sglang 0.5.3__py3-none-any.whl → 0.5.3.post1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch.py +0 -2
- sglang/bench_serving.py +224 -127
- sglang/compile_deep_gemm.py +3 -0
- sglang/launch_server.py +0 -14
- sglang/srt/configs/__init__.py +2 -0
- sglang/srt/configs/falcon_h1.py +12 -58
- sglang/srt/configs/mamba_utils.py +117 -0
- sglang/srt/configs/model_config.py +68 -31
- sglang/srt/configs/nemotron_h.py +286 -0
- sglang/srt/configs/qwen3_next.py +11 -43
- sglang/srt/disaggregation/decode.py +7 -18
- sglang/srt/disaggregation/decode_kvcache_offload_manager.py +1 -1
- sglang/srt/disaggregation/nixl/conn.py +55 -23
- sglang/srt/disaggregation/prefill.py +17 -32
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/entrypoints/grpc_request_manager.py +10 -23
- sglang/srt/entrypoints/grpc_server.py +220 -80
- sglang/srt/entrypoints/http_server.py +49 -1
- sglang/srt/entrypoints/openai/protocol.py +159 -31
- sglang/srt/entrypoints/openai/serving_chat.py +13 -71
- sglang/srt/entrypoints/openai/serving_tokenize.py +144 -0
- sglang/srt/environ.py +4 -0
- sglang/srt/function_call/function_call_parser.py +8 -6
- sglang/srt/grpc/sglang_scheduler_pb2.py +78 -70
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +64 -6
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +88 -0
- sglang/srt/layers/attention/attention_registry.py +31 -22
- sglang/srt/layers/attention/fla/layernorm_gated.py +47 -30
- sglang/srt/layers/attention/flashattention_backend.py +0 -1
- sglang/srt/layers/attention/flashinfer_backend.py +223 -6
- sglang/srt/layers/attention/flashinfer_mla_backend.py +1 -1
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +165 -59
- sglang/srt/layers/attention/mamba/causal_conv1d.py +1 -1
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +9 -4
- sglang/srt/layers/attention/mamba/mamba.py +189 -241
- sglang/srt/layers/attention/mamba/mamba2_metadata.py +211 -0
- sglang/srt/layers/attention/mamba/mixer2_rms_norm_gated.py +120 -0
- sglang/srt/layers/attention/mamba/ops/ssd_bmm.py +0 -50
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_scan.py +0 -60
- sglang/srt/layers/attention/mamba/ops/ssd_chunk_state.py +0 -111
- sglang/srt/layers/attention/mamba/ops/ssd_state_passing.py +0 -11
- sglang/srt/layers/attention/triton_backend.py +1 -1
- sglang/srt/layers/logits_processor.py +136 -6
- sglang/srt/layers/modelopt_utils.py +11 -0
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +18 -21
- sglang/srt/layers/moe/ep_moe/kernels.py +31 -452
- sglang/srt/layers/moe/ep_moe/layer.py +8 -286
- sglang/srt/layers/moe/fused_moe_triton/layer.py +6 -11
- sglang/srt/layers/moe/moe_runner/deep_gemm.py +304 -0
- sglang/srt/layers/moe/moe_runner/runner.py +3 -0
- sglang/srt/layers/moe/utils.py +7 -1
- sglang/srt/layers/quantization/__init__.py +1 -1
- sglang/srt/layers/quantization/fp8.py +84 -18
- sglang/srt/layers/quantization/modelopt_quant.py +1 -1
- sglang/srt/layers/quantization/quark/quark.py +3 -1
- sglang/srt/layers/quantization/w4afp8.py +2 -16
- sglang/srt/lora/lora_manager.py +0 -8
- sglang/srt/managers/overlap_utils.py +18 -16
- sglang/srt/managers/schedule_batch.py +119 -90
- sglang/srt/managers/schedule_policy.py +1 -1
- sglang/srt/managers/scheduler.py +213 -126
- sglang/srt/managers/scheduler_metrics_mixin.py +1 -1
- sglang/srt/managers/scheduler_output_processor_mixin.py +180 -86
- sglang/srt/managers/tokenizer_manager.py +270 -53
- sglang/srt/managers/tp_worker.py +39 -28
- sglang/srt/mem_cache/allocator.py +7 -2
- sglang/srt/mem_cache/chunk_cache.py +1 -1
- sglang/srt/mem_cache/memory_pool.py +162 -68
- sglang/srt/mem_cache/radix_cache.py +8 -3
- sglang/srt/mem_cache/swa_radix_cache.py +70 -14
- sglang/srt/model_executor/cuda_graph_runner.py +1 -1
- sglang/srt/model_executor/forward_batch_info.py +4 -18
