
| 
         @@ -604,7 +716,10 @@ def latency_test( 
     | 
|
| 
       604 
716 
     | 
    
         
             
                        bench_args.log_decode_step,
         
     | 
| 
       605 
717 
     | 
    
         
             
                        bench_args.profile if tp_rank == 0 else None,
         
     | 
| 
       606 
718 
     | 
    
         
             
                        bench_args.profile_record_shapes if tp_rank == 0 else None,
         
     | 
| 
      
 719 
     | 
    
         
            +
                        bench_args.profiler_activities,
         
     | 
| 
       607 
720 
     | 
    
         
             
                        bench_args.profile_filename_prefix,
         
     | 
| 
      
 721 
     | 
    
         
            +
                        bench_args.profile_stage,
         
     | 
| 
      
 722 
     | 
    
         
            +
                        tp_rank,
         
     | 
| 
       608 
723 
     | 
    
         
             
                    )
         
     | 
| 
       609 
724 
     | 
    
         
             
                    if ret is not None:
         
     | 
| 
       610 
725 
     | 
    
         
             
                        result_list.append(ret)
         
     | 
    
        sglang/bench_serving.py
    CHANGED
    
    | 
         @@ -88,6 +88,7 @@ class RequestFuncOutput: 
     | 
|
| 
       88 
88 
     | 
    
         
             
                latency: float = 0.0
         
     | 
| 
       89 
89 
     | 
    
         
             
                ttft: float = 0.0  # Time to first token
         
     | 
| 
       90 
90 
     | 
    
         
             
                itl: List[float] = field(default_factory=list)  # List of inter-token latencies
         
     | 
| 
      
 91 
     | 
    
         
            +
                text_chunks: List[str] = field(default_factory=list)
         
     | 
| 
       91 
92 
     | 
    
         
             
                prompt_len: int = 0
         
     | 
| 
       92 
93 
     | 
    
         
             
                error: str = ""
         
     | 
| 
       93 
94 
     | 
    
         
             
                output_len: int = 0
         
     | 
| 
         @@ -258,6 +259,9 @@ async def async_request_openai_completions( 
     | 
|
| 
       258 
259 
     | 
    
         | 
| 
       259 
260 
     | 
    
         
             
                                            # Decoding phase
         
     | 
| 
       260 
261 
     | 
    
         
             
                                            else:
         
     | 
| 
      
 262 
     | 
    
         
            +
                                                output.text_chunks.append(
         
     | 
| 
      
 263 
     | 
    
         
            +
                                                    data["choices"][0]["text"]
         
     | 
| 
      
 264 
     | 
    
         
            +
                                                )
         
     | 
| 
       261 
265 
     | 
    
         
             
                                                output.itl.append(timestamp - most_recent_timestamp)
         
     | 
| 
       262 
266 
     | 
    
         | 
| 
       263 
267 
     | 
    
         
             
                                            most_recent_timestamp = timestamp
         
     | 
| 
         @@ -574,9 +578,8 @@ async def async_request_sglang_generate( 
     | 
|
| 
       574 
578 
     | 
    
         
             
                                                num_new_tokens = output_len - last_output_len
         
     | 
| 
       575 
579 
     | 
    
         
             
                                                if num_new_tokens == 0:
         
     | 
| 
       576 
580 
     | 
    
         
             
                                                    continue
         
     | 
| 
       577 
     | 
    
         
            -
                                                 
     | 
| 
       578 
     | 
    
         
            -
             
     | 
| 
       579 
     | 
    
         
            -
                                                ) / num_new_tokens
         
     | 
| 
      
 581 
     | 
    
         
            +
                                                chunk_gap = timestamp - most_recent_timestamp
         
     | 
| 
      
 582 
     | 
    
         
            +
                                                adjust_itl = chunk_gap / num_new_tokens
         
     | 
| 
       580 
583 
     | 
    
         
             
                                                output.itl.extend([adjust_itl] * num_new_tokens)
         
     | 
| 
       581 
584 
     | 
    
         | 
| 
       582 
585 
     | 
    
         
             
                                            most_recent_timestamp = timestamp
         
     | 
| 
         @@ -764,6 +767,7 @@ def get_dataset(args, tokenizer, model_id=None): 
     | 
|
| 
       764 
767 
     | 
    
         
             
                        image_content=args.image_content,
         
     | 
| 
       765 
768 
     | 
    
         
             
