sglang 0.5.4__py3-none-any.whl → 0.5.4.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_serving.py +56 -12
 - sglang/launch_server.py +2 -0
 - sglang/srt/batch_invariant_ops/batch_invariant_ops.py +101 -4
 - sglang/srt/compilation/backend.py +1 -1
 - sglang/srt/configs/model_config.py +5 -5
 - sglang/srt/distributed/parallel_state.py +0 -7
 - sglang/srt/entrypoints/engine.py +18 -15
 - sglang/srt/entrypoints/grpc_server.py +0 -1
 - sglang/srt/entrypoints/http_server.py +75 -94
 - sglang/srt/environ.py +16 -2
 - sglang/srt/eplb/expert_distribution.py +30 -0
 - sglang/srt/function_call/function_call_parser.py +2 -0
 - sglang/srt/function_call/minimax_m2.py +367 -0
 - sglang/srt/layers/activation.py +6 -0
 - sglang/srt/layers/attention/flashattention_backend.py +12 -2
 - sglang/srt/layers/attention/flashinfer_backend.py +10 -1
 - sglang/srt/layers/attention/flashinfer_mla_backend.py +18 -10
 - sglang/srt/layers/attention/trtllm_mla_backend.py +1 -13
 - sglang/srt/layers/attention/utils.py +78 -0
 - sglang/srt/layers/communicator.py +1 -0
 - sglang/srt/layers/deep_gemm_wrapper/compile_utils.py +1 -1
 - sglang/srt/layers/layernorm.py +19 -4
 - sglang/srt/layers/logits_processor.py +5 -0
 - sglang/srt/layers/moe/cutlass_w4a8_moe.py +138 -0
 - sglang/srt/layers/moe/ep_moe/kernels.py +194 -0
 - sglang/srt/layers/moe/ep_moe/layer.py +79 -272
 - sglang/srt/layers/moe/fused_moe_triton/layer.py +3 -3
 - sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +7 -4
 - sglang/srt/layers/moe/moe_runner/deep_gemm.py +287 -22
 - sglang/srt/layers/moe/moe_runner/runner.py +3 -0
 - sglang/srt/layers/moe/moe_runner/triton_kernels.py +194 -0
 - sglang/srt/layers/moe/token_dispatcher/__init__.py +4 -4
 - sglang/srt/layers/moe/token_dispatcher/base.py +11 -5
 - sglang/srt/layers/moe/token_dispatcher/deepep.py +18 -14
 - sglang/srt/layers/moe/token_dispatcher/standard.py +1 -1
 - sglang/srt/layers/moe/topk.py +4 -4
 - sglang/srt/layers/moe/utils.py +3 -4
 - sglang/srt/layers/quantization/__init__.py +3 -5
 - sglang/srt/layers/quantization/awq.py +0 -3
 - sglang/srt/layers/quantization/base_config.py +7 -0
 - sglang/srt/layers/quantization/fp8.py +68 -63
 - sglang/srt/layers/quantization/gguf.py +566 -0
 - sglang/srt/layers/quantization/mxfp4.py +30 -38
 - sglang/srt/layers/quantization/unquant.py +23 -45
 - sglang/srt/layers/quantization/w4afp8.py +38 -2
 - sglang/srt/layers/radix_attention.py +5 -2
 - sglang/srt/layers/rotary_embedding.py +13 -1
 - sglang/srt/layers/sampler.py +12 -1
 - sglang/srt/managers/io_struct.py +3 -0
 - sglang/srt/managers/multi_tokenizer_mixin.py +17 -1
 - sglang/srt/managers/scheduler.py +21 -15
 - sglang/srt/managers/scheduler_metrics_mixin.py +22 -14
 - sglang/srt/managers/scheduler_profiler_mixin.py +3 -4
 - sglang/srt/managers/tokenizer_manager.py +11 -19
 - sglang/srt/mem_cache/hicache_storage.py +7 -1
 - sglang/srt/mem_cache/memory_pool.py +82 -0
 - sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +3 -2
 - sglang/srt/model_executor/forward_batch_info.py +44 -3
 - sglang/srt/model_executor/model_runner.py +1 -149
 - sglang/srt/model_executor/piecewise_cuda_graph_runner.py +22 -12
 - sglang/srt/models/deepseek_v2.py +147 -44
 - sglang/srt/models/glm4_moe.py +322 -354
 - sglang/srt/models/glm4_moe_nextn.py +4 -14
 - sglang/srt/models/glm4v_moe.py +29 -196
 - sglang/srt/models/minimax_m2.py +922 -0
 - sglang/srt/models/nvila.py +355 -0
 - sglang/srt/models/nvila_lite.py +184 -0
 - sglang/srt/models/qwen2.py +22 -1
 - sglang/srt/models/qwen3.py +34 -4
 - sglang/srt/models/qwen3_moe.py +2 -4
 - sglang/srt/multimodal/processors/base_processor.py +1 -0
 - sglang/srt/multimodal/processors/glm4v.py +1 -1
 - sglang/srt/multimodal/processors/{vila.py → nvila.py} +32 -24
 - sglang/srt/multimodal/processors/points_v15_chat.py +2 -2
 - sglang/srt/parser/reasoning_parser.py +28 -1
 - sglang/srt/server_args.py +365 -186
 - sglang/srt/single_batch_overlap.py +2 -7
 - sglang/srt/utils/common.py +87 -42
 - sglang/srt/utils/hf_transformers_utils.py +7 -3
 - sglang/test/test_deterministic.py +235 -12
 - sglang/test/test_deterministic_utils.py +2 -1
 - sglang/version.py +1 -1
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/METADATA +7 -6
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/RECORD +87 -82
 - sglang/srt/models/vila.py +0 -306
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/WHEEL +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/licenses/LICENSE +0 -0
 - {sglang-0.5.4.dist-info → sglang-0.5.4.post1.dist-info}/top_level.txt +0 -0
 