- sglang/srt/model_executor/model_runner.py +55 -51
- sglang/srt/model_loader/__init__.py +1 -1
- sglang/srt/model_loader/loader.py +187 -6
- sglang/srt/model_loader/weight_utils.py +3 -0
- sglang/srt/models/falcon_h1.py +11 -9
- sglang/srt/models/gemma3_mm.py +16 -0
- sglang/srt/models/grok.py +5 -13
- sglang/srt/models/mixtral.py +1 -3
- sglang/srt/models/mllama4.py +11 -1
- sglang/srt/models/nemotron_h.py +514 -0
- sglang/srt/models/utils.py +5 -1
- sglang/srt/sampling/sampling_batch_info.py +11 -9
- sglang/srt/server_args.py +100 -33
- sglang/srt/speculative/eagle_worker.py +11 -13
- sglang/srt/speculative/ngram_worker.py +12 -11
- sglang/srt/speculative/spec_utils.py +0 -1
- sglang/srt/two_batch_overlap.py +1 -0
- sglang/srt/utils/common.py +18 -0
- sglang/srt/utils/hf_transformers_utils.py +2 -0
- sglang/test/longbench_v2/__init__.py +1 -0
- sglang/test/longbench_v2/test_longbench_v2_eval.py +238 -0
- sglang/test/longbench_v2/validate_longbench_v2.py +337 -0
- sglang/test/longbench_v2/validate_longbench_v2_standalone.py +306 -0
- sglang/test/run_eval.py +40 -0
- sglang/test/simple_eval_longbench_v2.py +332 -0
- sglang/test/test_cutlass_w4a8_moe.py +9 -19
- sglang/test/test_deterministic.py +18 -2
- sglang/test/test_deterministic_utils.py +81 -0
- sglang/test/test_disaggregation_utils.py +63 -0
- sglang/test/test_utils.py +32 -11
- sglang/version.py +1 -1
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/METADATA +4 -4
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/RECORD +109 -98
- sglang/srt/layers/attention/mamba/mamba_utils.py +0 -81
- sglang/srt/managers/tp_worker_overlap_thread.py +0 -311
- sglang/test/test_block_fp8_ep.py +0 -358
- /sglang/srt/speculative/{ngram_utils.py → ngram_info.py} +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/WHEEL +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.3.dist-info → sglang-0.5.3.post1.dist-info}/top_level.txt +0 -0
sglang/srt/configs/falcon_h1.py
CHANGED
@@ -15,16 +15,12 @@
|
|
15
15
|
"""Falcon-H1 model configuration"""
|
16
16
|
|
17
17
|
import enum
|
18
|
-
import os
|
19
18
|
|
20
|
-
import numpy as np
|
21
|
-
import torch
|
22
19
|
from transformers.configuration_utils import PretrainedConfig
|
23
20
|
from transformers.modeling_rope_utils import rope_config_validation
|
24
21
|
from transformers.utils import logging
|
25
22
|
|
26
|
-
from sglang.srt.
|
27
|
-
from sglang.srt.layers.attention.mamba.mamba_utils import MambaStateShapeCalculator
|
23
|
+
from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
|
28
24
|
from sglang.srt.layers.dp_attention import (
|
29
25
|
get_attention_tp_size,
|
30
26
|
get_tensor_model_parallel_world_size,
|
@@ -214,7 +210,7 @@ class FalconH1Config(PretrainedConfig):
|
|
214
210
|
self.rope_scaling = None
|
215
211
|
self.rope_scaling = rope_scaling
|
216
212
|
self.projectors_bias = projectors_bias
|
217
|
-
mamba_intermediate = (
|
213
|
+
self.mamba_intermediate = mamba_intermediate = (
|
218
214
|
mamba_expand * hidden_size if mamba_d_ssm is None else mamba_d_ssm
|
219
215
|
)
|
220
216
|
|
@@ -294,18 +290,6 @@ class FalconH1Config(PretrainedConfig):
|
|
294
290
|
def layers_block_type(self):
|
295
291
|
return ["falcon_h1" for i in range(self.num_hidden_layers)]
|
296
292
|
|
297
|
-
@property
|
298
|
-
def mamba_cache_per_req(self):
|
299
|
-
conv_state_shape, temporal_state_shape, conv_dtype, ssm_dtype, mamba_layers = (
|
300
|
-
self.hybrid_gdn_params
|
301
|
-
)
|
302
|
-
mamba_layers_len = len(mamba_layers)
|
303
|
-
|
304
|
-
return (
|
305
|
-
int(np.prod(conv_state_shape)) * conv_dtype.itemsize
|
306
|
-
+ int(np.prod(temporal_state_shape)) * ssm_dtype.itemsize
|
307
|
-
) * mamba_layers_len
|
308
|
-
|
309
293
|
@property
|
310
294
|