                        image_format=args.image_format,
         
     | 
| 
       766 
769 
     | 
    
         
             
                        image_resolution=args.image_resolution,
         
     | 
| 
      
 770 
     | 
    
         
            +
                        backend=args.backend,
         
     | 
| 
       767 
771 
     | 
    
         
             
                    )
         
     | 
| 
       768 
772 
     | 
    
         
             
                elif args.dataset_name == "generated-shared-prefix":
         
     | 
| 
       769 
773 
     | 
    
         
             
                    assert not tokenize_prompt
         
     | 
| 
         @@ -781,6 +785,7 @@ def get_dataset(args, tokenizer, model_id=None): 
     | 
|
| 
       781 
785 
     | 
    
         
             
                    input_requests = sample_mmmu_requests(
         
     | 
| 
       782 
786 
     | 
    
         
             
                        num_requests=args.num_prompts,
         
     | 
| 
       783 
787 
     | 
    
         
             
                        processor=processor,
         
     | 
| 
      
 788 
     | 
    
         
            +
                        backend=args.backend,
         
     | 
| 
       784 
789 
     | 
    
         
             
                        fixed_output_len=args.random_output_len,
         
     | 
| 
       785 
790 
     | 
    
         
             
                        random_sample=True,
         
     | 
| 
       786 
791 
     | 
    
         
             
                    )
         
     | 
| 
         @@ -1009,6 +1014,7 @@ async def get_mooncake_request_over_time( 
     | 
|
| 
       1009 
1014 
     | 
    
         
             
            def sample_mmmu_requests(
         
     | 
| 
       1010 
1015 
     | 
    
         
             
                num_requests: int,
         
     | 
| 
       1011 
1016 
     | 
    
         
             
                processor: AutoProcessor | AutoTokenizer,
         
     | 
| 
      
 1017 
     | 
    
         
            +
                backend: str = "sglang",
         
     | 
| 
       1012 
1018 
     | 
    
         
             
                fixed_output_len: Optional[int] = None,
         
     | 
| 
       1013 
1019 
     | 
    
         
             
                random_sample: bool = True,
         
     | 
| 
       1014 
1020 
     | 
    
         
             
            ) -> List[DatasetRow]:
         
     | 
| 
         @@ -1081,7 +1087,7 @@ def sample_mmmu_requests( 
     | 
|
| 
       1081 
1087 
     | 
    
         
             
                            text_prompt = f"Question: {question}\n\nAnswer: "
         
     | 
| 
       1082 
1088 
     | 
    
         
             
                            output_len = fixed_output_len if fixed_output_len is not None else 256
         
     | 
| 
       1083 
1089 
     | 
    
         
             
                            data_row = create_mm_data_row(
         
     | 
| 
       1084 
     | 
    
         
            -
                                text_prompt, [image], [image_data], output_len, processor
         
     | 
| 
      
 1090 
     | 
    
         
            +
                                text_prompt, [image], [image_data], output_len, processor, backend
         
     | 
| 
       1085 
1091 
     | 
    
         
             
                            )
         
     | 
| 
       1086 
1092 
     | 
    
         
             
                            filtered_dataset.append(data_row)
         
     | 
| 
       1087 
1093 
     | 
    
         | 
| 
         @@ -1316,13 +1322,19 @@ def parse_image_resolution(image_resolution: str) -> Tuple[int, int]: 
     | 
|
| 
       1316 
1322 
     | 
    
         
             
                )
         
     | 
| 
       1317 
1323 
     | 
    
         | 
| 
       1318 
1324 
     | 
    
         | 
| 
       1319 
     | 
    
         
            -
            def create_mm_data_row( 
     | 
| 
      
 1325 
     | 
    
         
            +
            def create_mm_data_row(
         
     | 
| 
      
 1326 
     | 
    
         
            +
                text_prompt, images: list, images_base64, output_len, processor, backend
         
     | 
| 
      
 1327 
     | 
    
         
            +
            ):
         
     | 
| 
       1320 
1328 
     | 
    
         
             
                try:
         
     | 
| 
       1321 
     | 
    
         
            -
                     
     | 
| 
       1322 
     | 
    
         
            -
                         
     | 
| 
       1323 
     | 
    
         
            -
                         
     | 
| 
       1324 
     | 
    
         
            -
                     
     | 
| 
       1325 
     | 
    
         
            -
             
     | 
| 
      
 1329 
     | 
    
         
            +
                    if type(processor).__name__ == "Phi4MMProcessor":
         
     | 
| 
      
 1330 
     | 
    
         
            +
                        # <|endoftext10|> is the image token used in the phi-4-multimodal model.
         