| 
         @@ -12,7 +12,8 @@ 
     | 
|
| 
       12 
12 
     | 
    
         
             
            # limitations under the License.
         
     | 
| 
       13 
13 
     | 
    
         
             
            # ==============================================================================
         
     | 
| 
       14 
14 
     | 
    
         | 
| 
       15 
     | 
    
         
            -
            """Inference-only GLM-4.5, GLM-4.6  
     | 
| 
      
 15 
     | 
    
         
            +
            """Inference-only GLM-4.5, GLM-4.6 Speculative Decoding."""
         
     | 
| 
      
 16 
     | 
    
         
            +
             
     | 
| 
       16 
17 
     | 
    
         
             
            import logging
         
     | 
| 
       17 
18 
     | 
    
         
             
            from typing import Iterable, Optional, Tuple
         
     | 
| 
       18 
19 
     | 
    
         | 
| 
         @@ -33,7 +34,7 @@ from sglang.srt.layers.vocab_parallel_embedding import ( 
     | 
|
| 
       33 
34 
     | 
    
         
             
            from sglang.srt.model_executor.forward_batch_info import ForwardBatch
         
     | 
| 
       34 
35 
     | 
    
         
             
            from sglang.srt.models.glm4_moe import Glm4MoeDecoderLayer, Glm4MoeForCausalLM
         
     | 
| 
       35 
36 
     | 
    
         
             
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       36 
     | 
    
         
            -
            from sglang.srt.utils import  
     | 
| 
      
 37 
     | 
    
         
            +
            from sglang.srt.utils import add_prefix
         
     | 
| 
       37 
38 
     | 
    
         | 
| 
       38 
39 
     | 
    
         
             
            logger = logging.getLogger(__name__)
         
     | 
| 
       39 
40 
     | 
    
         | 
| 
         @@ -84,14 +85,6 @@ class Glm4MoeModelNextN(nn.Module): 
     | 
|
| 
       84 
85 
     | 
    
         
             
                    forward_batch: ForwardBatch,
         
     | 
| 
       85 
86 
     | 
    
         
             
                    input_embeds: torch.Tensor = None,
         
     | 
| 
       86 
87 
     | 
    
         
             
                ) -> torch.Tensor:
         
     | 
| 
       87 
     | 
    
         
            -
                    zero_allocator = BumpAllocator(
         
     | 
| 
       88 
     | 
    
         
            -
                        buffer_size=2,
         
     | 
| 
       89 
     | 
    
         
            -
                        dtype=torch.float32,
         
     | 
| 
       90 
     | 
    
         
            -
                        device=(
         
     | 
| 
       91 
     | 
    
         
            -
                            input_embeds.device if input_embeds is not None else input_ids.device
         
     | 
| 
       92 
     | 
    
         
            -
                        ),
         
     | 
| 
       93 
     | 
    
         
            -
                    )
         
     | 
| 
       94 
     | 
    
         
            -
             
     | 
| 
       95 
88 
     | 
    
         
             
                    if input_embeds is None:
         
     | 
| 
       96 
89 
     | 
    
         
             
                        hidden_states = self.embed_tokens(input_ids)
         
     | 
| 
       97 
90 
     | 
    
         
             
                    else:
         
     | 
| 
         @@ -111,7 +104,7 @@ class Glm4MoeModelNextN(nn.Module): 
     | 
|
| 
       111 
104 
     | 
    
         
             
                    residual = None
         
     | 
| 
       112 
105 
     | 
    
         
             
                    with get_global_expert_distribution_recorder().disable_this_region():
         
     | 
| 
       113 
106 
     | 
    
         
             
                        hidden_states, residual = self.decoder(
         
     | 
| 
       114 
     | 
    
         
            -
                            positions, hidden_states, forward_batch, residual 
     | 
| 
      
 107 
     | 
    
         
            +
                            positions, hidden_states, forward_batch, residual
         
     | 
| 
       115 
108 
     | 
    
         
             