def full_attention_layer_ids(self):
|
311
295
|
# For Falcon-H1, we do have attention on all layers
|
@@ -317,44 +301,14 @@ class FalconH1Config(PretrainedConfig):
|
|
317
301
|
return range(self.num_hidden_layers)
|
318
302
|
|
319
303
|
@property
|
320
|
-
def
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
self.mamba_n_groups, world_size
|
330
|
-
)
|
331
|
-
n_groups += extra_groups
|
332
|
-
|
333
|
-
conv_dim = self.mamba_d_ssm + 2 * n_groups * self.mamba_d_state
|
334
|
-
|
335
|
-
conv_state_shape = (
|
336
|
-
divide(conv_dim, world_size),
|
337
|
-
self.mamba_d_conv - 1,
|
338
|
-
)
|
339
|
-
|
340
|
-
# we TP-ize on the heads dimension
|
341
|
-
temporal_state_shape = (
|
342
|
-
self.mamba_d_state,
|
343
|
-
self.mamba_d_head,
|
344
|
-
divide(self.mamba_n_heads, world_size),
|
345
|
-
)
|
346
|
-
conv_dtype = torch.bfloat16
|
347
|
-
dtype_map = {
|
348
|
-
"float32": torch.float32,
|
349
|
-
"bfloat16": torch.bfloat16,
|
350
|
-
}
|
351
|
-
ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
|
352
|
-
mamba_layers = self.linear_layer_ids
|
353
|
-
|
354
|
-
return (
|
355
|
-
conv_state_shape,
|
356
|
-
temporal_state_shape,
|
357
|
-
conv_dtype,
|
358
|
-
ssm_dtype,
|
359
|
-
mamba_layers,
|
304
|
+
def mamba2_cache_params(self):
|
305
|
+
shape = Mamba2StateShape.create(
|
306
|
+
tp_world_size=get_tensor_model_parallel_world_size(),
|
307
|
+
intermediate_size=self.mamba_intermediate,
|
308
|
+
n_groups=self.mamba_n_groups,
|
309
|
+
num_heads=self.mamba_n_heads,
|
310
|
+
head_dim=self.mamba_d_head,
|
311
|
+
state_size=self.mamba_d_state,
|
312
|
+
conv_kernel=self.mamba_d_conv,
|
360
313
|
)
|
314
|
+
return Mamba2CacheParams(shape=shape, layers=self.linear_layer_ids)
|
@@ -0,0 +1,117 @@
|
|
1
|
+
# Copyright 2025 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
"""Common config utils for mamba2 - NemotronH, FalconH1, Qwen3Next, etc."""
|
14
|
+
|
15
|
+
import os
|
16
|
+
from dataclasses import dataclass, field
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
import torch
|
20
|
+
|
21
|
+
from sglang.srt.distributed.utils import divide
|
22
|
+
|
23
|
+
|
24
|
+
def extra_groups_for_head_shards(ngroups: int, tp_size: int):
|
25
|
+
"""Compute the increase in group numbers to account for
|
26
|
+
replication in order to accompany the head shards."""
|
27
|
+
|
28
|
+
# in the case ngoups % tp_size == 0, this will be zero
|
29
|
+
if ngroups % tp_size == 0:
|
30
|
+
return 0
|
31
|
+
|
32
|
+
# for n_groups == 1, this is exactly tp_size - n_groups
|
33
|
+
return tp_size - ngroups
|
34
|
+
|
35
|
+
|
36
|
+
@dataclass(kw_only=True, frozen=True)
|
37
|
+
class Mamba2StateShape:
|
38
|
+
conv: tuple[int, int]
|
39
|
+
temporal: tuple[int, int, int]
|
40
|
+
|
41
|
+
intermediate_size: int
|
42
|
+
conv_dim: int
|
43
|
+
ssm_state_size: int
|
44
|
+
num_heads: int
|
45
|
+
head_dim: int
|
46
|
+
state_size: int
|
47
|
+
conv_kernel: int
|
48
|
+
|
49
|
+
@staticmethod
|
50
|
+
def create(
|
51
|
+
*,
|
52
|
+
tp_world_size: int,
|
53
|
+
intermediate_size: int,
|
54
|
+
n_groups: int,
|
55
|
+
num_heads: int,
|
56
|
+
head_dim: int,
|
57
|
+
state_size: int,
|
58
|
+
conv_kernel: int,
|
59
|
+
) -> "Mamba2StateShape":
|
60
|
+
# if n_groups is not divisible by world_size, need to extend the shards
|
61
|
+
# to ensure all groups needed by a head is sharded along with it
|
62
|
+
if n_groups % tp_world_size != 0:
|
63
|
+
extra_groups = extra_groups_for_head_shards(n_groups, tp_world_size)
|
64
|
+
n_groups += extra_groups
|
65
|
+
# heads and n_groups are TP-ed
|
66
|
+
conv_dim = intermediate_size + 2 * n_groups * state_size
|
67
|
+
|
68
|
+
# contiguous along 'dim' axis
|
69
|
+
conv_state_shape = divide(conv_dim, tp_world_size), conv_kernel - 1
|
70
|
+
|
71
|
