sglang 0.5.4__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_serving.py +56 -12
 - sglang/launch_server.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +101 -4
 - sglang/srt/compilation/backend.py +1 -1
 - sglang/srt/configs/model_config.py +5 -5
 - sglang/srt/distributed/parallel_state.py +0 -7
 - sglang/srt/entrypoints/engine.py +18 -15
 - sglang/srt/entrypoints/grpc_server.py +0 -1
 - sglang/srt/entrypoints/http_server.py +75 -94
 - sglang/srt/environ.py +16 -2
 - sglang/srt/eplb/expert_distribution.py +30 -0
 - sglang/srt/function_call/function_call_parser.py +2 -0
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/layers/activation.py +6 -0
 - sglang/srt/layers/attention/flashattention_backend.py +12 -2
 - sglang/srt/layers/attention/flashinfer_backend.py +10 -1
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +18 -10
 - sglang/srt/layers/attention/trtllm_mla_backend.py +1 -13
 - sglang/srt/layers/attention/utils.py +78 -0
 - sglang/srt/layers/communicator.py +1 -0
 - sglang/srt/layers/deep_gemm_wrapper/compile_utils.py +1 -1
 - sglang/srt/layers/layernorm.py +19 -4
 - sglang/srt/layers/logits_processor.py +5 -0
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +138 -0
 - sglang/srt/layers/moe/ep_moe/kernels.py +194 -0
 - sglang/srt/layers/moe/ep_moe/layer.py +79 -272
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +3 -3
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +7 -4
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +287 -22
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +4 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +11 -5
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +18 -14
 - sglang/srt/layers/moe/token_dispatcher/standard.py +1 -1
 - sglang/srt/layers/moe/topk.py +4 -4
 - sglang/srt/layers/moe/utils.py +3 -4
 - sglang/srt/layers/quantization/__init__.py +3 -5
 - sglang/srt/layers/quantization/awq.py +0 -3
 - sglang/srt/layers/quantization/base_config.py +7 -0
 - sglang/srt/layers/quantization/fp8.py +68 -63
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/mxfp4.py +30 -38
 - sglang/srt/layers/quantization/unquant.py +23 -45
 - sglang/srt/layers/quantization/w4afp8.py +38 -2
 - sglang/srt/layers/radix_attention.py +5 -2
 - sglang/srt/layers/rotary_embedding.py +13 -1
 - sglang/srt/layers/sampler.py +12 -1
 - sglang/srt/managers/io_struct.py +3 -0
 - sglang/srt/managers/multi_tokenizer_mixin.py +17 -1
 - sglang/srt/managers/scheduler.py +21 -15
 - sglang/srt/managers/scheduler_metrics_mixin.py +22 -14
 - sglang/srt/managers/scheduler_profiler_mixin.py +3 -4
 - sglang/srt/managers/tokenizer_manager.py +11 -19
 - sglang/srt/mem_cache/hicache_storage.py +7 -1
 - sglang/srt/mem_cache/memory_pool.py +82 -0
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/model_executor/forward_batch_info.py +44 -3
 - sglang/srt/model_executor/model_runner.py +1 -149
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +22 -12
 - sglang/srt/models/deepseek_v2.py +147 -44
 - sglang/srt/models/glm4_moe.py +322 -354
 - sglang/srt/models/glm4_moe_nextn.py +4 -14
 - sglang/srt/models/glm4v_moe.py +29 -196
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +2 -4
 - sglang/srt/multimodal/processors/base_processor.py +1 -0
 - sglang/srt/multimodal/processors/glm4v.py +1 -1
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/points_v15_chat.py +2 -2
 - sglang/srt/parser/reasoning_parser.py +28 -1
 - sglang/srt/server_args.py +365 -186
 - sglang/srt/single_batch_overlap.py +2 -7
 - sglang/srt/utils/common.py +87 -42
 - sglang/srt/utils/hf_transformers_utils.py +7 -3
 - sglang/test/test_deterministic.py +235 -12
 - sglang/test/test_deterministic_utils.py +2 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +7 -6
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +87 -82
 - sglang/srt/models/vila.py +0 -306
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -1,7 +1,7 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            from __future__ import annotations
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
3 
     | 
    
         
             
            import logging
         
     | 
| 
       4 
     | 
    
         
            -
            from typing import TYPE_CHECKING, Any, Dict,  
     | 
| 
      
 4 
     | 
    
         
            +
            from typing import TYPE_CHECKING, Any, Dict, Optional, Union
         
     | 
| 
       5 
5 
     | 
    
         | 
| 
       6 
6 
     | 
    
         
             
            import torch
         
     | 
| 
       7 
7 
     | 
    
         | 
| 
         @@ -13,29 +13,23 @@ from sglang.srt.layers.moe import ( 
     | 
|
| 
       13 
13 
     | 
    
         
             
                get_moe_runner_backend,
         
     | 
| 
       14 
14 
     | 
    
         
             
                should_use_flashinfer_trtllm_moe,
         
     | 
| 
       15 
15 
     | 
    
         
             
            )
         
     | 
| 
       16 
     | 
    
         
            -
            from sglang.srt.layers.moe.ep_moe.kernels import (
         
     | 
| 
       17 
     | 
    
         
            -
                ep_gather,
         
     | 
| 
       18 
     | 
    
         
            -
                ep_scatter,
         
     | 
| 
       19 
     | 
    
         
            -
                silu_and_mul_masked_post_quant_fwd,
         
     | 
| 
       20 
     | 
    
         
            -
                tma_align_input_scale,
         
     | 
| 
       21 
     | 
    
         
            -
            )
         
     | 
| 
       22 
16 
     | 
    
         
             
            from sglang.srt.layers.moe.fused_moe_triton.layer import FlashInferFusedMoE, FusedMoE
         
     | 
| 
      
 17 
     | 
    
         
            +
            from sglang.srt.layers.moe.token_dispatcher.deepep import (
         
     | 
| 
      
 18 
     | 
    
         
            +
                DeepEPLLCombineInput,
         
     | 
| 
      
 19 
     | 
    
         
            +
                DeepEPNormalCombineInput,
         
     | 
| 
      
 20 
     | 
    
         
            +
            )
         
     | 
| 
       23 
21 
     | 
    
         
             
            from sglang.srt.layers.moe.topk import TopKOutput
         
     | 
| 
       24 
22 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       25 
23 
     | 
    
         
             
            from sglang.srt.layers.quantization.fp8 import Fp8Config
         
     | 
| 
       26 
     | 
    
         
            -
            from sglang.srt.layers.quantization.fp8_kernel import  
     | 
| 
       27 
     | 
    
