sglang 0.5.3__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +0 -2
- sglang/bench_serving.py +224 -127
- sglang/compile_deep_gemm.py +3 -0
- sglang/launch_server.py +0 -14
- sglang/srt/configs/__init__.py +2 -0
- sglang/srt/configs/falcon_h1.py +12 -58
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +68 -31
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/qwen3_next.py +11 -43
- sglang/srt/disaggregation/decode.py +7 -18
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
- sglang/srt/disaggregation/nixl/conn.py +55 -23
- sglang/srt/disaggregation/prefill.py +17 -32
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/entrypoints/grpc_request_manager.py +10 -23
- sglang/srt/entrypoints/grpc_server.py +220 -80
- sglang/srt/entrypoints/http_server.py +49 -1
- sglang/srt/entrypoints/openai/protocol.py +159 -31
- sglang/srt/entrypoints/openai/serving_chat.py +13 -71
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +4 -0
- sglang/srt/function_call/function_call_parser.py +8 -6
- sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +64 -6
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +88 -0
- sglang/srt/layers/attention/attention_registry.py +31 -22
- sglang/srt/layers/attention/fla/layernorm_gated.py +47 -30
- sglang/srt/layers/attention/flashattention_backend.py +0 -1
- sglang/srt/layers/attention/flashinfer_backend.py +223 -6
- sglang/srt/layers/attention/flashinfer_mla_backend.py +1 -1
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -59
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -4
- sglang/srt/layers/attention/mamba/mamba.py +189 -241
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
- sglang/srt/layers/attention/triton_backend.py +1 -1
- sglang/srt/layers/logits_processor.py +136 -6
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +18 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +31 -452
- sglang/srt/layers/moe/ep_moe/layer.py +8 -286
- sglang/srt/layers/moe/fused_moe_triton/layer.py +6 -11
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/utils.py +7 -1
- sglang/srt/layers/quantization/__init__.py +1 -1
- sglang/srt/layers/quantization/fp8.py +84 -18
- sglang/srt/layers/quantization/modelopt_quant.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/w4afp8.py +2 -16
- sglang/srt/lora/lora_manager.py +0 -8
- sglang/srt/managers/overlap_utils.py +18 -16
- sglang/srt/managers/schedule_batch.py +119 -90
- sglang/srt/managers/schedule_policy.py +1 -1
- sglang/srt/managers/scheduler.py +213 -126
- sglang/srt/managers/scheduler_metrics_mixin.py +1 -1
- sglang/srt/managers/scheduler_output_processor_mixin.py +180 -86
- sglang/srt/managers/tokenizer_manager.py +270 -53
- sglang/srt/managers/tp_worker.py +39 -28
- sglang/srt/mem_cache/allocator.py +7 -2
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +162 -68
- sglang/srt/mem_cache/radix_cache.py +8 -3
- sglang/srt/mem_cache/swa_radix_cache.py +70 -14
- sglang/srt/model_executor/cuda_graph_runner.py +1 -1
- sglang/srt/model_executor/forward_batch_info.py +4 -18
- sglang/srt/model_executor/model_runner.py +55 -51
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +187 -6
- sglang/srt/model_loader/weight_utils.py +3 -0
- sglang/srt/models/falcon_h1.py +11 -9
- sglang/srt/models/gemma3_mm.py +16 -0
- sglang/srt/models/grok.py +5 -13
- sglang/srt/models/mixtral.py +1 -3
- sglang/srt/models/mllama4.py +11 -1