     | 
| 
      
 1331 
     | 
    
         
            +
                        content_items = text_prompt.replace("image 1", "|endoftext10|")
         
     | 
| 
      
 1332 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 1333 
     | 
    
         
            +
                        content_items = [
         
     | 
| 
      
 1334 
     | 
    
         
            +
                            {"type": "image", "image": {"url": image_base64}}
         
     | 
| 
      
 1335 
     | 
    
         
            +
                            for image_base64 in images_base64
         
     | 
| 
      
 1336 
     | 
    
         
            +
                        ]
         
     | 
| 
      
 1337 
     | 
    
         
            +
                        content_items.append({"type": "text", "text": text_prompt})
         
     | 
| 
       1326 
1338 
     | 
    
         
             
                    prompt_str = processor.apply_chat_template(
         
     | 
| 
       1327 
1339 
     | 
    
         
             
                        [{"role": "user", "content": content_items}],
         
     | 
| 
       1328 
1340 
     | 
    
         
             
                        add_generation_prompt=True,
         
     | 
| 
         @@ -1357,13 +1369,24 @@ def create_mm_data_row(text_prompt, images: list, images_base64, output_len, pro 
     | 
|
| 
       1357 
1369 
     | 
    
         
             
                    )["input_ids"].numel()
         
     | 
| 
       1358 
1370 
     | 
    
         
             
                except Exception:
         
     | 
| 
       1359 
1371 
     | 
    
         
             
                    # Fallback: just tokenize the text prompt directly
         
     | 
| 
       1360 
     | 
    
         
            -
                     
     | 
| 
      
 1372 
     | 
    
         
            +
                    tokenizer_to_use = (
         
     | 
| 
      
 1373 
     | 
    
         
            +
                        processor.tokenizer if hasattr(processor, "tokenizer") else processor
         
     | 
| 
      
 1374 
     | 
    
         
            +
                    )
         
     | 
| 
      
 1375 
     | 
    
         
            +
                    text_prompt_len = len(tokenizer_to_use.encode(text_prompt))
         
     | 
| 
       1361 
1376 
     | 
    
         | 
| 
       1362 
1377 
     | 
    
         
             
                # Vision tokens = total tokens - text tokens
         
     | 
| 
       1363 
1378 
     | 
    
         
             
                vision_prompt_len = prompt_len - text_prompt_len
         
     | 
| 
       1364 
1379 
     | 
    
         | 
| 
      
 1380 
     | 
    
         
            +
                use_raw_prompt = backend in [
         
     | 
| 
      
 1381 
     | 
    
         
            +
                    "sglang-oai",
         
     | 
| 
      
 1382 
     | 
    
         
            +
                    "sglang-oai-chat",
         
     | 
| 
      
 1383 
     | 
    
         
            +
                    "vllm",
         
     | 
| 
      
 1384 
     | 
    
         
            +
                    "vllm-chat",
         
     | 
| 
      
 1385 
     | 
    
         
            +
                    "lmdeploy",
         
     | 
| 
      
 1386 
     | 
    
         
            +
                    "lmdeploy-chat",
         
     | 
| 
      
 1387 
     | 
    
         
            +
                ]
         
     | 
| 
       1365 
1388 
     | 
    
         
             
                return DatasetRow(
         
     | 
| 
       1366 
     | 
    
         
            -
                    prompt=text_prompt,
         
     | 
| 
      
 1389 
     | 
    
         
            +
                    prompt=text_prompt if use_raw_prompt else prompt_str,
         
     | 
| 
       1367 
1390 
     | 
    
         
             
                    prompt_len=prompt_len,
         
     | 
| 
       1368 
1391 
     | 
    
         
             
                    output_len=output_len,
         
     | 
| 
       1369 
1392 
     | 
    
         
             
                    text_prompt_len=text_prompt_len,
         
     | 
| 
         @@ -1382,6 +1405,7 @@ def sample_image_requests( 
     | 
|
| 
       1382 
1405 
     | 
    