         
            -
                is_fp8_fnuz,
         
     | 
| 
       28 
     | 
    
         
            -
                sglang_per_token_group_quant_fp8,
         
     | 
| 
       29 
     | 
    
         
            -
            )
         
     | 
| 
      
 24 
     | 
    
         
            +
            from sglang.srt.layers.quantization.fp8_kernel import is_fp8_fnuz
         
     | 
| 
       30 
25 
     | 
    
         
             
            from sglang.srt.layers.quantization.w4afp8 import W4AFp8Config, W4AFp8MoEMethod
         
     | 
| 
       31 
26 
     | 
    
         
             
            from sglang.srt.single_batch_overlap import DownGemmOverlapArgs
         
     | 
| 
       32 
     | 
    
         
            -
            from sglang.srt.utils import  
     | 
| 
       33 
     | 
    
         
            -
            from sglang.srt.utils.offloader import get_offloader
         
     | 
| 
      
 27 
     | 
    
         
            +
            from sglang.srt.utils import get_bool_env_var, is_hip, is_npu
         
     | 
| 
       34 
28 
     | 
    
         | 
| 
       35 
29 
     | 
    
         
             
            if TYPE_CHECKING:
         
     | 
| 
       36 
30 
     | 
    
         
             
                from sglang.srt.layers.moe.token_dispatcher import (
         
     | 
| 
       37 
     | 
    
         
            -
                     
     | 
| 
       38 
     | 
    
         
            -
                     
     | 
| 
      
 31 
     | 
    
         
            +
                    DeepEPLLDispatchOutput,
         
     | 
| 
      
 32 
     | 
    
         
            +
                    DeepEPNormalDispatchOutput,
         
     | 
| 
       39 
33 
     | 
    
         
             
                    DispatchOutput,
         
     | 
| 
       40 
34 
     | 
    
         
             
                )
         
     | 
| 
       41 
35 
     | 
    
         | 
| 
         @@ -45,7 +39,7 @@ _is_fp8_fnuz = is_fp8_fnuz() 
     | 
|
| 
       45 
39 
     | 
    
         
             
            _use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
         
     | 
| 
       46 
40 
     | 
    
         | 
| 
       47 
41 
     | 
    
         
             
            if not (_is_npu or _is_hip):
         
     | 
| 
       48 
     | 
    
         
            -
                 
     | 
| 
      
 42 
     | 
    
         
            +
                pass
         
     | 
| 
       49 
43 
     | 
    
         | 
| 
       50 
44 
     | 
    
         
             
            if _use_aiter:
         
     | 
| 
       51 
45 
     | 
    
         
             
                from aiter import ActivationType, QuantType
         
     | 
| 
         @@ -90,6 +84,18 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       90 
84 
     | 
    
         
             
                        routed_scaling_factor=routed_scaling_factor,
         
     | 
| 
       91 
85 
     | 
    
         
             
                    )
         
     | 
| 
       92 
86 
     | 
    
         | 
| 
      
 87 
     | 
    
         
            +
                    if _use_aiter or _is_npu:
         
     | 
| 
      
 88 
     | 
    
         
            +
                        self.deprecate_flag = False
         
     | 
| 
      
 89 
     | 
    
         
            +
                    elif deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM and isinstance(
         
     | 
| 
      
 90 
     | 
    
         
            +
                        quant_config, Fp8Config
         
     | 
| 
      
 91 
     | 
    
         
            +
                    ):
         
     | 
| 
      
 92 
     | 
    
         
            +
                        self.deprecate_flag = True
         
     | 
| 
      
 93 
     | 
    
         
            +
                    else:
         
     | 
| 
      
 94 
     | 
    
         
            +
                        self.deprecate_flag = False
         
     | 
| 
      
 95 
     | 
    
         
            +
             
     | 
| 
      
 96 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 97 
     | 
    
         
            +
                        return
         
     | 
| 
      
 98 
     | 
    
         
            +
             
     | 
| 
       93 
99 
     | 
    
         
             
                    if isinstance(quant_config, Fp8Config):
         
     | 
| 
       94 
100 
     | 
    
         
             
                        self.use_block_quant = getattr(self.quant_method, "block_quant", False)
         
     | 
| 
       95 
101 
     | 
    
         
             
                        self.use_fp8_w8a8 = True
         
     | 
| 
         @@ -100,6 +106,7 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       100 
106 
     | 
    
         
             
                        self.use_fp8_w8a8 = False
         
     | 
| 
       101 
107 
     | 
    
         
             
                        self.use_block_quant = False
         
     | 
| 
       102 
108 
     | 
    
         
             
                    else:
         
     | 
| 
      
 109 
     | 
    
         
            +
                        self.use_w4afp8 = False
         
     | 
| 
       103 
110 
     | 
    
         
             
                        self.use_fp8_w8a8 = False
         
     | 
| 
       104 
111 
     | 
    
         
             
                        self.use_block_quant = False
         
     | 
| 
       105 
112 
     | 
    
         
             
                        self.use_w4afp8 = False
         
     | 
| 
         @@ -151,6 +158,14 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       151 
158 
     | 
    
         
             
                    disable_sbo=False,
         
     | 
| 
       152 
159 
     | 
    
         
             
                ):
         
     | 
| 
       153 
160 
     | 
    
         | 
| 
      
 161 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 162 
     | 
    
         
            +
                        assert forward_shared_experts is None
         
     | 
| 
      
 163 
     | 
    
         
            +
                        assert alt_stream is None
         
     | 
| 
      
 164 
     | 
    
         
            +
                        return super().forward(
         
     | 
| 
      
 165 
     | 
    
         
            +
                            hidden_states,
         
     | 
| 
      
 166 
     | 
    
         
            +
                            topk_output,
         
     | 
| 
      
 167 
     | 
    
         
            +
                        )
         
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
       154 
169 
     | 
    
         
             
                    # We have to call SBO inside MoE to be compatible with hooks used in offloading
         
     | 
| 
       155 
170 
     | 
    
         
             
                    return single_batch_overlap.execute_sbo(
         
     | 
| 
       156 
171 
     | 
    
         
             
                        hidden_states=hidden_states,
         
     | 
| 
         @@ -177,35 +192,51 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       177 
192 
     | 
    
         
             
                    dispatch_output: DispatchOutput,
         
     | 
| 
       178 
193 
     | 
    
         
             
                    down_gemm_overlap_args: Optional[DownGemmOverlapArgs] = None,
         
     | 
| 
       179 
194 
     | 
    
         
             