- sglang/srt/models/nemotron_h.py +514 -0
- sglang/srt/models/utils.py +5 -1
- sglang/srt/sampling/sampling_batch_info.py +11 -9
- sglang/srt/server_args.py +100 -33
- sglang/srt/speculative/eagle_worker.py +11 -13
- sglang/srt/speculative/ngram_worker.py +12 -11
- sglang/srt/speculative/spec_utils.py +0 -1
- sglang/srt/two_batch_overlap.py +1 -0
- sglang/srt/utils/common.py +18 -0
- sglang/srt/utils/hf_transformers_utils.py +2 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +40 -0
- sglang/test/simple_eval_longbench_v2.py +332 -0
- sglang/test/test_cutlass_w4a8_moe.py +9 -19
- sglang/test/test_deterministic.py +18 -2
- sglang/test/test_deterministic_utils.py +81 -0
- sglang/test/test_disaggregation_utils.py +63 -0
- sglang/test/test_utils.py +32 -11
- sglang/version.py +1 -1
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +4 -4
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +109 -98
- sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
sglang/test/test_block_fp8_ep.py
DELETED
@@ -1,358 +0,0 @@
|
|
1
|
-
import itertools
|
2
|
-
import random
|
3
|
-
import unittest
|
4
|
-
from typing import Any, Callable, Dict, List, Optional, Tuple
|
5
|
-
|
6
|
-
import torch
|
7
|
-
|
8
|
-
from sglang.srt.layers.moe.ep_moe.kernels import (
|
9
|
-
grouped_gemm_triton,
|
10
|
-
post_reorder_triton_kernel,
|
11
|
-
pre_reorder_triton_kernel,
|
12
|
-
run_moe_ep_preproess,
|
13
|
-
silu_and_mul_triton_kernel,
|
14
|
-
)
|
15
|
-
from sglang.srt.layers.moe.topk import TopKConfig, select_experts
|
16
|
-
from sglang.test.test_utils import CustomTestCase
|
17
|
-
|
18
|
-
|
19
|
-
# For test
|
20
|
-
def ep_moe(
|
21
|
-
hidden_states: torch.Tensor,
|
22
|
-
w1: torch.Tensor,
|
23
|
-
w2: torch.Tensor,
|
24
|
-
router_logits: torch.Tensor,
|
25
|
-
topk_config: TopKConfig,
|
26
|
-
# ep config
|
27
|
-
num_experts: int = 256,
|
28
|
-
fp8_dtype: torch.types = torch.float8_e4m3fn,
|
29
|
-
num_experts_per_partition: int = 128,
|
30
|
-
start_expert_id: int = 0,
|
31
|
-
end_expert_id: int = 127,
|
32
|
-
use_fp8_w8a8: bool = False,
|
33
|
-
w1_scale_inv: Optional[torch.Tensor] = None,
|
34
|
-
w2_scale_inv: Optional[torch.Tensor] = None,
|
35
|
-
block_shape: Optional[List[int]] = None,
|
36
|
-
):
|
37
|
-
use_blockwise_fp8 = block_shape is not None
|
38
|
-
top_k = topk_config.top_k
|
39
|
-
topk_output = select_experts(
|
40
|
-
hidden_states=hidden_states,
|
41
|
-
router_logits=router_logits,
|
42
|
-
topk_config=topk_config,
|
43
|
-
)
|
44
|
-
topk_weights, topk_ids, _ = topk_output
|
45
|
-
|
46
|
-
reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(topk_ids, num_experts)
|
47
|
-
|
48
|
-
gateup_input = torch.empty(
|
49
|
-
(int(hidden_states.shape[0] * top_k), hidden_states.shape[1]),
|
50
|
-
device=hidden_states.device,
|
51
|
-
dtype=(
|
52
|
-
fp8_dtype
|
53
|
-
if (use_fp8_w8a8 and not use_blockwise_fp8)
|
54
|
-
else hidden_states.dtype
|
55
|
-
),
|
56
|
-
)
|
57
|
-
|
58
|
-
if use_fp8_w8a8 and not use_blockwise_fp8:
|
59
|
-
max_value = (
|
60
|
-
torch.max(hidden_states).repeat(num_experts_per_partition).to(torch.float32)
|
61
|
-
)
|
62
|
-
w1_input_scale = max_value / torch.finfo(fp8_dtype).max
|
63
|
-
else:
|
64
|
-
w1_input_scale = None
|
65
|
-
|
66
|
-
# PreReorder
|
67
|
-
pre_reorder_triton_kernel[(hidden_states.shape[0],)](
|
68
|
-
hidden_states,
|
69
|
-
gateup_input,
|
70
|
-
src2dst,
|
71
|
-
topk_ids,
|
72
|
-