         
             
                image_content: str,
         
     | 
| 
       1383 
1406 
     | 
    
         
             
                image_format: str,
         
     | 
| 
       1384 
1407 
     | 
    
         
             
                image_resolution: str,
         
     | 
| 
      
 1408 
     | 
    
         
            +
                backend: str,
         
     | 
| 
       1385 
1409 
     | 
    
         
             
            ) -> List[DatasetRow]:
         
     | 
| 
       1386 
1410 
     | 
    
         
             
                """Generate requests with images.
         
     | 
| 
       1387 
1411 
     | 
    
         | 
| 
         @@ -1447,6 +1471,7 @@ def sample_image_requests( 
     | 
|
| 
       1447 
1471 
     | 
    
         
             
                        list(images_base64),
         
     | 
| 
       1448 
1472 
     | 
    
         
             
                        int(output_lens[i]),
         
     | 
| 
       1449 
1473 
     | 
    
         
             
                        processor,
         
     | 
| 
      
 1474 
     | 
    
         
            +
                        backend,
         
     | 
| 
       1450 
1475 
     | 
    
         
             
                    )
         
     | 
| 
       1451 
1476 
     | 
    
         | 
| 
       1452 
1477 
     | 
    
         
             
                    dataset.append(data_row)
         
     | 
| 
         @@ -1607,6 +1632,7 @@ def calculate_metrics( 
     | 
|
| 
       1607 
1632 
     | 
    
         
             
                dur_s: float,
         
     | 
| 
       1608 
1633 
     | 
    
         
             
                tokenizer: PreTrainedTokenizerBase,
         
     | 
| 
       1609 
1634 
     | 
    
         
             
                backend: str,
         
     | 
| 
      
 1635 
     | 
    
         
            +
                accept_length: Optional[float] = None,
         
     | 
| 
       1610 
1636 
     | 
    
         
             
            ) -> Tuple[BenchmarkMetrics, List[int]]:
         
     | 
| 
       1611 
1637 
     | 
    
         
             
                output_lens: List[int] = []
         
     | 
| 
       1612 
1638 
     | 
    
         
             
                retokenized_output_lens: List[int] = []
         
     | 
| 
         @@ -1618,6 +1644,14 @@ def calculate_metrics( 
     | 
|
| 
       1618 
1644 
     | 
    
         
             
                tpots: List[float] = []
         
     | 
| 
       1619 
1645 
     | 
    
         
             
                ttfts: List[float] = []
         
     | 
| 
       1620 
1646 
     | 
    
         
             
                e2e_latencies: List[float] = []
         
     | 
| 
      
 1647 
     | 
    
         
            +
                retokenized_itls: List[float] = []
         
     | 
| 
      
 1648 
     | 
    
         
            +
             
     | 
| 
      
 1649 
     | 
    
         
            +
                use_retokenized_itl = (
         
     | 
| 
      
 1650 
     | 
    
         
            +
                    accept_length is not None
         
     | 
| 
      
 1651 
     | 
    
         
            +
                    and accept_length > 0
         
     | 
| 
      
 1652 
     | 
    
         
            +
                    and backend in ("sglang-oai", "sglang-oai-chat")
         
     | 
| 
      
 1653 
     | 
    
         
            +
                )
         
     | 
| 
      
 1654 
     | 
    
         
            +
             
     | 
| 
       1621 
1655 
     | 
    
         
             
                for i in range(len(outputs)):
         
     | 
| 
       1622 
1656 
     | 
    
         
             
                    if outputs[i].success:
         
     | 
| 
       1623 
1657 
     | 
    
         
             
                        output_len = outputs[i].output_len
         
     | 
| 
         @@ -1631,7 +1665,17 @@ def calculate_metrics( 
     | 
|
| 
       1631 
1665 
     | 
    
         
             
                        total_input_vision += input_requests[i].vision_prompt_len
         
     | 
| 
       1632 
1666 
     | 
    
         
             
                        if output_len > 1:
         
     | 
| 
       1633 
1667 
     | 
    
         
             