                ):
         
     | 
| 
      
 195 
     | 
    
         
            +
             
     | 
| 
      
 196 
     | 
    
         
            +
                    if self.deprecate_flag:
         
     | 
| 
      
 197 
     | 
    
         
            +
                        assert down_gemm_overlap_args is None
         
     | 
| 
      
 198 
     | 
    
         
            +
                        return super().run_moe_core(
         
     | 
| 
      
 199 
     | 
    
         
            +
                            dispatch_output,
         
     | 
| 
      
 200 
     | 
    
         
            +
                        )
         
     | 
| 
      
 201 
     | 
    
         
            +
             
     | 
| 
       180 
202 
     | 
    
         
             
                    from sglang.srt.layers.moe.token_dispatcher import DispatchOutputChecker
         
     | 
| 
       181 
203 
     | 
    
         | 
| 
       182 
204 
     | 
    
         
             
                    if _use_aiter:
         
     | 
| 
       183 
205 
     | 
    
         
             
                        assert DispatchOutputChecker.format_is_deepep(dispatch_output)
         
     | 
| 
       184 
206 
     | 
    
         
             
                        # in forward_aiter, we skip token permutation and unpermutation, which have been fused inside aiter kernel
         
     | 
| 
       185 
     | 
    
         
            -
                         
     | 
| 
       186 
     | 
    
         
            -
                     
     | 
| 
      
 207 
     | 
    
         
            +
                        output = self.forward_aiter(dispatch_output)
         
     | 
| 
      
 208 
     | 
    
         
            +
                    elif _is_npu:
         
     | 
| 
       187 
209 
     | 
    
         
             
                        assert DispatchOutputChecker.format_is_deepep(dispatch_output)
         
     | 
| 
       188 
     | 
    
         
            -
                         
     | 
| 
       189 
     | 
    
         
            -
                     
     | 
| 
      
 210 
     | 
    
         
            +
                        output = self.forward_npu(dispatch_output)
         
     | 
| 
      
 211 
     | 
    
         
            +
                    elif DispatchOutputChecker.format_is_deepep_normal(dispatch_output):
         
     | 
| 
       190 
212 
     | 
    
         
             
                        if self.use_w4afp8:
         
     | 
| 
       191 
     | 
    
         
            -
                             
     | 
| 
       192 
     | 
    
         
            -
                         
     | 
| 
       193 
     | 
    
         
            -
             
     | 
| 
      
 213 
     | 
    
         
            +
                            output = self.forward_cutlass_w4afp8(dispatch_output)
         
     | 
| 
      
 214 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 215 
     | 
    
         
            +
                            assert False, "forward_deepgemm_contiguous is deprecated"
         
     | 
| 
       194 
216 
     | 
    
         
             
                    elif DispatchOutputChecker.format_is_deepep_ll(dispatch_output):
         
     | 
| 
       195 
217 
     | 
    
         
             
                        if (
         
     | 
| 
       196 
218 
     | 
    
         
             
                            get_moe_runner_backend().is_flashinfer_cutedsl()
         
     | 
| 
       197 
219 
     | 
    
         
             
                            and self.quant_config.get_name() == "modelopt_fp4"
         
     | 
| 
       198 
220 
     | 
    
         
             
                        ):
         
     | 
| 
       199 
     | 
    
         
            -
                             
     | 
| 
      
 221 
     | 
    
         
            +
                            output = self.forward_flashinfer_cutedsl(
         
     | 
| 
       200 
222 
     | 
    
         
             
                                dispatch_output, down_gemm_overlap_args=down_gemm_overlap_args
         
     | 
| 
       201 
223 
     | 
    
         
             
                            )
         
     | 
| 
       202 
     | 
    
         
            -
                         
     | 
| 
       203 
     | 
    
         
            -
             
     | 
| 
       204 
     | 
    
         
            -
                         
     | 
| 
       205 
     | 
    
         
            -
             
     | 
| 
       206 
     | 
    
         
            -
             
     | 
| 
       207 
     | 
    
         
            -
             
     | 
| 
       208 
     | 
    
         
            -
                         
     | 
| 
      
 224 
     | 
    
         
            +
                        elif self.use_w4afp8:
         
     | 
| 
      
 225 
     | 
    
         
            +
                            output = self.forward_cutlass_w4afp8_masked(dispatch_output)
         
     | 
| 
      
 226 
     | 
    
         
            +
                        else:
         
     | 
| 
      
 227 
     | 
    
         
            +
                            assert False, "forward_deepgemm_masked is deprecated"
         
     | 
| 
      
 228 
     | 
    
         
            +
             
     | 
| 
      
 229 
     | 
    
         
            +
                    combine_input_wrapper = (
         
     | 
| 
      
 230 
     | 
    
         
            +
                        DeepEPNormalCombineInput
         
     | 
| 
      
 231 
     | 
    
         
            +
                        if DispatchOutputChecker.format_is_deepep_normal(dispatch_output)
         
     | 
| 
      
 232 
     | 
    
         
            +
                        else DeepEPLLCombineInput
         
     | 
| 
      
 233 
     | 
    
         
            +
                    )
         
     | 
| 
      
 234 
     | 
    
         
            +
                    return combine_input_wrapper(
         
     | 
| 
      
 235 
     | 
    
         
            +
                        hidden_states=output,
         
     | 
| 
      
 236 
     | 
    
         
            +
                        topk_ids=dispatch_output.topk_ids,
         
     | 
| 
      
 237 
     | 
    
         
            +
                        topk_weights=dispatch_output.topk_weights,
         
     | 
| 
      
 238 
     | 
    
         
            +
                        overlap_args=down_gemm_overlap_args,
         
     | 
| 
      
 239 
     | 
    
         
            +
                    )
         
     | 
| 
       209 
240 
     | 
    
         | 
| 
       210 
241 
     | 
    
         
             
                def combine(
         
     | 
| 
       211 
242 
     | 
    
         
             
                    self,
         
     | 
| 
         @@ -223,7 +254,7 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       223 
254 
     | 
    
         | 
| 
       224 
255 
     | 
    
         
             
                def forward_aiter(
         
     | 
| 
       225 
256 
     | 
    
         
             
                    self,
         
     | 
| 
       226 
     | 
    
         
            -
                    dispatch_output: Union[ 
     | 
| 
      
 257 
     | 
    
         
            +
                    dispatch_output: Union[DeepEPNormalDispatchOutput, DeepEPLLDispatchOutput],
         
     | 
| 
       227 
258 
     | 
    
         
             
                ):
         
     | 
| 
       228 
259 
     | 
    
         
             
                    hidden_states, topk_ids, topk_weights = (
         
     | 
| 
       229 
260 
     | 
    
         
             
                        dispatch_output.hidden_states,
         
     | 
| 
         @@ -255,158 +286,9 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       255 
286 
     | 
    
         
             
                        expert_mask=self.expert_mask,
         
     | 
| 
       256 
287 
     | 
    
         
             