                        )
         
     | 
| 
       116 
109 
     | 
    
         | 
| 
       117 
110 
     | 
    
         
             
                    if not forward_batch.forward_mode.is_idle():
         
     | 
| 
         @@ -124,7 +117,6 @@ class Glm4MoeModelNextN(nn.Module): 
     | 
|
| 
       124 
117 
     | 
    
         | 
| 
       125 
118 
     | 
    
         | 
| 
       126 
119 
     | 
    
         
             
            class Glm4MoeForCausalLMNextN(Glm4MoeForCausalLM):
         
     | 
| 
       127 
     | 
    
         
            -
             
     | 
| 
       128 
120 
     | 
    
         
             
                def __init__(
         
     | 
| 
       129 
121 
     | 
    
         
             
                    self,
         
     | 
| 
       130 
122 
     | 
    
         
             
                    config: PretrainedConfig,
         
     | 
| 
         @@ -135,8 +127,6 @@ class Glm4MoeForCausalLMNextN(Glm4MoeForCausalLM): 
     | 
|
| 
       135 
127 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       136 
128 
     | 
    
         
             
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       137 
129 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       138 
     | 
    
         
            -
                    self.determine_num_fused_shared_experts("Glm4MoeForCausalLMNextN")
         
     | 
| 
       139 
     | 
    
         
            -
             
     | 
| 
       140 
130 
     | 
    
         
             
                    self.model = Glm4MoeModelNextN(
         
     | 
| 
       141 
131 
     | 
    
         
             
                        config, quant_config, prefix=add_prefix("model", prefix)
         
     | 
| 
       142 
132 
     | 
    
         
             
                    )
         
     | 
    
        sglang/srt/models/glm4v_moe.py
    CHANGED
    
    | 
         @@ -6,13 +6,10 @@ import torch 
     | 
|
| 
       6 
6 
     | 
    
         
             
            import torch.nn as nn
         
     | 
| 
       7 
7 
     | 
    
         
             
            from transformers.models.glm4v_moe.configuration_glm4v_moe import Glm4vMoeConfig
         
     | 
| 
       8 
8 
     | 
    
         | 
| 
       9 
     | 
    
         
            -
            from sglang.srt.distributed import  
     | 
| 
       10 
     | 
    
         
            -
                get_moe_expert_parallel_world_size,
         
     | 
| 
       11 
     | 
    
         
            -
                get_tensor_model_parallel_world_size,
         
     | 
| 
       12 
     | 
    
         
            -
            )
         
     | 
| 
      
 9 
     | 
    
         
            +
            from sglang.srt.distributed import get_tensor_model_parallel_world_size
         
     | 
| 
       13 
10 
     | 
    
         
             
            from sglang.srt.layers.attention import vision_utils
         
     | 
| 
       14 
11 
     | 
    
         
             
            from sglang.srt.layers.logits_processor import LogitsProcessor
         
     | 
| 
       15 
     | 
    
         
            -
            from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
         
     | 
| 
      
 12 
     | 
    
         
            +
            from sglang.srt.layers.moe.fused_moe_triton.layer import FusedMoE
         
     | 
| 
       16 
13 
     | 
    
         
             
            from sglang.srt.layers.pooler import Pooler, PoolingType
         
     | 
| 
       17 
14 
     | 
    
         
             
            from sglang.srt.layers.quantization.base_config import QuantizationConfig
         
     | 
| 
       18 
15 
     | 
    
         
             
            from sglang.srt.layers.vocab_parallel_embedding import ParallelLMHead
         
     | 
| 
         @@ -20,7 +17,7 @@ from sglang.srt.model_loader.weight_utils import default_weight_loader 
     | 
|
| 
       20 
17 
     | 
    
         
             
            from sglang.srt.models.glm4_moe import Glm4MoeModel
         
     | 
| 
       21 
18 
     | 
    
         
             
            from sglang.srt.models.glm4v import Glm4vForConditionalGeneration, Glm4vVisionModel
         
     | 
| 
       22 
19 
     | 
    
         
             
            from sglang.srt.server_args import get_global_server_args
         
     | 
| 
       23 
     | 
    
         
            -
            from sglang.srt.utils import add_prefix, is_cuda 
     | 
| 
      
 20 
     | 
    
         
            +
            from sglang.srt.utils import add_prefix, is_cuda
         
     | 
| 
       24 
21 
     | 
    
         
             
            from sglang.srt.utils.hf_transformers_utils import get_processor
         
     | 
| 
       25 
22 
     | 
    
         | 
| 
       26 
23 
     | 
    
         
             
            _is_cuda = is_cuda()
         
     | 
| 
         @@ -39,12 +36,10 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       39 
36 
     | 
    
         
             
                ) -> None:
         
     | 
| 
       40 
37 
     | 
    
         
             
                    nn.Module.__init__(self)
         
     | 
| 
       41 
38 
     | 
    
         | 
| 
       42 
     | 
    
         
            -
                    config.moe_layer_freq = 1
         
     | 
| 
       43 
39 
     | 
    
         
             
                    self.config = config
         
     | 
| 
       44 
40 
     | 
    
         
             
                    vision_utils.update_vit_attn_dummy_heads_config(self.config)
         
     | 
| 
       45 
41 
     | 
    
         
             
                    self.tp_size = get_tensor_model_parallel_world_size()
         
     | 
| 
       46 
42 
     | 
    
         
             
                    self.quant_config = quant_config
         
     | 
| 
       47 
     | 
    
         
            -
                    self.determine_num_fused_shared_experts("Glm4MoeForCausalLM")
         
     | 
| 
       48 
43 
     | 
    
         
             
                    self.num_fused_shared_experts = (
         
     | 
| 
       49 
44 
     | 
    
         
             