                            tpots.append((outputs[i].latency - outputs[i].ttft) / (output_len - 1))
         
     | 
| 
       1634 
     | 
    
         
            -
                         
     | 
| 
      
 1668 
     | 
    
         
            +
                        if use_retokenized_itl:
         
     | 
| 
      
 1669 
     | 
    
         
            +
                            for k, itl in enumerate(outputs[i].itl):
         
     | 
| 
      
 1670 
     | 
    
         
            +
                                num_tokens = len(
         
     | 
| 
      
 1671 
     | 
    
         
            +
                                    tokenizer.encode(
         
     | 
| 
      
 1672 
     | 
    
         
            +
                                        outputs[i].text_chunks[k], add_special_tokens=False
         
     | 
| 
      
 1673 
     | 
    
         
            +
                                    )
         
     | 
| 
      
 1674 
     | 
    
         
            +
                                )
         
     | 
| 
      
 1675 
     | 
    
         
            +
                                adjusted_itl = itl / num_tokens
         
     | 
| 
      
 1676 
     | 
    
         
            +
                                retokenized_itls.extend([adjusted_itl] * num_tokens)
         
     | 
| 
      
 1677 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 1678 
     | 
    
         
            +
                            itls += outputs[i].itl
         
     | 
| 
       1635 
1679 
     | 
    
         
             
                        ttfts.append(outputs[i].ttft)
         
     | 
| 
       1636 
1680 
     | 
    
         | 
| 
       1637 
1681 
     | 
    
         
             
                        e2e_latencies.append(outputs[i].latency)
         
     | 
| 
         @@ -1647,6 +1691,8 @@ def calculate_metrics( 
     | 
|
| 
       1647 
1691 
     | 
    
         
             
                        "on the benchmark arguments.",
         
     | 
| 
       1648 
1692 
     | 
    
         
             
                        stacklevel=2,
         
     | 
| 
       1649 
1693 
     | 
    
         
             
                    )
         
     | 
| 
      
 1694 
     | 
    
         
            +
             
     | 
| 
      
 1695 
     | 
    
         
            +
                itls = retokenized_itls if use_retokenized_itl else itls
         
     | 
| 
       1650 
1696 
     | 
    
         
             
                metrics = BenchmarkMetrics(
         
     | 
| 
       1651 
1697 
     | 
    
         
             
                    completed=completed,
         
     | 
| 
       1652 
1698 
     | 
    
         
             
                    total_input=total_input,
         
     | 
| 
         @@ -1910,6 +1956,7 @@ async def benchmark( 
     | 
|
| 
       1910 
1956 
     | 
    
         
             
                    dur_s=benchmark_duration,
         
     | 
| 
       1911 
1957 
     | 
    
         
             
                    tokenizer=tokenizer,
         
     | 
| 
       1912 
1958 
     | 
    
         
             
                    backend=backend,
         
     | 
| 
      
 1959 
     | 
    
         
            +
                    accept_length=accept_length,
         
     | 
| 
       1913 
1960 
     | 
    
         
             
                )
         
     | 
| 
       1914 
1961 
     | 
    
         | 
| 
       1915 
1962 
     | 
    
         
             
                print("\n{s:{c}^{n}}".format(s=" Serving Benchmark Result ", n=50, c="="))
         
     | 
| 
         @@ -1989,6 +2036,7 @@ async def benchmark( 
     | 
|
| 
       1989 
2036 
     | 
    
         
             
                ):
         
     | 
| 
       1990 
2037 
     | 
    
         
             
                    result = {
         
     | 
| 
       1991 
2038 
     | 
    
         
             
                        # Arguments
         
     | 
| 
      
 2039 
     | 
    
         
            +
                        "tag": getattr(args, "tag", None),
         
     | 
| 
       1992 
2040 
     | 
    
         
             
                        "backend": args.backend,
         
     | 
| 
       1993 
2041 
     | 
    
         
             
                        "dataset_name": args.dataset_name,
         
     | 
| 
       1994 
2042 
     | 
    
         
             
                        "request_rate": "trace" if use_trace_timestamps else request_rate,
         
     | 
| 
         @@ -2114,6 +2162,9 @@ def run_benchmark(args_: argparse.Namespace): 
     | 
|
| 
       2114 
2162 
     | 
    
         
             
                if not hasattr(args, "mooncake_num_rounds"):
         
     | 
| 
       2115 
2163 
     | 
    
         
             
                    args.mooncake_num_rounds = 1
         
     | 
| 
       2116 
2164 
     | 
    
         | 
| 
      
 2165 
     | 
    
         
            +
                if not hasattr(args, "served_model_name"):
         
     | 
| 
      
 2166 
     | 
    
         
            +
                    args.served_model_name = None
         
     | 
| 
      
 2167 
     | 
    
         
            +
             
     | 
| 
       2117 
2168 
     | 
    
         
             
                print(f"benchmark_args={args}")
         
     | 
| 
       2118 
2169 
     | 
    
         | 
| 
       2119 
2170 
     | 
    
         
             