                    )
         
     | 
| 
       257 
288 
     | 
    
         | 
| 
       258 
     | 
    
         
            -
                def forward_deepgemm_contiguous(
         
     | 
| 
       259 
     | 
    
         
            -
                    self,
         
     | 
| 
       260 
     | 
    
         
            -
                    dispatch_output: DeepEPNormalOutput,
         
     | 
| 
       261 
     | 
    
         
            -
                ):
         
     | 
| 
       262 
     | 
    
         
            -
                    (
         
     | 
| 
       263 
     | 
    
         
            -
                        hidden_states,
         
     | 
| 
       264 
     | 
    
         
            -
                        hidden_states_scale,
         
     | 
| 
       265 
     | 
    
         
            -
                        topk_ids,
         
     | 
| 
       266 
     | 
    
         
            -
                        topk_weights,
         
     | 
| 
       267 
     | 
    
         
            -
                        num_recv_tokens_per_expert,
         
     | 
| 
       268 
     | 
    
         
            -
                    ) = dispatch_output
         
     | 
| 
       269 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
       270 
     | 
    
         
            -
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       271 
     | 
    
         
            -
                    if num_recv_tokens_per_expert is None:
         
     | 
| 
       272 
     | 
    
         
            -
                        return hidden_states.bfloat16()
         
     | 
| 
       273 
     | 
    
         
            -
                    all_tokens = sum(num_recv_tokens_per_expert)
         
     | 
| 
       274 
     | 
    
         
            -
                    if all_tokens <= 0:
         
     | 
| 
       275 
     | 
    
         
            -
                        return hidden_states.bfloat16()
         
     | 
| 
       276 
     | 
    
         
            -
                    M, K = hidden_states.size()
         
     | 
| 
       277 
     | 
    
         
            -
                    N = self.w13_weight.size(1)
         
     | 
| 
       278 
     | 
    
         
            -
                    scale_block_size = 128
         
     | 
| 
       279 
     | 
    
         
            -
             
     | 
| 
       280 
     | 
    
         
            -
                    w13_weight_fp8 = (
         
     | 
| 
       281 
     | 
    
         
            -
                        self.w13_weight,
         
     | 
| 
       282 
     | 
    
         
            -
                        (
         
     | 
| 
       283 
     | 
    
         
            -
                            self.w13_weight_scale_inv
         
     | 
| 
       284 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       285 
     | 
    
         
            -
                            else self.w13_weight_scale
         
     | 
| 
       286 
     | 
    
         
            -
                        ),
         
     | 
| 
       287 
     | 
    
         
            -
                    )
         
     | 
| 
       288 
     | 
    
         
            -
                    w2_weight_fp8 = (
         
     | 
| 
       289 
     | 
    
         
            -
                        self.w2_weight,
         
     | 
| 
       290 
     | 
    
         
            -
                        (
         
     | 
| 
       291 
     | 
    
         
            -
                            self.w2_weight_scale_inv
         
     | 
| 
       292 
     | 
    
         
            -
                            if self.use_block_quant
         
     | 
| 
       293 
     | 
    
         
            -
                            else self.w2_weight_scale
         
     | 
| 
       294 
     | 
    
         
            -
                        ),
         
     | 
| 
       295 
     | 
    
         
            -
                    )
         
     | 
| 
       296 
     | 
    
         
            -
             
     | 
| 
       297 
     | 
    
         
            -
                    hidden_states_shape = hidden_states.shape
         
     | 
| 
       298 
     | 
    
         
            -
                    hidden_states_device = hidden_states.device
         
     | 
| 
       299 
     | 
    
         
            -
                    hidden_states_dtype = hidden_states.dtype
         
     | 
| 
       300 
     | 
    
         
            -
             
     | 
| 
       301 
     | 
    
         
            -
                    input_tensor = [
         
     | 
| 
       302 
     | 
    
         
            -
                        torch.empty(
         
     | 
| 
       303 
     | 
    
         
            -
                            (all_tokens, K),
         
     | 
| 
       304 
     | 
    
         
            -
                            device=hidden_states.device,
         
     | 
| 
       305 
     | 
    
         
            -
                            dtype=hidden_states.dtype,
         
     | 
| 
       306 
     | 
    
         
            -
                        ),
         
     | 
| 
       307 
     | 
    
         
            -
                        (
         
     | 
| 
       308 
     | 
    
         
            -
                            # TODO check whether need `zeros`
         
     | 
| 
       309 
     | 
    
         
            -
                            torch.zeros(
         
     | 
| 
       310 
     | 
    
         
            -
                                (ceil_div(K // 128, 4), all_tokens),
         
     | 
| 
       311 
     | 
    
         
            -
                                device=hidden_states.device,
         
     | 
| 
       312 
     | 
    
         
            -
                                dtype=torch.int,
         
     | 
| 
       313 
     | 
    
         
            -
                            ).transpose(0, 1)
         
     | 
| 
       314 
     | 
    
         
            -
                            if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
         
     | 
| 
       315 
     | 
    
         
            -
                            else torch.empty(
         
     | 
| 
       316 
     | 
    
         
            -
                                (all_tokens, K // 128),
         
     | 
| 
       317 
     | 
    
         
            -
                                device=hidden_states.device,
         
     | 
| 
       318 
     | 
    
         
            -
                                dtype=torch.float32,
         
     | 
| 
       319 
     | 
    
         
            -
                            )
         
     | 
| 
       320 
     | 
    
         
            -
                        ),
         
     | 
| 
       321 
     | 
    
         
            -
                    ]
         
     | 
| 
       322 
     | 
    
         
            -
                    m_indices = torch.empty(
         
     | 
| 
       323 
     | 
    
         
            -
                        all_tokens, device=hidden_states.device, dtype=torch.int32
         
     | 
| 
       324 
     | 
    
         
            -
                    )
         
     | 
| 
       325 
     | 
    
         
            -
                    output_index = torch.empty_like(topk_ids)
         
     | 
| 
       326 
     | 
    
         
            -
             
     | 
| 
       327 
     | 
    
         
            -
                    if get_offloader().forbid_copy_engine_usage:
         
     | 
| 
       328 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu = copy_list_to_gpu_no_ce(
         
     | 
| 
       329 
     | 
    
         
            -
                            num_recv_tokens_per_expert
         
     | 
| 
       330 
     | 
    
         
            -
                        )
         
     | 
| 
       331 
     | 
    
         
            -
                    else:
         
     | 
| 
       332 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu = torch.tensor(
         
     | 
| 
       333 
     | 
    
         
            -
                            num_recv_tokens_per_expert,
         
     | 
| 
       334 
     | 
    
         
            -
                            dtype=torch.int32,
         
     | 
| 
       335 
     | 
    
         
            -
                            pin_memory=True,
         
     | 
| 
       336 
     | 
    
         
            -
                            device="cpu",
         
     | 
| 
       337 
     | 
    
         
            -
                        ).cuda(non_blocking=True)
         
     | 
| 
       338 
     | 
    
         
            -
                    expert_start_loc = torch.empty_like(num_recv_tokens_per_expert_gpu)
         