                        0
         
     | 
| 
       50 
45 
     | 
    
         
             
                        if get_global_server_args().disable_shared_experts_fusion
         
     | 
| 
         @@ -77,38 +72,7 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       77 
72 
     | 
    
         
             
                    # For EAGLE3 support
         
     | 
| 
       78 
73 
     | 
    
         
             
                    self.capture_aux_hidden_states = False
         
     | 
| 
       79 
74 
     | 
    
         | 
| 
       80 
     | 
    
         
            -
                def determine_num_fused_shared_experts(
         
     | 
| 
       81 
     | 
    
         
            -
                    self, architecture: str = "Glm4MoeForCausalLM"
         
     | 
| 
       82 
     | 
    
         
            -
                ):
         
     | 
| 
       83 
     | 
    
         
            -
                    self.num_fused_shared_experts = 0
         
     | 
| 
       84 
     | 
    
         
            -
                    if get_global_server_args().disable_shared_experts_fusion:
         
     | 
| 
       85 
     | 
    
         
            -
                        return
         
     | 
| 
       86 
     | 
    
         
            -
             
     | 
| 
       87 
     | 
    
         
            -
                    # Only Deepseek V3/R1 can use shared experts fusion optimization now.
         
     | 
| 
       88 
     | 
    
         
            -
                    disable_reason = None
         
     | 
| 
       89 
     | 
    
         
            -
                    if (
         
     | 
| 
       90 
     | 
    
         
            -
                        not _is_cuda
         
     | 
| 
       91 
     | 
    
         
            -
                        or torch.cuda.get_device_capability("cuda") < (8, 0)
         
     | 
| 
       92 
     | 
    
         
            -
                        or self.config.architectures[0] != architecture
         
     | 
| 
       93 
     | 
    
         
            -
                        or self.config.n_shared_experts != 1
         
     | 
| 
       94 
     | 
    
         
            -
                    ):
         
     | 
| 
       95 
     | 
    
         
            -
                        disable_reason = "Only GLM-4.5 on NV-platform with capability >= 80 can use shared experts fusion optimization."
         
     | 
| 
       96 
     | 
    
         
            -
                    elif get_moe_expert_parallel_world_size() > 1:
         
     | 
| 
       97 
     | 
    
         
            -
                        disable_reason = "Deepseek and GLM-4.5 can not use shared experts fusion optimization under expert parallelism."
         
     | 
| 
       98 
     | 
    
         
            -
             
     | 
| 
       99 
     | 
    
         
            -
                    if disable_reason is not None:
         
     | 
| 
       100 
     | 
    
         
            -
                        get_global_server_args().disable_shared_experts_fusion = True
         
     | 
| 
       101 
     | 
    
         
            -
                        self.num_fused_shared_experts = 0
         
     | 
| 
       102 
     | 
    
         
            -
                        log_info_on_rank0(
         
     | 
| 
       103 
     | 
    
         
            -
                            logger,
         
     | 
| 
       104 
     | 
    
         
            -
                            f"{disable_reason} Shared experts fusion optimization is disabled.",
         
     | 
| 
       105 
     | 
    
         
            -
                        )
         
     | 
| 
       106 
     | 
    
         
            -
                        return
         
     | 
| 
       107 
     | 
    
         
            -
             
     | 
| 
       108 
     | 
    
         
            -
                    self.num_fused_shared_experts = self.config.n_shared_experts
         
     | 
| 
       109 
     | 
    
         
            -
             
     | 
| 
       110 
75 
     | 
    
         
             
                def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]], is_nextn=False):
         
     | 
| 
       111 
     | 
    
         
            -
             
     | 
| 
       112 
76 
     | 
    
         
             
                    if is_nextn:
         
     | 
| 
       113 
77 
     | 
    
         
             
                        if hasattr(self.config, "num_nextn_predict_layers"):
         
     | 
| 
       114 
78 
     | 
    
         
             
                            num_nextn_layers = self.config.num_nextn_predict_layers
         
     | 
| 
         @@ -130,117 +94,14 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       130 
94 
     | 
    
         
             
                        ("gate_up_proj", "gate_proj", 0),
         
     | 
| 
       131 
95 
     | 
    
         
             
                        ("gate_up_proj", "up_proj", 1),
         
     | 
| 
       132 
96 
     | 
    
         
             
                    ]
         
     | 
| 
       133 
     | 
    
         
            -
                    if self.num_fused_shared_experts > 0:
         
     | 
| 
       134 
     | 
    
         
            -
                        assert self.num_fused_shared_experts == 1
         
     | 
| 
       135 
     | 
    
         
            -
                        weights_list = list(weights)
         
     | 
| 
       136 
     | 
    
         
            -
                        weights_dict = dict(weights_list)
         
     | 
| 
       137 
     | 
    
         
            -
                        if self.quant_config is not None:
         
     | 
| 
       138 
     | 
    
         
            -
                            if self.quant_config.get_name() == "w8a8_int8":
         
     | 
| 
       139 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       140 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       141 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       142 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       143 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       144 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       145 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       146 
     | 
    