                # Set global environments
         
     | 
| 
         @@ -2227,7 +2278,7 @@ def run_benchmark(args_: argparse.Namespace): 
     | 
|
| 
       2227 
2278 
     | 
    
         | 
| 
       2228 
2279 
     | 
    
         
             
                # Read dataset
         
     | 
| 
       2229 
2280 
     | 
    
         
             
                backend = args.backend
         
     | 
| 
       2230 
     | 
    
         
            -
                model_id = args.model
         
     | 
| 
      
 2281 
     | 
    
         
            +
                model_id = args.served_model_name or args.model
         
     | 
| 
       2231 
2282 
     | 
    
         
             
                tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
         
     | 
| 
       2232 
2283 
     | 
    
         
             
                tokenizer = get_tokenizer(tokenizer_id)
         
     | 
| 
       2233 
2284 
     | 
    
         
             
                input_requests = get_dataset(args, tokenizer, model_id)
         
     | 
| 
         @@ -2326,6 +2377,11 @@ if __name__ == "__main__": 
     | 
|
| 
       2326 
2377 
     | 
    
         
             
                    type=str,
         
     | 
| 
       2327 
2378 
     | 
    
         
             
                    help="Name or path of the model. If not set, the default model will request /v1/models for conf.",
         
     | 
| 
       2328 
2379 
     | 
    
         
             
                )
         
     | 
| 
      
 2380 
     | 
    
         
            +
                parser.add_argument(
         
     | 
| 
      
 2381 
     | 
    
         
            +
                    "--served-model-name",
         
     | 
| 
      
 2382 
     | 
    
         
            +
                    type=str,
         
     | 
| 
      
 2383 
     | 
    
         
            +
                    help="The name of the model as served by the serving service. If not set, this defaults to the value of --model.",
         
     | 
| 
      
 2384 
     | 
    
         
            +
                )
         
     | 
| 
       2329 
2385 
     | 
    
         
             
                parser.add_argument(
         
     | 
| 
       2330 
2386 
     | 
    
         
             
                    "--tokenizer",
         
     | 
| 
       2331 
2387 
     | 
    
         
             
                    type=str,
         
     | 
| 
         @@ -2583,5 +2639,8 @@ if __name__ == "__main__": 
     | 
|
| 
       2583 
2639 
     | 
    
         
             
                    ],
         
     | 
| 
       2584 
2640 
     | 
    
         
             
                    help="Underlying workload for the mooncake dataset.",
         
     | 
| 
       2585 
2641 
     | 
    
         
             
                )
         
     | 
| 
      
 2642 
     | 
    
         
            +
                parser.add_argument(
         
     | 
| 
      
 2643 
     | 
    
         
            +
                    "--tag", type=str, default=None, help="The tag to be dumped to output."
         
     | 
| 
      
 2644 
     | 
    
         
            +
                )
         
     | 
| 
       2586 
2645 
     | 
    
         
             
                args = parser.parse_args()
         
     | 
| 
       2587 
2646 
     | 
    
         
             
                run_benchmark(args)
         
     | 
    
        sglang/compile_deep_gemm.py
    CHANGED
    
    | 
         @@ -104,15 +104,21 @@ def launch_server_process_and_send_one_request( 
     | 
|
| 
       104 
104 
     | 
    
         
             
                        if response.status_code == 200:
         
     | 
| 
       105 
105 
     | 
    
         
             
                            # Rank-0 node send a request to sync with other node and then return.
         
     | 
| 
       106 
106 
     | 
    
         
             