+
# These are not TP-ed as they depend on A, dt_bias, D
|
72
|
+
# - they are typically small
|
73
|
+
# e.g., (h_heads, head_dim, state_size) = (128, 64, 128)
|
74
|
+
temporal_state_shape = (divide(num_heads, tp_world_size), head_dim, state_size)
|
75
|
+
return Mamba2StateShape(
|
76
|
+
conv=conv_state_shape,
|
77
|
+
temporal=temporal_state_shape,
|
78
|
+
intermediate_size=intermediate_size,
|
79
|
+
conv_dim=conv_dim,
|
80
|
+
ssm_state_size=state_size,
|
81
|
+
num_heads=num_heads,
|
82
|
+
head_dim=head_dim,
|
83
|
+
state_size=state_size,
|
84
|
+
conv_kernel=conv_kernel,
|
85
|
+
)
|
86
|
+
|
87
|
+
|
88
|
+
@dataclass(kw_only=True, frozen=True)
|
89
|
+
class Mamba2StateDType:
|
90
|
+
conv: torch.dtype
|
91
|
+
temporal: torch.dtype
|
92
|
+
|
93
|
+
|
94
|
+
CONV_DTYPE = torch.bfloat16
|
95
|
+
|
96
|
+
|
97
|
+
def mamba2_state_dtype() -> Mamba2StateDType:
|
98
|
+
dtype_map = {
|
99
|
+
"float32": torch.float32,
|
100
|
+
"bfloat16": torch.bfloat16,
|
101
|
+
}
|
102
|
+
ssm_dtype = dtype_map[os.environ["SGLANG_MAMBA_SSM_DTYPE"]]
|
103
|
+
return Mamba2StateDType(conv=CONV_DTYPE, temporal=ssm_dtype)
|
104
|
+
|
105
|
+
|
106
|
+
@dataclass(kw_only=True, frozen=True)
|
107
|
+
class Mamba2CacheParams:
|
108
|
+
shape: Mamba2StateShape
|
109
|
+
dtype: Mamba2StateDType = field(default_factory=mamba2_state_dtype)
|
110
|
+
layers: list[int]
|
111
|
+
|
112
|
+
@property
|
113
|
+
def mamba_cache_per_req(self) -> int:
|
114
|
+
return (
|
115
|
+
int(np.prod(self.shape.conv)) * self.dtype.conv.itemsize
|
116
|
+
+ int(np.prod(self.shape.temporal)) * self.dtype.temporal.itemsize
|
117
|
+
) * len(self.layers)
|
@@ -17,7 +17,7 @@ import logging
|
|
17
17
|
import math
|
18
18
|
import os
|
19
19
|
from enum import Enum, IntEnum, auto
|
20
|
-
from typing import List, Optional, Set, Union
|
20
|
+
from typing import Any, Dict, List, Optional, Set, Union
|
21
21
|
|
22
22
|
import torch
|
23
23
|
from transformers import PretrainedConfig
|
@@ -85,17 +85,21 @@ class ModelConfig:
|
|
85
85
|
enable_multimodal: Optional[bool] = None,
|
86
86
|
dtype: str = "auto",
|
87
87
|
quantization: Optional[str] = None,
|
88
|
+
modelopt_quant: Optional[Union[str, Dict]] = None,
|
88
89
|
override_config_file: Optional[str] = None,
|
89
90
|
is_draft_model: bool = False,
|
90
91
|
hybrid_kvcache_ratio: Optional[float] = None,
|
91
92
|
model_impl: Union[str, ModelImpl] = ModelImpl.AUTO,
|
93
|
+
sampling_defaults: str = "openai",
|
92
94
|
) -> None:
|
93
95
|
# Parse args
|
94
96
|
self.model_path = model_path
|
95
97
|
self.revision = revision
|
96
98
|
self.quantization = quantization
|
99
|
+
self.modelopt_quant = modelopt_quant
|
97
100
|
self.is_draft_model = is_draft_model
|
98
101
|
self.model_impl = model_impl
|
102
|
+
self.sampling_defaults = sampling_defaults
|
99
103
|
|
100
104
|
# Get hf config
|
101
105
|
self._maybe_pull_model_tokenizer_from_remote()
|
@@ -209,8 +213,10 @@ class ModelConfig:
|
|
209
213
|
enable_multimodal=server_args.enable_multimodal,
|
210
214
|
dtype=server_args.dtype,
|
211
215
|
quantization=server_args.quantization,
|
216
|
+
modelopt_quant=server_args.modelopt_quant,
|
212
217
|
hybrid_kvcache_ratio=server_args.hybrid_kvcache_ratio,
|
213
218
|
model_impl=server_args.model_impl,
|
219
|
+
sampling_defaults=server_args.sampling_defaults,
|
214
220
|
**kwargs,
|
215
221
|
)
|
216
222
|
|
@@ -477,54 +483,52 @@ class ModelConfig:
|
|
477
483
|
# example: https://huggingface.co/nvidia/Llama-3.1-8B-Instruct-FP8/tree/main
|
478
484
|
# example: https://huggingface.co/Barrrrry/DeepSeek-R1-W4AFP8/tree/main
|
479
485
|
is_local = os.path.exists(self.model_path)
|
480
|
-
modelopt_quant_config = {"quant_method": "modelopt"}
|
481
486
|
if not is_local:
|
482
487
|