     | 
| 
       339 
     | 
    
         
            -
             
     | 
| 
       340 
     | 
    
         
            -
                    ep_scatter(
         
     | 
| 
       341 
     | 
    
         
            -
                        hidden_states,
         
     | 
| 
       342 
     | 
    
         
            -
                        hidden_states_scale,
         
     | 
| 
       343 
     | 
    
         
            -
                        topk_ids,
         
     | 
| 
       344 
     | 
    
         
            -
                        num_recv_tokens_per_expert_gpu,
         
     | 
| 
       345 
     | 
    
         
            -
                        expert_start_loc,
         
     | 
| 
       346 
     | 
    
         
            -
                        input_tensor[0],
         
     | 
| 
       347 
     | 
    
         
            -
                        input_tensor[1],
         
     | 
| 
       348 
     | 
    
         
            -
                        m_indices,
         
     | 
| 
       349 
     | 
    
         
            -
                        output_index,
         
     | 
| 
       350 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       351 
     | 
    
         
            -
                    )
         
     | 
| 
       352 
     | 
    
         
            -
                    dispose_tensor(hidden_states)
         
     | 
| 
       353 
     | 
    
         
            -
             
     | 
| 
       354 
     | 
    
         
            -
                    gateup_output = torch.empty(
         
     | 
| 
       355 
     | 
    
         
            -
                        (all_tokens, N),
         
     | 
| 
       356 
     | 
    
         
            -
                        device=hidden_states_device,
         
     | 
| 
       357 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       358 
     | 
    
         
            -
                    )
         
     | 
| 
       359 
     | 
    
         
            -
                    if not deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
       360 
     | 
    
         
            -
                        input_tensor[1] = tma_align_input_scale(input_tensor[1])
         
     | 
| 
       361 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_contig(
         
     | 
| 
       362 
     | 
    
         
            -
                        input_tensor, w13_weight_fp8, gateup_output, m_indices
         
     | 
| 
       363 
     | 
    
         
            -
                    )
         
     | 
| 
       364 
     | 
    
         
            -
                    del input_tensor
         
     | 
| 
       365 
     | 
    
         
            -
                    down_input = torch.empty(
         
     | 
| 
       366 
     | 
    
         
            -
                        (
         
     | 
| 
       367 
     | 
    
         
            -
                            all_tokens,
         
     | 
| 
       368 
     | 
    
         
            -
                            N // 2,
         
     | 
| 
       369 
     | 
    
         
            -
                        ),
         
     | 
| 
       370 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       371 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       372 
     | 
    
         
            -
                    )
         
     | 
| 
       373 
     | 
    
         
            -
                    silu_and_mul(gateup_output.view(-1, N), down_input)
         
     | 
| 
       374 
     | 
    
         
            -
                    del gateup_output
         
     | 
| 
       375 
     | 
    
         
            -
                    down_output = torch.empty(
         
     | 
| 
       376 
     | 
    
         
            -
                        (all_tokens, K),
         
     | 
| 
       377 
     | 
    
         
            -
                        device=hidden_states_device,
         
     | 
| 
       378 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       379 
     | 
    
         
            -
                    )
         
     | 
| 
       380 
     | 
    
         
            -
                    down_input_fp8, down_input_scale = sglang_per_token_group_quant_fp8(
         
     | 
| 
       381 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       382 
     | 
    
         
            -
                        scale_block_size,
         
     | 
| 
       383 
     | 
    
         
            -
                        column_major_scales=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       384 
     | 
    
         
            -
                        scale_tma_aligned=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       385 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       386 
     | 
    
         
            -
                    )
         
     | 
| 
       387 
     | 
    
         
            -
                    del down_input
         
     | 
| 
       388 
     | 
    
         
            -
                    if not deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
         
     | 
| 
       389 
     | 
    
         
            -
                        down_input_scale = tma_align_input_scale(down_input_scale)
         
     | 
| 
       390 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_contig(
         
     | 
| 
       391 
     | 
    
         
            -
                        (down_input_fp8, down_input_scale),
         
     | 
| 
       392 
     | 
    
         
            -
                        w2_weight_fp8,
         
     | 
| 
       393 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       394 
     | 
    
         
            -
                        m_indices,
         
     | 
| 
       395 
     | 
    
         
            -
                    )
         
     | 
| 
       396 
     | 
    
         
            -
                    del down_input_fp8, down_input_scale
         
     | 
| 
       397 
     | 
    
         
            -
             
     | 
| 
       398 
     | 
    
         
            -
                    gather_out = torch.empty(
         
     | 
| 
       399 
     | 
    
         
            -
                        hidden_states_shape,
         
     | 
| 
       400 
     | 
    
         
            -
                        device=hidden_states_device,
         
     | 
| 
       401 
     | 
    
         
            -
                        dtype=torch.bfloat16,
         
     | 
| 
       402 
     | 
    
         
            -
                    )
         
     | 
| 
       403 
     | 
    
         
            -
                    ep_gather(down_output, topk_ids, topk_weights, output_index, gather_out)
         
     | 
| 
       404 
     | 
    
         
            -
             
     | 
| 
       405 
     | 
    
         
            -
                    return gather_out
         
     | 
| 
       406 
     | 
    
         
            -
             
     | 
| 
       407 
289 
     | 
    
         
             
                def forward_flashinfer_cutedsl(
         
     | 
| 
       408 
290 
     | 
    
         
             
                    self,
         
     | 
| 
       409 
     | 
    
         
            -
                    dispatch_output:  
     | 
| 
      
 291 
     | 
    
         
            +
                    dispatch_output: DeepEPLLDispatchOutput,
         
     | 
| 
       410 
292 
     | 
    
         
             
                    down_gemm_overlap_args: Optional[DownGemmOverlapArgs],
         
     | 
| 
       411 
293 
     | 
    
         
             
                ):
         
     | 
| 
       412 
294 
     | 
    
         
             
                    hidden_states, hidden_states_scale, _, _, masked_m, _ = dispatch_output
         
     | 
| 
         @@ -424,7 +306,7 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       424 
306 
     | 
    
         | 
| 
       425 
307 
     | 
    
         
             
                def forward_cutlass_w4afp8(
         
     | 
| 
       426 
308 
     | 
    
         
             
                    self,
         
     | 
| 
       427 
     | 
    
         
            -
                    dispatch_output:  
     | 
| 
      
 309 
     | 
    
         
            +
                    dispatch_output: DeepEPNormalDispatchOutput,
         
     | 
| 
       428 
310 
     | 
    
         
             
                ):
         
     | 
| 
       429 
311 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       430 
312 
     | 
    
         
             
                    assert isinstance(self.quant_method, W4AFp8MoEMethod)
         
     | 
| 
         @@ -433,89 +315,23 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       433 
315 
     | 
    