         
            -
                                ]
         
     | 
| 
       147 
     | 
    
         
            -
                            elif (
         
     | 
| 
       148 
     | 
    
         
            -
                                self.quant_config.get_name() == "fp8"
         
     | 
| 
       149 
     | 
    
         
            -
                                or self.quant_config.get_name() == "blockwise_int8"
         
     | 
| 
       150 
     | 
    
         
            -
                                or self.quant_config.get_name() == "compressed_tensors"
         
     | 
| 
       151 
     | 
    
         
            -
                            ):
         
     | 
| 
       152 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       153 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       154 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       155 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       156 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       157 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       158 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       159 
     | 
    
         
            -
                                ]
         
     | 
| 
       160 
     | 
    
         
            -
                            elif self.quant_config.get_name() == "awq":
         
     | 
| 
       161 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       162 
     | 
    
         
            -
                                    "down_proj.qweight",
         
     | 
| 
       163 
     | 
    
         
            -
                                    "down_proj.qzeros",
         
     | 
| 
       164 
     | 
    
         
            -
                                    "down_proj.scales",
         
     | 
| 
       165 
     | 
    
         
            -
                                    "gate_proj.qweight",
         
     | 
| 
       166 
     | 
    
         
            -
                                    "gate_proj.qzeros",
         
     | 
| 
       167 
     | 
    
         
            -
                                    "gate_proj.scales",
         
     | 
| 
       168 
     | 
    
         
            -
                                    "up_proj.qweight",
         
     | 
| 
       169 
     | 
    
         
            -
                                    "up_proj.qzeros",
         
     | 
| 
       170 
     | 
    
         
            -
                                    "up_proj.scales",
         
     | 
| 
       171 
     | 
    
         
            -
                                ]
         
     | 
| 
       172 
     | 
    
         
            -
                            elif self.quant_config.get_name() == "modelopt_fp4":
         
     | 
| 
       173 
     | 
    
         
            -
                                suffix_list = [
         
     | 
| 
       174 
     | 
    
         
            -
                                    "down_proj.weight",
         
     | 
| 
       175 
     | 
    
         
            -
                                    "down_proj.weight_scale",
         
     | 
| 
       176 
     | 
    
         
            -
                                    "down_proj.weight_scale_2",
         
     | 
| 
       177 
     | 
    
         
            -
                                    "down_proj.input_scale",
         
     | 
| 
       178 
     | 
    
         
            -
                                    "gate_proj.weight",
         
     | 
| 
       179 
     | 
    
         
            -
                                    "gate_proj.weight_scale",
         
     | 
| 
       180 
     | 
    
         
            -
                                    "gate_proj.weight_scale_2",
         
     | 
| 
       181 
     | 
    
         
            -
                                    "gate_proj.input_scale",
         
     | 
| 
       182 
     | 
    
         
            -
                                    "up_proj.weight",
         
     | 
| 
       183 
     | 
    
         
            -
                                    "up_proj.weight_scale",
         
     | 
| 
       184 
     | 
    
         
            -
                                    "up_proj.weight_scale_2",
         
     | 
| 
       185 
     | 
    
         
            -
                                    "up_proj.input_scale",
         
     | 
| 
       186 
     | 
    
         
            -
                                ]
         
     | 
| 
       187 
     | 
    
         
            -
                            else:
         
     | 
| 
       188 
     | 
    
         
            -
                                raise ValueError(
         
     | 
| 
       189 
     | 
    
         
            -
                                    f"Unsupported shared expert fusion for quantization: {self.quant_config.get_name()}."
         
     | 
| 
       190 
     | 
    
         
            -
                                )
         
     | 
| 
       191 
     | 
    
         
            -
                        else:
         
     | 
| 
       192 
     | 
    
         
            -
                            suffix_list = [
         
     | 
| 
       193 
     | 
    
         
            -
                                "down_proj.weight",
         
     | 
| 
       194 
     | 
    
         
            -
                                "gate_proj.weight",
         
     | 
| 
       195 
     | 
    
         
            -
                                "up_proj.weight",
         
     | 
| 
       196 
     | 
    
         
            -
                            ]
         
     | 
| 
       197 
     | 
    
         
            -
                        names_to_remove = []
         
     | 
| 
       198 
     | 
    
         
            -
             
     | 
| 
       199 
     | 
    
         
            -
                        moe_layers = (
         
     | 
| 
       200 
     | 
    
         
            -
                            range(
         
     | 
| 
       201 
     | 
    
         
            -
                                self.config.first_k_dense_replace,
         
     | 
| 
       202 
     | 
    
         
            -
                                self.config.num_hidden_layers,
         
     | 
| 
       203 
     | 
    
         
            -
                                self.config.moe_layer_freq,
         
     | 
| 
       204 
     | 
    
         
            -
                            )
         
     | 
| 
       205 
     | 
    
         
            -
                            if not is_nextn
         
     | 
| 
       206 
     | 
    
         
            -
                            else [nextn_layer_id]
         
     | 
| 
       207 
     | 
    
         
            -
                        )
         