import huggingface_hub
|
483
488
|
|
484
489
|
try:
|
485
|
-
from huggingface_hub import HfApi
|
490
|
+
from huggingface_hub import HfApi, hf_hub_download
|
486
491
|
|
487
492
|
hf_api = HfApi()
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
self.model_path,
|
493
|
+
if hf_api.file_exists(self.model_path, "hf_quant_config.json"):
|
494
|
+
# Download and parse the quantization config for remote models
|
495
|
+
quant_config_file = hf_hub_download(
|
496
|
+
repo_id=self.model_path,
|
497
|
+
filename="hf_quant_config.json",
|
498
|
+
revision=self.revision,
|
492
499
|
)
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
check_hf_quant_config,
|
497
|
-
max_retry=2,
|
498
|
-
initial_delay=1.0,
|
499
|
-
max_delay=5.0,
|
500
|
-
)
|
501
|
-
|
502
|
-
if file_exists:
|
503
|
-
quant_cfg = modelopt_quant_config
|
504
|
-
|
500
|
+
with open(quant_config_file) as f:
|
501
|
+
quant_config_dict = json.load(f)
|
502
|
+
quant_cfg = self._parse_modelopt_quant_config(quant_config_dict)
|
505
503
|
except huggingface_hub.errors.OfflineModeIsEnabled:
|
506
504
|
logger.warning(
|
507
505
|
"Offline mode is enabled, skipping hf_quant_config.json check"
|
508
506
|
)
|
509
|
-
|
510
|
-
logger.warning(
|
511
|
-
f"Failed to check hf_quant_config.json: {self.model_path} {e}"
|
512
|
-
)
|
513
|
-
|
507
|
+
pass
|
514
508
|
elif os.path.exists(os.path.join(self.model_path, "hf_quant_config.json")):
|
515
509
|
quant_config_file = os.path.join(
|
516
510
|
self.model_path, "hf_quant_config.json"
|
517
511
|
)
|
518
512
|
with open(quant_config_file) as f:
|
519
513
|
quant_config_dict = json.load(f)
|
520
|
-
|
521
|
-
quant_algo = json_quant_configs.get("quant_algo", None)
|
522
|
-
if quant_algo == "MIXED_PRECISION":
|
523
|
-
quant_cfg = {"quant_method": "w4afp8"}
|
524
|
-
else:
|
525
|
-
quant_cfg = modelopt_quant_config
|
514
|
+
quant_cfg = self._parse_modelopt_quant_config(quant_config_dict)
|
526
515
|
return quant_cfg
|
527
516
|
|
517
|
+
def _parse_modelopt_quant_config(self, quant_config_dict: dict) -> dict:
|
518
|
+
"""Parse ModelOpt quantization config and return the appropriate quant_method."""
|
519
|
+
json_quant_configs = quant_config_dict["quantization"]
|
520
|
+
quant_algo = json_quant_configs.get("quant_algo", None)
|
521
|
+
|
522
|
+
if quant_algo == "MIXED_PRECISION":
|
523
|
+
return {"quant_method": "w4afp8"}
|
524
|
+
elif quant_algo and ("FP4" in quant_algo or "NVFP4" in quant_algo):
|
525
|
+
return {"quant_method": "modelopt_fp4"}
|
526
|
+
elif quant_algo and "FP8" in quant_algo:
|
527
|
+
return {"quant_method": "modelopt_fp8"}
|
528
|
+
else:
|
529
|
+
# Default to FP8 for backward compatibility
|
530
|
+
return {"quant_method": "modelopt_fp8"}
|
531
|
+
|
528
532
|
# adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/config.py
|
529
533
|
def _verify_quantization(self) -> None:
|
530
534
|
supported_quantization = [*QUANTIZATION_METHODS]
|
@@ -543,7 +547,8 @@ class ModelConfig:
|
|
543
547
|
optimized_quantization_methods = [
|
544
548
|
"fp8",
|
545
549
|
"marlin",
|
546
|
-
"
|
550
|
+
"modelopt_fp8",
|
551
|
+
"modelopt_fp4",
|
547
552
|
"gptq_marlin_24",
|
548
553
|
"gptq_marlin",
|
549
554
|
"awq_marlin",
|
@@ -657,6 +662,38 @@ class ModelConfig:
|
|
657
662
|
eos_ids = eos_ids | generation_eos_ids
|
658
663
|
return eos_ids
|
659
664
|
|
665
|
+
def get_default_sampling_params(self) -> dict[str, Any]:
|
666
|
+
"""
|
667
|
+
Get default sampling parameters from the model's generation config.
|
668
|
+
|
669
|
+
This method returns non-default sampling parameters from the model's
|
670
|
+
generation_config.json when sampling_defaults is set to "model".
|
671
|
+
|
672
|
+
Returns:
|
673
|
+
A dictionary containing the non-default sampling parameters.