         
             
                        dispatch_output=dispatch_output,
         
     | 
| 
       434 
316 
     | 
    
         
             
                    )
         
     | 
| 
       435 
317 
     | 
    
         | 
| 
       436 
     | 
    
         
            -
                def  
     | 
| 
      
 318 
     | 
    
         
            +
                def forward_cutlass_w4afp8_masked(
         
     | 
| 
       437 
319 
     | 
    
         
             
                    self,
         
     | 
| 
       438 
     | 
    
         
            -
                    dispatch_output:  
     | 
| 
      
 320 
     | 
    
         
            +
                    dispatch_output: DeepEPLLDispatchOutput,
         
     | 
| 
       439 
321 
     | 
    
         
             
                ):
         
     | 
| 
       440 
     | 
    
         
            -
                    hidden_states, hidden_states_scale, _, _, masked_m, expected_m = dispatch_output
         
     | 
| 
       441 
     | 
    
         
            -
                    assert self.quant_method is not None
         
     | 
| 
       442 
322 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
       443 
     | 
    
         
            -
                    assert (
         
     | 
| 
       444 
     | 
    
         
            -
             
     | 
| 
       445 
     | 
    
         
            -
             
     | 
| 
       446 
     | 
    
         
            -
             
     | 
| 
       447 
     | 
    
         
            -
                     
     | 
| 
       448 
     | 
    
         
            -
             
     | 
| 
       449 
     | 
    
         
            -
             
     | 
| 
       450 
     | 
    
         
            -
                    expected_m = min(expected_m, m)
         
     | 
| 
       451 
     | 
    
         
            -
                    gateup_output = torch.empty(
         
     | 
| 
       452 
     | 
    
         
            -
                        (num_groups, m, n), device=hidden_states.device, dtype=torch.bfloat16
         
     | 
| 
       453 
     | 
    
         
            -
                    )
         
     | 
| 
       454 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       455 
     | 
    
         
            -
                        (hidden_states, hidden_states_scale),
         
     | 
| 
       456 
     | 
    
         
            -
                        self.w13_weight_fp8,
         
     | 
| 
       457 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       458 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       459 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
       460 
     | 
    
         
            -
                    )
         
     | 
| 
       461 
     | 
    
         
            -
                    dispose_tensor(hidden_states)
         
     | 
| 
       462 
     | 
    
         
            -
             
     | 
| 
       463 
     | 
    
         
            -
                    # Act
         
     | 
| 
       464 
     | 
    
         
            -
                    down_input = torch.empty(
         
     | 
| 
       465 
     | 
    
         
            -
                        (
         
     | 
| 
       466 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       467 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       468 
     | 
    
         
            -
                            gateup_output.shape[2] // 2,
         
     | 
| 
       469 
     | 
    
         
            -
                        ),
         
     | 
| 
       470 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       471 
     | 
    
         
            -
                        dtype=self.fp8_dtype,
         
     | 
| 
       472 
     | 
    
         
            -
                    )
         
     | 
| 
       473 
     | 
    
         
            -
                    scale_block_size = 128
         
     | 
| 
       474 
     | 
    
         
            -
                    down_input_scale = torch.empty(
         
     | 
| 
       475 
     | 
    
         
            -
                        (
         
     | 
| 
       476 
     | 
    
         
            -
                            gateup_output.shape[0],
         
     | 
| 
       477 
     | 
    
         
            -
                            gateup_output.shape[1],
         
     | 
| 
       478 
     | 
    
         
            -
                            gateup_output.shape[2] // 2 // scale_block_size,
         
     | 
| 
       479 
     | 
    
         
            -
                        ),
         
     | 
| 
       480 
     | 
    
         
            -
                        device=gateup_output.device,
         
     | 
| 
       481 
     | 
    
         
            -
                        dtype=torch.float32,
         
     | 
| 
       482 
     | 
    
         
            -
                    )
         
     | 
| 
       483 
     | 
    
         
            -
                    silu_and_mul_masked_post_quant_fwd(
         
     | 
| 
       484 
     | 
    
         
            -
                        gateup_output,
         
     | 
| 
       485 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       486 
     | 
    
         
            -
                        down_input_scale,
         
     | 
| 
       487 
     | 
    
         
            -
                        scale_block_size,
         
     | 
| 
       488 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       489 
     | 
    
         
            -
                        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
         
     | 
| 
       490 
     | 
    
         
            -
                    )
         
     | 
| 
       491 
     | 
    
         
            -
                    del gateup_output
         
     | 
| 
       492 
     | 
    
         
            -
             
     | 
| 
       493 
     | 
    
         
            -
                    # GroupGemm-1
         
     | 
| 
       494 
     | 
    
         
            -
                    n = self.w2_weight.size(1)
         
     | 
| 
       495 
     | 
    
         
            -
                    down_input_fp8 = (
         
     | 
| 
       496 
     | 
    
         
            -
                        down_input,
         
     | 
| 
       497 
     | 
    
         
            -
                        (
         
     | 
| 
       498 
     | 
    
         
            -
                            down_input_scale
         
     | 
| 
       499 
     | 
    
         
            -
                            if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
         
     | 
| 
       500 
     | 
    
         
            -
                            else deep_gemm_wrapper.get_mn_major_tma_aligned_tensor(down_input_scale)
         
     | 
| 
       501 
     | 
    
         
            -
                        ),
         
     | 
| 
       502 
     | 
    
         
            -
                    )
         
     | 
| 
       503 
     | 
    
         
            -
                    down_output = torch.empty(
         
     | 
| 
       504 
     | 
    
         
            -
                        (num_groups, m, n), device=down_input.device, dtype=torch.bfloat16
         
     | 
| 
       505 
     | 
    
         
            -
                    )
         
     | 
| 
       506 
     | 
    
         
            -
                    deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
         
     | 
| 
       507 
     | 
    
         
            -
                        down_input_fp8,
         
     | 
| 
       508 
     | 
    
         
            -
                        self.w2_weight_fp8,
         
     | 
| 
       509 
     | 
    
         
            -
                        down_output,
         
     | 
| 
       510 
     | 
    
         
            -
                        masked_m,
         
     | 
| 
       511 
     | 
    
         
            -
                        expected_m,
         
     | 
| 
      
 323 
     | 
    
         
            +
                    assert isinstance(self.quant_method, W4AFp8MoEMethod)
         
     | 
| 
      
 324 
     | 
    
         
            +
                    assert get_bool_env_var(
         
     | 
| 
      
 325 
     | 
    
         
            +
                        "SGLANG_DEEPEP_BF16_DISPATCH"
         
     | 
| 
      
 326 
     | 
    
         
            +
                    ), "W4AFP8 does not support FP8 dispatch; please set SGLANG_DEEPEP_BF16_DISPATCH=1."
         