w1_input_scale,
|
73
|
-
start_expert_id,
|
74
|
-
end_expert_id,
|
75
|
-
top_k,
|
76
|
-
hidden_states.shape[1],
|
77
|
-
BLOCK_SIZE=512,
|
78
|
-
use_per_token_if_dynamic=True,
|
79
|
-
)
|
80
|
-
|
81
|
-
seg_indptr_cur_rank = seg_indptr[start_expert_id : end_expert_id + 2]
|
82
|
-
weight_indices_cur_rank = torch.arange(
|
83
|
-
0,
|
84
|
-
num_experts_per_partition,
|
85
|
-
device=hidden_states.device,
|
86
|
-
dtype=torch.int64,
|
87
|
-
)
|
88
|
-
|
89
|
-
# GroupGemm-0
|
90
|
-
gateup_output = torch.empty(
|
91
|
-
gateup_input.shape[0],
|
92
|
-
w1.shape[1],
|
93
|
-
device=hidden_states.device,
|
94
|
-
dtype=hidden_states.dtype,
|
95
|
-
)
|
96
|
-
|
97
|
-
gateup_output = grouped_gemm_triton(
|
98
|
-
a=gateup_input,
|
99
|
-
b=w1,
|
100
|
-
c=gateup_output,
|
101
|
-
batch_size=num_experts_per_partition,
|
102
|
-
weight_column_major=True,
|
103
|
-
seg_indptr=seg_indptr_cur_rank,
|
104
|
-
weight_indices=weight_indices_cur_rank,
|
105
|
-
use_fp8_w8a8=use_fp8_w8a8,
|
106
|
-
scale_a=w1_input_scale,
|
107
|
-
scale_b=w1_scale_inv,
|
108
|
-
block_shape=block_shape,
|
109
|
-
)
|
110
|
-
|
111
|
-
# Act
|
112
|
-
down_input = torch.empty(
|
113
|
-
gateup_output.shape[0],
|
114
|
-
gateup_output.shape[1] // 2,
|
115
|
-
device=gateup_output.device,
|
116
|
-
dtype=(
|
117
|
-
fp8_dtype
|
118
|
-
if (use_fp8_w8a8 and not use_blockwise_fp8)
|
119
|
-
else hidden_states.dtype
|
120
|
-
),
|
121
|
-
)
|
122
|
-
if use_fp8_w8a8 and not use_blockwise_fp8:
|
123
|
-
w2_input_scale = torch.ones(
|
124
|
-
num_experts_per_partition,
|
125
|
-
dtype=torch.float32,
|
126
|
-
device=hidden_states.device,
|
127
|
-
)
|
128
|
-
else:
|
129
|
-
w2_input_scale = None
|
130
|
-
|
131
|
-
silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
|
132
|
-
gateup_output,
|
133
|
-
down_input,
|
134
|
-
gateup_output.shape[1],
|
135
|
-
reorder_topk_ids,
|
136
|
-
w2_input_scale,
|
137
|
-
start_expert_id,
|
138
|
-
end_expert_id,
|
139
|
-
BLOCK_SIZE=512,
|
140
|
-
)
|
141
|
-
|
142
|
-
# GroupGemm-1
|
143
|
-
down_output = torch.empty(
|
144
|
-
down_input.shape[0],
|
145
|
-
w2.shape[1],
|
146
|
-
device=hidden_states.device,
|
147
|
-
dtype=hidden_states.dtype,
|
148
|
-
)
|
149
|
-
|
150
|
-
down_output = grouped_gemm_triton(
|
151
|
-
a=down_input,
|
152
|
-
b=w2,
|
153
|
-
c=down_output,
|
154
|
-
batch_size=num_experts_per_partition,
|
155
|
-
weight_column_major=True,
|
156
|
-
seg_indptr=seg_indptr_cur_rank,
|
157
|
-
weight_indices=weight_indices_cur_rank,
|
158
|
-
use_fp8_w8a8=use_fp8_w8a8,
|
159
|
-
scale_a=w2_input_scale,
|
160
|
-
scale_b=w2_scale_inv,
|
161
|
-
block_shape=block_shape,
|
162
|
-
)
|
163
|
-
|
164
|
-
# PostReorder
|
165
|
-
output = torch.empty_like(hidden_states)
|
166
|
-
post_reorder_triton_kernel[(hidden_states.size(0),)](
|
167
|
-
down_output,
|
168
|
-
output,
|
169
|
-
src2dst,
|
170
|
-
topk_ids,
|
171
|
-
topk_weights,
|
172
|
-
start_expert_id,
|
173
|
-
end_expert_id,
|
174
|
-
top_k,
|
175
|
-
hidden_states.size(1),
|
176
|
-
0,
|
177
|
-
BLOCK_SIZE=512,
|
178
|
-
)
|
179
|
-
return output
|
180
|
-
|
181
|
-
|
182
|
-
# test util
|
183
|
-
def block_dequant(
|
184
|
-
x_q_block: torch.Tensor,
|
185
|
-
x_s: torch.Tensor,
|
186
|
-
block_size: List[int],
|
187
|
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
188
|
-
"""This function converts block-wise quantization to tensor-wise quantization.