|
674
|
+
"""
|
675
|
+
if self.sampling_defaults != "model":
|
676
|
+
return {}
|
677
|
+
|
678
|
+
if self.hf_generation_config is None:
|
679
|
+
return {}
|
680
|
+
|
681
|
+
config = self.hf_generation_config.to_dict()
|
682
|
+
|
683
|
+
available_params = [
|
684
|
+
"repetition_penalty",
|
685
|
+
"temperature",
|
686
|
+
"top_k",
|
687
|
+
"top_p",
|
688
|
+
"min_p",
|
689
|
+
]
|
690
|
+
|
691
|
+
default_sampling_params = {
|
692
|
+
p: config.get(p) for p in available_params if config.get(p) is not None
|
693
|
+
}
|
694
|
+
|
695
|
+
return default_sampling_params
|
696
|
+
|
660
697
|
def _maybe_pull_model_tokenizer_from_remote(self) -> None:
|
661
698
|
"""
|
662
699
|
Pull the model config files to a temporary
|
@@ -0,0 +1,286 @@
|
|
1
|
+
# Copyright 2025 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
# ==============================================================================
|
14
|
+
# Adapted from https://github.com/vllm-project/vllm/blob/main/vllm/transformers_utils/configs/nemotron_h.py
|
15
|
+
|
16
|
+
"""NemotronH model configuration"""
|
17
|
+
|
18
|
+
import regex as re
|
19
|
+
from transformers.configuration_utils import PretrainedConfig
|
20
|
+
from transformers.utils import logging
|
21
|
+
|
22
|
+
from sglang.srt.configs.mamba_utils import Mamba2CacheParams, Mamba2StateShape
|
23
|
+
from sglang.srt.layers.dp_attention import get_attention_tp_size
|
24
|
+
|
25
|
+
logger = logging.get_logger(__name__)
|
26
|
+
|
27
|
+
MAMBA = "M"
|
28
|
+
ATTENTION = "*"
|
29
|
+
MLP = "-"
|
30
|
+
|
31
|
+
|
32
|
+
class NemotronHConfig(PretrainedConfig):
|
33
|
+
r"""
|
34
|
+
This is the configuration class to store the configuration of a
|
35
|
+
[`NemotronHModel`]. It is used to instantiate a NemotronH model according
|
36
|
+
to the specified arguments, defining the model architecture. Instantiating
|
37
|
+
a configuration with the defaults will yield a similar configuration to
|
38
|
+
that of the NemotronH-v0.1 model.
|
39
|
+
Args:
|
40
|
+
vocab_size (`int`, *optional*, defaults to 131072):
|
41
|
+
Vocabulary size of the NemotronH model. Defines the number of
|
42
|
+
different tokens that can be represented by the `inputs_ids`
|
43
|
+
passed when calling [`NemotronHModel`]
|
44
|
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
45
|
+
Whether the model's input and output word embeddings should be
|
46
|
+
tied. Note that this is only relevant if the model has an output
|
47
|
+
word embedding layer.
|
48
|
+
hidden_size (`int`, *optional*, defaults to 4096):
|
49
|
+
Dimension of the hidden representations.
|
50
|
+
intermediate_size (`int`, *optional*, defaults to 21504):
|
51
|
+
Dimension of the MLP representations.
|
52
|
+
num_hidden_layers (`int`, *optional*, defaults to 52):
|
53
|
+
Number of hidden layers in the Transformer encoder.
|
54
|
+
hybrid_override_pattern (`str`, *optional*, defaults to
|
55
|
+
`"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
|
56
|
+
The pattern of the hybrid model. The pattern is a string of
|
57
|
+
characters where each character represents
|
58
|
+
M: Mamba2, *: Attention, -: MLP
|
59
|
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
60
|
+
Number of attention heads for each attention layer in the
|
61
|
+
Transformer encoder.
|
62
|
+
attention_head_dim (`int`, *optional*, defaults to 128):
|
63
|
+
Dimension of each attention head.
|
64
|
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
65
|
+
This is the number of key_value heads that should be used to
|
66
|
+
implement Grouped Query Attention. If
|
67
|
+
`num_key_value_heads=num_attention_heads`, the model will use
|
68
|
+
Multi Head Attention (MHA), if `num_key_value_heads=1` the model
|
69
|
+
will use Multi Query Attention (MQA) otherwise GQA is used.
|
70
|
+
mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
|
71
|
+
The non-linear activation function in the MLP layers.
|
72
|
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
73
|
+
Whether to use bias in attention layers.
|
74
|
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
75
|
+
Whether to use bias in MLP layers.
|
76
|
+
use_bias (`bool`, *optional*, defaults to `False`):
|
77
|
+
Whether to use bias in the model.
|
78
|
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
79
|
+
The standard deviation of the truncated_normal_initializer for
|
80
|
+
initializing all weight matrices.
|
81
|
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
82
|
+
The epsilon used by the layer normalization layers.
|
83
|
+
residual_in_fp32 (`bool`, *optional*, defaults to `False`):
|
84
|
+
Whether or not residuals should be in `float32`. If set to `False`
|
85
|
+
residuals will keep the same `dtype` as the rest of the model.
|
86
|
+
use_cache (`bool`, *optional*, defaults to `True`):
|
87
|
+
Whether or not the model should return the last key/values
|
88
|
+
attentions (not used by all models). Only relevant if
|
89
|
+
`config.is_decoder=True`.
|
90
|
+
num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
|
91
|
+
Number of prompt logits to calculate during generation. If `None`,
|
92
|
+
all logits will be calculated. If an integer value, only last
|
93
|
+
`num_logits_to_keep` logits will be calculated.
|
94
|
+
pad_token_id (`int`, *optional*, defaults to 0):
|
95
|
+
The id of the padding token.
|
96
|
+
bos_token_id (`int`, *optional*, defaults to 1):
|
97
|
+
The id of the "beginning-of-sequence" token.
|
98
|
+
eos_token_id (`int`, *optional*, defaults to 2):
|
99
|
+
The id of the "end-of-sequence" token.