     | 
| 
      
 327 
     | 
    
         
            +
                    return self.quant_method.apply_deepep_ll(
         
     | 
| 
      
 328 
     | 
    
         
            +
                        layer=self,
         
     | 
| 
      
 329 
     | 
    
         
            +
                        dispatch_output=dispatch_output,
         
     | 
| 
       512 
330 
     | 
    
         
             
                    )
         
     | 
| 
       513 
331 
     | 
    
         | 
| 
       514 
     | 
    
         
            -
                    return down_output
         
     | 
| 
       515 
     | 
    
         
            -
             
     | 
| 
       516 
332 
     | 
    
         
             
                def forward_npu(
         
     | 
| 
       517 
333 
     | 
    
         
             
                    self,
         
     | 
| 
       518 
     | 
    
         
            -
                    dispatch_output: Union[ 
     | 
| 
      
 334 
     | 
    
         
            +
                    dispatch_output: Union[DeepEPNormalDispatchOutput, DeepEPLLDispatchOutput],
         
     | 
| 
       519 
335 
     | 
    
         
             
                ):
         
     | 
| 
       520 
336 
     | 
    
         
             
                    assert self.quant_method is not None
         
     | 
| 
       521 
337 
     | 
    
         
             
                    assert self.moe_runner_config.activation == "silu"
         
     | 
| 
         @@ -528,9 +344,9 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       528 
344 
     | 
    
         
             
                    output_dtype = torch.bfloat16
         
     | 
| 
       529 
345 
     | 
    
         
             
                    group_list_type = 1
         
     | 
| 
       530 
346 
     | 
    
         | 
| 
       531 
     | 
    
         
            -
                    def _forward_normal(dispatch_output:  
     | 
| 
      
 347 
     | 
    
         
            +
                    def _forward_normal(dispatch_output: DeepEPNormalDispatchOutput):
         
     | 
| 
       532 
348 
     | 
    
         
             
                        if TYPE_CHECKING:
         
     | 
| 
       533 
     | 
    
         
            -
                            assert isinstance(dispatch_output,  
     | 
| 
      
 349 
     | 
    
         
            +
                            assert isinstance(dispatch_output, DeepEPNormalDispatchOutput)
         
     | 
| 
       534 
350 
     | 
    
         
             
                        hidden_states, hidden_states_scale, _, _, num_recv_tokens_per_expert = (
         
     | 
| 
       535 
351 
     | 
    
         
             
                            dispatch_output
         
     | 
| 
       536 
352 
     | 
    
         
             
                        )
         
     | 
| 
         @@ -600,9 +416,9 @@ class DeepEPMoE(FusedMoE): 
     | 
|
| 
       600 
416 
     | 
    
         | 
| 
       601 
417 
     | 
    
         
             
                        return hidden_states
         
     | 
| 
       602 
418 
     | 
    
         | 
| 
       603 
     | 
    
         
            -
                    def _forward_ll(dispatch_output:  
     | 
| 
      
 419 
     | 
    
         
            +
                    def _forward_ll(dispatch_output: DeepEPLLDispatchOutput):
         
     | 
| 
       604 
420 
     | 
    
         
             
                        if TYPE_CHECKING:
         
     | 
| 
       605 
     | 
    
         
            -
                            assert isinstance(dispatch_output,  
     | 
| 
      
 421 
     | 
    
         
            +
                            assert isinstance(dispatch_output, DeepEPLLDispatchOutput)
         
     | 
| 
       606 
422 
     | 
    
         
             
                        (
         
     | 
| 
       607 
423 
     | 
    
         
             
                            hidden_states,
         
     | 
| 
       608 
424 
     | 
    
         
             
                            hidden_states_scale,
         
     | 
| 
         @@ -713,12 +529,3 @@ def get_moe_impl_class(quant_config: Optional[QuantizationConfig]): 
     | 
|
| 
       713 
529 
     | 
    
         
             
                if get_moe_runner_backend().is_flashinfer_cutlass():
         
     | 
| 
       714 
530 
     | 
    
         
             
                    return FusedMoE
         
     | 
| 
       715 
531 
     | 
    
         
             
                return FusedMoE
         
     | 
| 
       716 
     | 
    
         
            -
             
     | 
| 
       717 
     | 
    
         
            -
             
     | 
| 
       718 
     | 
    
         
            -
            def copy_list_to_gpu_no_ce(arr: List[int]):
         
     | 
| 
       719 
     | 
    
         
            -
                from sgl_kernel.elementwise import copy_to_gpu_no_ce
         
     | 
| 
       720 
     | 
    
         
            -
             
     | 
| 
       721 
     | 
    
         
            -
                tensor_cpu = torch.tensor(arr, dtype=torch.int32, device="cpu")
         
     | 
| 
       722 
     | 
    
         
            -
                tensor_gpu = torch.empty_like(tensor_cpu, device="cuda")
         
     | 
| 
       723 
     | 
    
         
            -
                copy_to_gpu_no_ce(tensor_cpu, tensor_gpu)
         
     | 
| 
       724 
     | 
    
         
            -
                return tensor_gpu
         
     | 
| 
         @@ -172,7 +172,7 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       172 
172 
     | 
    
         
             
                    self.reduce_results = reduce_results
         
     | 
| 
       173 
173 
     | 
    
         
             
                    self.use_presharded_weights = use_presharded_weights
         
     | 
| 
       174 
174 
     | 
    
         | 
| 
       175 
     | 
    
         
            -
                    self.use_triton_kernels = get_moe_runner_backend(). 
     | 
| 
      
 175 
     | 
    
         
            +
                    self.use_triton_kernels = get_moe_runner_backend().is_triton_kernels()
         
     | 
| 
       176 
176 
     | 
    
         | 
| 
       177 
177 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       178 
178 
     | 
    
         
             
                    self.use_flashinfer_mxfp4_moe = get_moe_runner_backend().is_flashinfer_mxfp4()
         
     | 
| 
         @@ -232,7 +232,7 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       232 
232 
     | 
    
         
             
                        self.quant_method, ModelOptNvFp4FusedMoEMethod
         
     | 
| 
       233 
233 
     | 
    
         
             
                    ) or (
         
     | 
| 
       234 
234 
     | 
    
         
             
                        isinstance(self.quant_method, Fp8MoEMethod)
         
     | 
| 
       235 
     | 
    
         
            -
                        and self.quant_method. 
     | 
| 
      
 235 
     | 
    
         
            +
                        and self.quant_method._should_use_cutlass_fused_experts()
         
     | 
| 
       236 
236 
     | 
    
         
             
                    )
         
     | 
| 
       237 
237 
     | 
    
         | 
| 
       238 
238 
     | 
    
         
             
                def _load_per_tensor_weight_scale(
         
     | 
| 
         @@ -839,7 +839,7 @@ class FusedMoE(torch.nn.Module): 
     | 
|
| 
       839 
839 
     | 
    