|
189
|
-
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
|
190
|
-
and the block size.
|
191
|
-
The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
|
192
|
-
Note only float8 is supported for now.
|
193
|
-
"""
|
194
|
-
|
195
|
-
# process 3D tensor
|
196
|
-
if x_q_block.dim() == 3:
|
197
|
-
batch_size = x_q_block.size(0)
|
198
|
-
return torch.stack(
|
199
|
-
[block_dequant(x_q_block[b], x_s[b], block_size) for b in range(batch_size)]
|
200
|
-
)
|
201
|
-
|
202
|
-
block_n, block_k = block_size[0], block_size[1]
|
203
|
-
n, k = x_q_block.shape
|
204
|
-
n_tiles = (n + block_n - 1) // block_n
|
205
|
-
k_tiles = (k + block_k - 1) // block_k
|
206
|
-
assert n_tiles == x_s.shape[0]
|
207
|
-
assert k_tiles == x_s.shape[1]
|
208
|
-
|
209
|
-
x_dq_block = x_q_block.to(torch.float32)
|
210
|
-
|
211
|
-
x_dq_block_tiles = [
|
212
|
-
[
|
213
|
-
x_dq_block[
|
214
|
-
j * block_n : min((j + 1) * block_n, n),
|
215
|
-
i * block_k : min((i + 1) * block_k, k),
|
216
|
-
]
|
217
|
-
for i in range(k_tiles)
|
218
|
-
]
|
219
|
-
for j in range(n_tiles)
|
220
|
-
]
|
221
|
-
|
222
|
-
for i in range(k_tiles):
|
223
|
-
for j in range(n_tiles):
|
224
|
-
x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
|
225
|
-
|
226
|
-
return x_dq_block
|
227
|
-
|
228
|
-
|
229
|
-
class TestW8A8BlockFP8EPMoE(CustomTestCase):
|
230
|
-
DTYPES = [torch.half, torch.bfloat16]
|
231
|
-
M = [1, 222, 1024, 2048]
|
232
|
-
N = [128, 1024, 2048]
|
233
|
-
K = [256, 4096, 5120]
|
234
|
-
E = [8, 16]
|
235
|
-
ep_size = [2, 4]
|
236
|
-
TOP_KS = [2, 4]
|
237
|
-
BLOCK_SIZE = [[128, 128]]
|
238
|
-
SEEDS = [0]
|
239
|
-
|
240
|
-
@classmethod
|
241
|
-
def setUpClass(cls):
|
242
|
-
if not torch.cuda.is_available():
|
243
|
-
raise unittest.SkipTest("CUDA is not available")
|
244
|
-
torch.set_default_device("cuda")
|
245
|
-
|
246
|
-
def _w8a8_block_fp8_ep_moe(
|
247
|
-
self, M, N, K, E, ep_size, topk, block_size, dtype, seed
|
248
|
-
):
|
249
|
-
torch.manual_seed(seed)
|
250
|
-
random.seed(seed)
|
251
|
-
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
|
252
|
-
factor_for_scale = 1e-2
|
253
|
-
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
254
|
-
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
255
|
-
|
256
|
-
a = torch.randn((M, K), dtype=dtype) / 10
|
257
|
-
|
258
|
-
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=dtype) - 0.5) * 2 * fp8_max
|
259
|
-
w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
260
|
-
|
261
|
-
w2_fp32 = (torch.rand((E, K, N), dtype=dtype) - 0.5) * 2 * fp8_max
|
262
|
-
w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
263
|
-
|
264
|
-
block_n, block_k = block_size[0], block_size[1]
|
265
|
-
n_tiles_w1 = (2 * N + block_n - 1) // block_n
|
266
|
-
n_tiles_w2 = (K + block_n - 1) // block_n
|
267
|
-