|
100
|
+
sliding_window (`int`, *optional*, defaults to None):
|
101
|
+
Sliding window attention window size.
|
102
|
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
103
|
+
The maximum sequence length that this model might ever be used
|
104
|
+
with.
|
105
|
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
106
|
+
The dropout ratio for the attention probabilities.
|
107
|
+
hidden_dropout (`float`, *optional*, defaults to 0.0):
|
108
|
+
The dropout ratio for the hidden states.
|
109
|
+
use_mamba_kernels (`bool`, *optional*, defaults to `True`):
|
110
|
+
Flag indicating whether or not to use the fast mamba kernels.
|
111
|
+
These are available only if `mamba-ssm` and `causal-conv1d`
|
112
|
+
are installed, and the mamba modules are running on a CUDA device.
|
113
|
+
ssm_state_size (`int`, *optional*, defaults to 128):
|
114
|
+
The dimension of the mamba state space latents.
|
115
|
+
mamba_num_heads (`int`, *optional*, defaults to 128):
|
116
|
+
Number of heads in Mamba layers.
|
117
|
+
mamba_n_groups (`int`, *optional*, defaults to 8):
|
118
|
+
Number of groups in Mamba layers.
|
119
|
+
mamba_head_dim (`int`, *optional*, defaults to 64):
|
120
|
+
Dimension of each Mamba head.
|
121
|
+
mamba_d_conv (`int`, *optional*, defaults to 4):
|
122
|
+
The size of the mamba convolution kernel.
|
123
|
+
mamba_expand (`int`, *optional*, defaults to 2):
|
124
|
+
Expanding factor used to determine the mamba intermediate size.
|
125
|
+
mamba_hidden_act (`str`, *optional*, defaults to "silu"):
|
126
|
+
The non-linear activation function in the Mamba layers.
|
127
|
+
mamba_dt_min (`float`, *optional*, defaults to 0.001):
|
128
|
+
Minimum value for the time step in Mamba.
|
129
|
+
mamba_dt_max (`float`, *optional*, defaults to 0.1):
|
130
|
+
Maximum value for the time step in Mamba.
|
131
|
+
mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
|
132
|
+
Limits for the time step in Mamba.
|
133
|
+
mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
|
134
|
+
Floor value for time step initialization in Mamba.
|
135
|
+
mamba_conv_bias (`bool`, *optional*, defaults to `True`):
|
136
|
+
Whether to use bias in the convolution layer of the mamba mixer
|
137
|
+
block.
|
138
|
+
mamba_proj_bias (`bool`, *optional*, defaults to `False`):
|
139
|
+
Whether to use bias in the input and output projections of the
|
140
|
+
mamba mixer block.
|
141
|
+
mamba_chunk_size (`int`, *optional*, defaults to 256):
|
142
|
+
Size of chunks for Mamba processing.
|
143
|
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
|
144
|
+
Whether to rescale the pre-normalization residual connections.
|
145
|
+
"""
|
146
|
+
|
147
|
+
model_type = "nemotron_h"
|
148
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
149
|
+
|
150
|
+
def __init__(
|
151
|
+
self,
|
152
|
+
vocab_size=131072,
|
153
|
+
tie_word_embeddings=False,
|
154
|
+
hidden_size=4096,
|
155
|
+
intermediate_size=21504,
|
156
|
+
num_hidden_layers=52,
|
157
|
+
hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
|
158
|
+
num_attention_heads=32,
|
159
|
+
head_dim=128,
|
160
|
+
num_key_value_heads=8, # nemo: num_query_groups
|
161
|
+
mlp_hidden_act="relu2",
|
162
|
+
attention_bias=False,
|
163
|
+
mlp_bias=False,
|
164
|
+
use_bias=False,
|
165
|
+
initializer_range=0.02, # nemo: init_method_std
|
166
|
+
layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
|
167
|
+
residual_in_fp32=False, # Megatron Core default value
|
168
|
+
use_cache=True,
|
169
|
+
num_logits_to_keep=1,
|
170
|
+
pad_token_id=0,
|
171
|
+
bos_token_id=1,
|
172
|
+
eos_token_id=2,
|
173
|
+
sliding_window=None,
|
174
|
+
max_position_embeddings=4096,
|
175
|
+
attention_dropout=0.0,
|
176
|
+
hidden_dropout=0.0, # * ADDED
|
177
|
+
use_mamba_kernels=True,
|
178
|
+
ssm_state_size=128, # mamba_state_size
|
179
|
+
mamba_num_heads=128,
|
180
|
+
mamba_n_groups=8, # nemo: mamba_ssm_ngroups = num_heads
|
181
|
+
mamba_head_dim=64,
|
182
|
+
mamba_d_conv=4,
|
183
|
+
mamba_expand=2,
|
184
|
+