                            if server_args.node_rank == 0:
         
     | 
| 
      
 107 
     | 
    
         
            +
                                payload = {
         
     | 
| 
      
 108 
     | 
    
         
            +
                                    "input_ids": [0, 1, 2, 3],
         
     | 
| 
      
 109 
     | 
    
         
            +
                                    "sampling_params": {
         
     | 
| 
      
 110 
     | 
    
         
            +
                                        "max_new_tokens": 8,
         
     | 
| 
      
 111 
     | 
    
         
            +
                                        "temperature": 0,
         
     | 
| 
      
 112 
     | 
    
         
            +
                                    },
         
     | 
| 
      
 113 
     | 
    
         
            +
                                }
         
     | 
| 
      
 114 
     | 
    
         
            +
                                # In PD mode, include fake bootstrap fields so workers don't assert
         
     | 
| 
      
 115 
     | 
    
         
            +
                                if server_args.disaggregation_mode != "null":
         
     | 
| 
      
 116 
     | 
    
         
            +
                                    payload["bootstrap_host"] = FAKE_BOOTSTRAP_HOST
         
     | 
| 
      
 117 
     | 
    
         
            +
                                    payload["bootstrap_room"] = 0
         
     | 
| 
      
 118 
     | 
    
         
            +
             
     | 
| 
       107 
119 
     | 
    
         
             
                                response = requests.post(
         
     | 
| 
       108 
120 
     | 
    
         
             
                                    f"{base_url}/generate",
         
     | 
| 
       109 
     | 
    
         
            -
                                    json= 
     | 
| 
       110 
     | 
    
         
            -
                                        "input_ids": [0, 1, 2, 3],
         
     | 
| 
       111 
     | 
    
         
            -
                                        "sampling_params": {
         
     | 
| 
       112 
     | 
    
         
            -
                                            "max_new_tokens": 8,
         
     | 
| 
       113 
     | 
    
         
            -
                                            "temperature": 0,
         
     | 
| 
       114 
     | 
    
         
            -
                                        },
         
     | 
| 
       115 
     | 
    
         
            -
                                    },
         
     | 
| 
      
 121 
     | 
    
         
            +
                                    json=payload,
         
     | 
| 
       116 
122 
     | 
    
         
             
                                    timeout=600,
         
     | 
| 
       117 
123 
     | 
    
         
             
                                )
         
     | 
| 
       118 
124 
     | 
    
         
             
                                if response.status_code != 200:
         
     | 
    
        sglang/launch_server.py
    CHANGED
    
    | 
         @@ -12,10 +12,12 @@ if __name__ == "__main__": 
     | 
|
| 
       12 
12 
     | 
    
         | 
| 
       13 
13 
     | 
    
         
             
                try:
         
     | 
| 
       14 
14 
     | 
    
         
             
                    if server_args.grpc_mode:
         
     | 
| 
      
 15 
     | 
    
         
            +
                        # Handle gRPC server
         
     | 
| 
       15 
16 
     | 
    
         
             
                        from sglang.srt.entrypoints.grpc_server import serve_grpc
         
     | 
| 
       16 
17 
     | 
    
         | 
| 
       17 
18 
     | 
    
         
             
                        asyncio.run(serve_grpc(server_args))
         
     | 
| 
       18 
19 
     | 
    
         
             
                    else:
         
     | 
| 
      
 20 
     | 
    
         
            +
                        # Handle HTTP server
         
     | 
| 
       19 
21 
     | 
    
         
             
                        from sglang.srt.entrypoints.http_server import launch_server
         
     | 
| 
       20 
22 
     | 
    
         | 
| 
       21 
23 
     | 
    
         
             
                        launch_server(server_args)
         
     | 
| 
         @@ -9,6 +9,7 @@ from .batch_invariant_ops import ( 
     | 
|
| 
       9 
9 
     | 
    
         
             
                log_softmax,
         
     | 
| 
       10 
10 
     | 
    
         
             
                matmul_persistent,
         
     | 
| 
       11 
11 
     | 
    
         
             
                mean_dim,
         
     | 
| 
      
 12 
     | 
    
         
            +
                rms_norm_batch_invariant,
         
     | 
| 
       12 
13 
     | 
    
         
             
                set_batch_invariant_mode,
         
     | 
| 
       13 
14 
     | 
    
         
             
            )
         
     | 
| 
       14 
15 
     | 
    
         | 
| 
         @@ -24,4 +25,5 @@ __all__ = [ 
     | 
|
| 
       24 
25 
     | 
    
         
             
                "mean_dim",
         
     | 
| 
       25 
26 
     | 
    
         
             
                "get_batch_invariant_attention_block_size",
         
     | 
| 
       26 
27 
     | 
    
         
             
                "AttentionBlockSize",
         
     | 
| 
      
 28 
     | 
    
         
            +
                "rms_norm_batch_invariant",
         
     | 
| 
       27 
29 
     | 
    
         
             
            ]
         
     |