k_tiles_w1 = (K + block_k - 1) // block_k
|
268
|
-
k_tiles_w2 = (N + block_k - 1) // block_k
|
269
|
-
|
270
|
-
w1_s = (
|
271
|
-
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
|
272
|
-
* factor_for_scale
|
273
|
-
)
|
274
|
-
w2_s = (
|
275
|
-
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
|
276
|
-
* factor_for_scale
|
277
|
-
)
|
278
|
-
|
279
|
-
w1_ref = block_dequant(w1, w1_s, block_size).to(dtype)
|
280
|
-
w2_ref = block_dequant(w2, w2_s, block_size).to(dtype)
|
281
|
-
|
282
|
-
score = torch.randn((M, E), dtype=dtype)
|
283
|
-
num_experts_per_partition = E // ep_size
|
284
|
-
cur_rank = random.randint(0, ep_size - 1)
|
285
|
-
start_id = cur_rank * num_experts_per_partition
|
286
|
-
end_id = start_id + num_experts_per_partition - 1
|
287
|
-
|
288
|
-
topk_config = TopKConfig(
|
289
|
-
top_k=topk,
|
290
|
-
renormalize=False,
|
291
|
-
)
|
292
|
-
|
293
|
-
with torch.inference_mode():
|
294
|
-
out = ep_moe(
|
295
|
-
hidden_states=a,
|
296
|
-
w1=w1,
|
297
|
-
w2=w2,
|
298
|
-
router_logits=score,
|
299
|
-
topk_config=topk_config,
|
300
|
-
use_fp8_w8a8=True,
|
301
|
-
w1_scale_inv=w1_s,
|
302
|
-
w2_scale_inv=w2_s,
|
303
|
-
block_shape=block_size,
|
304
|
-
num_experts=E,
|
305
|
-
num_experts_per_partition=num_experts_per_partition,
|
306
|
-
start_expert_id=start_id,
|
307
|
-
end_expert_id=end_id,
|
308
|
-
)
|
309
|
-
ref_out = ep_moe(
|
310
|
-
hidden_states=a,
|
311
|
-
w1=w1_ref,
|
312
|
-
w2=w2_ref,
|
313
|
-
router_logits=score,
|
314
|
-
topk_config=topk_config,
|
315
|
-
use_fp8_w8a8=False,
|
316
|
-
w1_scale_inv=None,
|
317
|
-
w2_scale_inv=None,
|
318
|
-
block_shape=None,
|
319
|
-
num_experts=E,
|
320
|
-
num_experts_per_partition=num_experts_per_partition,
|
321
|
-
start_expert_id=start_id,
|
322
|
-
end_expert_id=end_id,
|
323
|
-
)
|
324
|
-
self.assertTrue(
|
325
|
-
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
|
326
|
-
/ (torch.mean(torch.abs(ref_out.to(torch.float32))) + 1e-6)
|
327
|
-
< 0.06
|
328
|
-
)
|
329
|
-
|
330
|
-
def test_w8a8_block_fp8_ep_moe(self):
|
331
|
-
for params in itertools.product(
|
332
|
-
self.M,
|
333
|
-
self.N,
|
334
|
-
self.K,
|
335
|
-
self.E,
|
336
|
-
self.ep_size,
|
337
|
-
self.TOP_KS,
|
338
|
-
self.BLOCK_SIZE,
|
339
|
-
self.DTYPES,
|
340
|
-
self.SEEDS,
|
341
|
-
):
|
342
|
-
with self.subTest(
|
343
|
-
M=params[0],
|
344
|
-
N=params[1],
|
345
|
-
K=params[2],
|
346
|
-
E=params[3],
|
347
|
-
ep_size=params[4],
|
348
|
-
topk=params[5],
|
349
|
-
block_size=params[6],
|
350
|
-
dtype=params[7],
|
351
|
-
seed=params[8],
|
352
|
-
):
|
353
|
-
self._w8a8_block_fp8_ep_moe(*params)
|
354
|
-
torch.cuda.empty_cache()
|
355
|
-
|
356
|
-
|
357
|
-
if __name__ == "__main__":
|
358
|
-
unittest.main(verbosity=2)
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|