     | 
| 
       208 
97 
     | 
    
         | 
| 
       209 
     | 
    
         
            -
                        for moe_layer in moe_layers:
         
     | 
| 
       210 
     | 
    
         
            -
                            for suffix in suffix_list:
         
     | 
| 
       211 
     | 
    
         
            -
                                shared_expert_weight_name = (
         
     | 
| 
       212 
     | 
    
         
            -
                                    f"model.layers.{moe_layer}.mlp.shared_experts.{suffix}"
         
     | 
| 
       213 
     | 
    
         
            -
                                )
         
     | 
| 
       214 
     | 
    
         
            -
                                # online fp8 quantization does not load weight_scale
         
     | 
| 
       215 
     | 
    
         
            -
                                if shared_expert_weight_name not in weights_dict:
         
     | 
| 
       216 
     | 
    
         
            -
                                    continue
         
     | 
| 
       217 
     | 
    
         
            -
                                weights_list.append(
         
     | 
| 
       218 
     | 
    
         
            -
                                    (
         
     | 
| 
       219 
     | 
    
         
            -
                                        f"model.layers.{moe_layer}."
         
     | 
| 
       220 
     | 
    
         
            -
                                        f"mlp.experts."
         
     | 
| 
       221 
     | 
    
         
            -
                                        f"{self.config.n_routed_experts + 0}"
         
     | 
| 
       222 
     | 
    
         
            -
                                        f".{suffix}",
         
     | 
| 
       223 
     | 
    
         
            -
                                        weights_dict[shared_expert_weight_name],
         
     | 
| 
       224 
     | 
    
         
            -
                                    )
         
     | 
| 
       225 
     | 
    
         
            -
                                )
         
     | 
| 
       226 
     | 
    
         
            -
                                names_to_remove += [shared_expert_weight_name]
         
     | 
| 
       227 
     | 
    
         
            -
                        weights = [w for w in weights_list if w[0] not in names_to_remove]
         
     | 
| 
       228 
     | 
    
         
            -
             
     | 
| 
       229 
     | 
    
         
            -
                    # Params for weights, fp8 weight scales, fp8 activation scales
         
     | 
| 
       230 
     | 
    
         
            -
                    # (param_name, weight_name, expert_id, shard_id)
         
     | 
| 
       231 
98 
     | 
    
         
             
                    expert_params_mapping = FusedMoE.make_expert_params_mapping(
         
     | 
| 
       232 
99 
     | 
    
         
             
                        ckpt_gate_proj_name="gate_proj",
         
     | 
| 
       233 
100 
     | 
    
         
             
                        ckpt_down_proj_name="down_proj",
         
     | 
| 
       234 
101 
     | 
    
         
             
                        ckpt_up_proj_name="up_proj",
         
     | 
| 
       235 
     | 
    
         
            -
                        num_experts=self.config.n_routed_experts 
     | 
| 
      
 102 
     | 
    
         
            +
                        num_experts=self.config.n_routed_experts,
         
     | 
| 
       236 
103 
     | 
    
         
             
                    )
         
     | 
| 
       237 
104 
     | 
    
         | 
| 
       238 
     | 
    
         
            -
                    # Fuse q_a_proj and kv_a_proj_with_mqa along output dimension when q_lora_rank is not None
         
     | 
| 
       239 
     | 
    
         
            -
                    fuse_qkv_a_proj = hasattr(self.config, "q_lora_rank") and (
         
     | 
| 
       240 
     | 
    
         
            -
                        self.config.q_lora_rank is not None
         
     | 
| 
       241 
     | 
    
         
            -
                    )
         
     | 
| 
       242 
     | 
    
         
            -
                    cached_a_proj = {} if fuse_qkv_a_proj else None
         
     | 
| 
       243 
     | 
    
         
            -
             
     | 
| 
       244 
105 
     | 
    
         
             
                    if is_nextn:
         
     | 
| 
       245 
106 
     | 
    
         
             
                        nextn_layer_prefix = f"model.layers.{nextn_layer_id}"
         
     | 
| 
       246 
107 
     | 
    
         
             
                        nextn_spec_weight_names = [
         
     | 
| 
         @@ -300,23 +161,36 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       300 
161 
     | 
    
         
             
                            # name will be updated to mlp.experts[0].gate_up_proj, which
         
     | 
| 
       301 
162 
     | 
    
         
             
                            # will then be updated below in expert_params_mapping
         
     | 
| 
       302 
163 
     | 
    
         
             
                            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
         
     | 
| 
       303 
     | 
    
         
            -
                            if  
     | 
| 
      
 164 
     | 
    
         
            +
                            if "mlp.experts" in name:
         
     | 
| 
       304 
165 
     | 
    
         
             
                                continue
         
     | 
| 
       305 
166 
     | 
    
         
             
                            name = name.replace(weight_name, param_name)
         
     | 
| 
       306 
167 
     | 
    
         
             
                            # Skip loading extra bias for GPTQ models.
         
     | 
| 
       307 
168 
     | 
    
         
             
                            if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
       308 
169 
     | 
    
         
             