mamba_hidden_act="silu",
|
185
|
+
mamba_dt_min=0.001,
|
186
|
+
mamba_dt_max=0.1,
|
187
|
+
mamba_dt_limit=(0.0, float("inf")),
|
188
|
+
mamba_dt_init_floor=1e-4,
|
189
|
+
mamba_conv_bias=True,
|
190
|
+
mamba_proj_bias=False,
|
191
|
+
mamba_chunk_size=256,
|
192
|
+
rescale_prenorm_residual=True,
|
193
|
+
**kwargs,
|
194
|
+
):
|
195
|
+
self.vocab_size = vocab_size
|
196
|
+
self.tie_word_embeddings = tie_word_embeddings
|
197
|
+
self.hidden_size = hidden_size
|
198
|
+
self.intermediate_size = intermediate_size
|
199
|
+
self.num_hidden_layers = num_hidden_layers
|
200
|
+
self.hybrid_override_pattern = hybrid_override_pattern
|
201
|
+
self.num_attention_heads = num_attention_heads
|
202
|
+
self.head_dim = head_dim
|
203
|
+
self.sliding_window = sliding_window
|
204
|
+
self.max_position_embeddings = max_position_embeddings
|
205
|
+
self.attention_dropout = attention_dropout
|
206
|
+
self.hidden_dropout = hidden_dropout
|
207
|
+
|
208
|
+
# Validate hybrid_override_pattern
|
209
|
+
# M: Mamba2, *: Attention, -: MLP
|
210
|
+
assert len(self.hybrid_override_pattern) == self.num_hidden_layers, (
|
211
|
+
"hybrid_override_pattern must have same length as " "num_hidden_layers"
|
212
|
+
)
|
213
|
+
assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), (
|
214
|
+
"hybrid_override_pattern must only contain characters " "'M', '*', or '-'"
|
215
|
+
)
|
216
|
+
|
217
|
+
# for backward compatibility
|
218
|
+
if num_key_value_heads is None:
|
219
|
+
num_key_value_heads = num_attention_heads
|
220
|
+
|
221
|
+
self.num_key_value_heads = num_key_value_heads
|
222
|
+
self.mlp_hidden_act = mlp_hidden_act
|
223
|
+
self.attention_bias = attention_bias
|
224
|
+
self.mlp_bias = mlp_bias
|
225
|
+
self.use_bias = use_bias
|
226
|
+
self.initializer_range = initializer_range
|
227
|
+
self.layer_norm_epsilon = layer_norm_epsilon
|
228
|
+
self.residual_in_fp32 = residual_in_fp32
|
229
|
+
|
230
|
+
self.use_cache = use_cache
|
231
|
+
self.num_logits_to_keep = num_logits_to_keep
|
232
|
+
|
233
|
+
self.use_mamba_kernels = use_mamba_kernels
|
234
|
+
self.mamba_n_groups = mamba_n_groups
|
235
|
+
self.mamba_head_dim = mamba_head_dim
|
236
|
+
self.ssm_state_size = ssm_state_size
|
237
|
+
self.mamba_num_heads = mamba_num_heads
|
238
|
+
self.conv_kernel = mamba_d_conv
|
239
|
+
self.expand = mamba_expand
|
240
|
+
self.mamba_hidden_act = mamba_hidden_act
|
241
|
+
self.time_step_min = mamba_dt_min
|
242
|
+
self.time_step_max = mamba_dt_max
|
243
|
+
self.time_step_limit = mamba_dt_limit
|
244
|
+
self.time_step_floor = mamba_dt_init_floor
|
245
|
+
self.use_conv_bias = mamba_conv_bias
|
246
|
+
self.mamba_proj_bias = mamba_proj_bias
|
247
|
+
self.mamba_chunk_size = mamba_chunk_size
|
248
|
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
249
|
+
|
250
|
+
super().__init__(
|
251
|
+
pad_token_id=pad_token_id,
|
252
|
+
bos_token_id=bos_token_id,
|
253
|
+
eos_token_id=eos_token_id,
|
254
|
+
tie_word_embeddings=tie_word_embeddings,
|
255
|
+
**kwargs,
|
256
|
+
)
|
257
|
+
|
258
|
+
@property
|
259
|
+
def mamba_layer_ids(self):
|
260
|
+
return [
|
261
|
+
i
|
262
|
+
for i in range(self.num_hidden_layers)
|
263
|
+
if self.hybrid_override_pattern[i] == MAMBA
|
264
|
+
]
|
265
|
+
|
266
|
+
@property
|
267
|
+
def full_attention_layer_ids(self):
|
268
|
+
return [
|
269
|
+
i
|
270
|
+
for i in range(self.num_hidden_layers)
|
271
|
+
if self.hybrid_override_pattern[i] == ATTENTION
|
272
|
+
]
|
273
|
+
|
274
|
+
@property
|
275
|
+
def mamba2_cache_params(self) -> Mamba2CacheParams:
|
276
|
+
shape = Mamba2StateShape.create(
|
277
|
+
tp_world_size=get_attention_tp_size(),
|
278
|
+
intermediate_size=self.mamba_num_heads * self.mamba_head_dim,
|
279
|
+
n_groups=self.n_groups,
|
280
|
+
num_heads=self.mamba_num_heads,
|
281
|
+
head_dim=self.mamba_head_dim,
|
282
|
+
state_size=self.ssm_state_size,
|
283
|
+
conv_kernel=self.conv_kernel,
|
284
|
+
)
|
285
|
+
|
286
|
+
return Mamba2CacheParams(shape=shape, layers=self.mamba_layer_ids)
|