         
             
                        dispatch_output=dispatch_output,
         
     | 
| 
       840 
840 
     | 
    
         
             
                        **kwargs,
         
     | 
| 
       841 
841 
     | 
    
         
             
                    )
         
     | 
| 
       842 
     | 
    
         
            -
                    final_hidden_states = self.dispatcher.combine(combine_input)
         
     | 
| 
      
 842 
     | 
    
         
            +
                    final_hidden_states = self.dispatcher.combine(combine_input=combine_input)
         
     | 
| 
       843 
843 
     | 
    
         | 
| 
       844 
844 
     | 
    
         
             
                    # TODO: should we add some conditions here?
         
     | 
| 
       845 
845 
     | 
    
         
             
                    final_hidden_states = final_hidden_states[
         
     | 
| 
         @@ -47,7 +47,7 @@ def triton_kernel_moe_forward( 
     | 
|
| 
       47 
47 
     | 
    
         | 
| 
       48 
48 
     | 
    
         
             
                from sglang.srt.layers.moe.topk import TopKOutputChecker
         
     | 
| 
       49 
49 
     | 
    
         | 
| 
       50 
     | 
    
         
            -
                assert TopKOutputChecker. 
     | 
| 
      
 50 
     | 
    
         
            +
                assert TopKOutputChecker.format_is_triton_kernels(topk_output)
         
     | 
| 
       51 
51 
     | 
    
         | 
| 
       52 
52 
     | 
    
         
             
                routing_data, gather_idx, scatter_idx = topk_output
         
     | 
| 
       53 
53 
     | 
    
         | 
| 
         @@ -172,6 +172,7 @@ def triton_kernel_moe_with_bias_forward( 
     | 
|
| 
       172 
172 
     | 
    
         
             
                b2: torch.Tensor,
         
     | 
| 
       173 
173 
     | 
    
         
             
                topk_output: TopKOutput,
         
     | 
| 
       174 
174 
     | 
    
         
             
                moe_runner_config: MoeRunnerConfig,
         
     | 
| 
      
 175 
     | 
    
         
            +
                apply_router_weight_on_input: bool = False,
         
     | 
| 
       175 
176 
     | 
    
         
             
                use_fp8_w8a8: bool = False,
         
     | 
| 
       176 
177 
     | 
    
         
             
                per_channel_quant: bool = False,
         
     | 
| 
       177 
178 
     | 
    
         
             
                global_num_experts: int = -1,
         
     | 
| 
         @@ -184,7 +185,7 @@ def triton_kernel_moe_with_bias_forward( 
     | 
|
| 
       184 
185 
     | 
    
         
             
            ) -> torch.Tensor:
         
     | 
| 
       185 
186 
     | 
    
         
             
                from sglang.srt.layers.moe.topk import TopKOutputChecker
         
     | 
| 
       186 
187 
     | 
    
         | 
| 
       187 
     | 
    
         
            -
                assert TopKOutputChecker. 
     | 
| 
      
 188 
     | 
    
         
            +
                assert TopKOutputChecker.format_is_triton_kernels(topk_output)
         
     | 
| 
       188 
189 
     | 
    
         | 
| 
       189 
190 
     | 
    
         
             
                routing_data, gather_idx, scatter_idx = topk_output
         
     | 
| 
       190 
191 
     | 
    
         | 
| 
         @@ -201,6 +202,7 @@ def triton_kernel_moe_with_bias_forward( 
     | 
|
| 
       201 
202 
     | 
    
         
             
                    scatter_indx=scatter_idx,
         
     | 
| 
       202 
203 
     | 
    
         
             
                    inplace=False,  # triton kernel doesn't support inplace
         
     | 
| 
       203 
204 
     | 
    
         
             
                    activation=moe_runner_config.activation,
         
     | 
| 
      
 205 
     | 
    
         
            +
                    apply_router_weight_on_input=apply_router_weight_on_input,
         
     | 
| 
       204 
206 
     | 
    
         
             
                    use_fp8_w8a8=use_fp8_w8a8,
         
     | 
| 
       205 
207 
     | 
    
         
             
                    per_channel_quant=per_channel_quant,
         
     | 
| 
       206 
208 
     | 
    
         
             
                    global_num_experts=global_num_experts,
         
     | 
| 
         @@ -228,6 +230,7 @@ def triton_kernel_fused_experts_with_bias( 
     | 
|
| 
       228 
230 
     | 
    
         
             
                scatter_indx: ScatterIndx,
         
     | 
| 
       229 
231 
     | 
    
         
             
                inplace: bool = False,
         
     | 
| 
       230 
232 
     | 
    
         
             
                activation: str = "silu",
         
     | 
| 
      
 233 
     | 
    
         
            +
                apply_router_weight_on_input: bool = False,
         
     | 
| 
       231 
234 
     | 
    
         
             
                use_fp8_w8a8: bool = False,
         
     | 
| 
       232 
235 
     | 
    
         
             
                per_channel_quant: bool = False,
         
     | 
| 
       233 
236 
     | 
    
         
             
                global_num_experts: int = -1,
         
     | 
| 
         @@ -296,7 +299,7 @@ def triton_kernel_fused_experts_with_bias( 
     | 
|
| 
       296 
299 
     | 
    
         
             
                    routing_data,
         
     | 
| 
       297 
300 
     | 
    
         
             
                    gather_indx=gather_indx,
         
     | 
| 
       298 
301 
     | 
    
         
             
                    precision_config=w1_pcg,
         
     | 
| 
       299 
     | 
    
         
            -
                    gammas=None,
         
     | 
| 
      
 302 
     | 
    
         
            +
                    gammas=routing_data.gate_scal if apply_router_weight_on_input else None,
         
     | 
| 
       300 
303 
     | 
    
         
             
                    fused_activation=act,
         
     | 
| 
       301 
304 
     | 
    
         
             
                )
         
     | 
| 
       302 
305 
     | 
    
         | 
| 
         @@ -307,5 +310,5 @@ def triton_kernel_fused_experts_with_bias( 
     | 
|
| 
       307 
310 
     | 
    
         
             
                    routing_data,
         
     | 
| 
       308 
311 
     | 
    
         
             
                    scatter_indx=scatter_indx,
         
     | 
| 
       309 
312 
     | 
    
         
             
                    precision_config=w2_pcg,
         
     | 
| 
       310 
     | 
    
         
            -
                    gammas=routing_data.gate_scal,
         
     | 
| 
      
 313 
     | 
    
         
            +
                    gammas=None if apply_router_weight_on_input else routing_data.gate_scal,
         
     | 
| 
       311 
314 
     | 
    
         
             
                )
         
     |