                                continue
         
     | 
| 
       309 
     | 
    
         
            -
                             
     | 
| 
      
 170 
     | 
    
         
            +
                            if name not in params_dict:
         
     | 
| 
      
 171 
     | 
    
         
            +
                                continue
         
     | 
| 
       310 
172 
     | 
    
         | 
| 
      
 173 
     | 
    
         
            +
                            param = params_dict[name]
         
     | 
| 
       311 
174 
     | 
    
         
             
                            weight_loader = param.weight_loader
         
     | 
| 
       312 
175 
     | 
    
         
             
                            weight_loader(param, loaded_weight, shard_id)
         
     | 
| 
       313 
176 
     | 
    
         
             
                            break
         
     | 
| 
       314 
177 
     | 
    
         
             
                        else:
         
     | 
| 
      
 178 
     | 
    
         
            +
                            # Track if this is an expert weight to enable early skipping
         
     | 
| 
      
 179 
     | 
    
         
            +
                            is_expert_weight = False
         
     | 
| 
      
 180 
     | 
    
         
            +
             
     | 
| 
       315 
181 
     | 
    
         
             
                            for mapping in expert_params_mapping:
         
     | 
| 
       316 
182 
     | 
    
         
             
                                param_name, weight_name, expert_id, shard_id = mapping
         
     | 
| 
       317 
183 
     | 
    
         
             
                                if weight_name not in name:
         
     | 
| 
       318 
184 
     | 
    
         
             
                                    continue
         
     | 
| 
      
 185 
     | 
    
         
            +
             
     | 
| 
      
 186 
     | 
    
         
            +
                                # Mark as expert weight regardless of whether we can process it
         
     | 
| 
      
 187 
     | 
    
         
            +
                                is_expert_weight = True
         
     | 
| 
      
 188 
     | 
    
         
            +
             
     | 
| 
       319 
189 
     | 
    
         
             
                                name = name.replace(weight_name, param_name)
         
     | 
| 
      
 190 
     | 
    
         
            +
                                if name not in params_dict:
         
     | 
| 
      
 191 
     | 
    
         
            +
                                    # Expert weight not on this rank, will be skipped below
         
     | 
| 
      
 192 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 193 
     | 
    
         
            +
             
     | 
| 
       320 
194 
     | 
    
         
             
                                param = params_dict[name]
         
     | 
| 
       321 
195 
     | 
    
         
             
                                weight_loader = param.weight_loader
         
     | 
| 
       322 
196 
     | 
    
         
             
                                weight_loader(
         
     | 
| 
         @@ -328,64 +202,21 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       328 
202 
     | 
    
         
             
                                )
         
     | 
| 
       329 
203 
     | 
    
         
             
                                break
         
     | 
| 
       330 
204 
     | 
    
         
             
                            else:
         
     | 
| 
      
 205 
     | 
    
         
            +
                                if is_expert_weight:
         
     | 
| 
      
 206 
     | 
    
         
            +
                                    # This is an expert weight but not mapped to this rank, skip all remaining processing
         
     | 
| 
      
 207 
     | 
    
         
            +
                                    continue
         
     | 
| 
      
 208 
     | 
    
         
            +
             
     | 
| 
       331 
209 
     | 
    
         
             
                                if "visual" in name:
         
     | 
| 
       332 
     | 
    
         
            -
                                    # adapt to VisionAttention
         
     | 
| 
      
 210 
     | 
    
         
            +
                                    # adapt to VisionAttention for GLM-V
         
     | 
| 
       333 
211 
     | 
    
         
             
                                    name = name.replace(r"attn.qkv.", r"attn.qkv_proj.")
         
     | 
| 
       334 
212 
     | 
    
         | 
| 
       335 
213 
     | 
    
         
             
                                # Skip loading extra bias for GPTQ models.
         
     | 
| 
       336 
214 
     | 
    
         
             
                                if name.endswith(".bias") and name not in params_dict:
         
     | 
| 
       337 
215 
     | 
    
         
             
                                    continue
         
     | 
| 
       338 
     | 
    
         
            -
                                if  
     | 
| 
       339 
     | 
    
         
            -
                                     
     | 
| 
       340 
     | 
    
         
            -
                                ):
         
     | 
| 
       341 
     | 
    
         
            -
                                    cached_a_proj[name] = loaded_weight
         
     | 
| 
       342 
     | 
    
         
            -
                                    q_a_proj_name = (
         
     | 
| 
       343 
     | 
    
         
            -
                                        name
         
     | 
| 
       344 
     | 
    
         
            -
                                        if "q_a_proj" in name
         
     | 
| 
       345 
     | 
    
         
            -
                                        else name.replace("kv_a_proj_with_mqa", "q_a_proj")
         
     | 
| 
       346 
     | 
    
         
            -
                                    )
         
     | 
| 
       347 
     | 
    
         
            -
                                    kv_a_proj_name = (
         
     | 
| 
       348 
     | 
    
         
            -
                                        name
         
     | 
| 
       349 
     | 
    
         
            -
                                        if "kv_a_proj_with_mqa" in name
         
     | 
| 
       350 
     | 
    
         
            -
                                        else name.replace("q_a_proj", "kv_a_proj_with_mqa")
         
     | 
| 
       351 
     | 
    
         
            -
                                    )
         
     | 
| 
       352 
     | 
    
         
            -
             
     | 
| 
       353 
     | 
    
         
            -
                                    # When both q_a_proj and kv_a_proj_with_mqa has been cached, load the fused weight to parameter
         
     | 
| 
       354 
     | 
    
         
            -
                                    if (
         
     | 
| 
       355 
     | 
    
         
            -
                                        q_a_proj_name in cached_a_proj
         
     | 
| 
       356 
     | 
    
         
            -
                                        and kv_a_proj_name in cached_a_proj
         
     | 
| 
       357 
     | 
    
         
            -
                                    ):
         
     | 
| 
       358 
     | 
    
         
            -
                                        q_a_proj_weight = cached_a_proj[q_a_proj_name]
         
     | 
| 
       359 
     | 
    
         
            -
                                        kv_a_proj_weight = cached_a_proj[kv_a_proj_name]
         
     | 
| 
       360 
     | 
    
         
            -
                                        fused_weight = torch.cat(
         
     | 
| 
       361 
     | 
    
         
            -
                                            [q_a_proj_weight, kv_a_proj_weight], dim=0
         
     | 
| 
       362 
     | 
    
         
            -
                                        )
         
     | 
| 
       363 
     | 
    
         
            -
                                        param_name = (
         
     | 
| 
       364 
     | 
    
         
            -
                                            name.replace("q_a_proj", "fused_qkv_a_proj_with_mqa")
         
     | 
| 
       365 
     | 
    
         
            -
                                            if "q_a_proj" in name
         
     | 
| 
       366 
     | 
    
         
            -
                                            else name.replace(
         
     | 
| 
       367 
     | 
    
         
            -
                                                "kv_a_proj_with_mqa", "fused_qkv_a_proj_with_mqa"
         
     | 
| 
       368 
     | 
    
         
            -
                                            )
         
     | 
| 
       369 
     | 
    
         
            -
                                        )
         
     | 
| 
       370 
     | 
    
         
            -
                                        param = params_dict[param_name]
         
     | 
| 
      
 216 
     | 
    
         
            +
                                if name not in params_dict:
         
     | 
| 
      
 217 
     | 
    
         
            +
                                    continue
         
     | 
| 
       371 
218 
     | 
    
         | 
| 
       372 
     | 
    
         
            -
             
     | 
| 
       373 
     | 
    
         
            -
                                            param, "weight_loader", default_weight_loader
         
     | 
| 
       374 
     | 
    
         
            -
                                        )
         
     | 
| 
       375 
     | 
    
         
            -
                                        weight_loader(param, fused_weight)
         
     | 
| 
       376 
     | 
    
         
            -
                                        cached_a_proj.pop(q_a_proj_name)
         
     | 
| 
       377 
     | 
    
         
            -
                                        cached_a_proj.pop(kv_a_proj_name)
         
     | 
| 
       378 
     | 
    
         
            -
                                else:
         
     | 
| 
       379 
     | 
    
         
            -
                                    if (
         
     | 
| 
       380 
     | 
    
         
            -
                                        "k_scale" in name or "v_scale" in name
         
     | 
| 
       381 
     | 
    
         
            -
                                    ) and name not in params_dict:
         
     | 
| 
       382 
     | 
    
         
            -
                                        # modelopt attn kv scale is named differently
         
     | 
| 
       383 
     | 
    
         
            -
                                        if any(scale in name for scale in ["k_scale", "v_scale"]):
         
     | 
| 
       384 
     | 
    
         
            -
                                            name = name.replace("_proj", "attn_mqa")
         
     | 
| 
       385 
     | 
    
         
            -
                                        else:
         
     | 
| 
       386 
     | 
    
         
            -
                                            logger.warning(
         
     | 
| 
       387 
     | 
    
         
            -
                                                f"Unknown scale found in checkpoint: {name}"
         
     | 
| 
       388 
     | 
    
         
            -
                                            )
         
     | 
| 
      
 219 
     | 
    
         
            +
                                if name in params_dict.keys():
         
     | 
| 
       389 
220 
     | 
    
         
             
                                    param = params_dict[name]
         
     | 
| 
       390 
221 
     | 
    
         
             
                                    weight_loader = getattr(
         
     | 
| 
       391 
222 
     | 
    
         
             
                                        param, "weight_loader", default_weight_loader
         
     | 
| 
         @@ -395,6 +226,8 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration): 
     | 
|
| 
       395 
226 
     | 
    
         
             
                                            self.config, name, loaded_weight
         
     | 
| 
       396 
227 
     | 
    
         
             
                                        )
         
     | 
| 
       397 
228 
     | 
    
         
             
                                    weight_loader(param, loaded_weight)
         
     | 
| 
      
 229 
     | 
    
         
            +
                                else:
         
     | 
| 
      
 230 
     | 
    
         
            +
                                    logger.warning(f"Parameter {name} not found in params_dict")
         
     | 
| 
       398 
231 
     | 
    
         | 
| 
       399 
232 
     | 
    
         | 
| 
       400 
233 
     | 
    
         
             
            EntryClass = [Glm4vMoeForConditionalGeneration]
         
     |