sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_one_batch_server.py +10 -1
- sglang/bench_serving.py +257 -29
- sglang/srt/configs/__init__.py +4 -0
- sglang/srt/configs/device_config.py +3 -1
- sglang/srt/configs/dots_vlm.py +139 -0
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +50 -6
- sglang/srt/configs/qwen3_next.py +326 -0
- sglang/srt/connector/__init__.py +8 -1
- sglang/srt/connector/remote_instance.py +82 -0
- sglang/srt/constrained/base_grammar_backend.py +48 -12
- sglang/srt/constrained/llguidance_backend.py +0 -1
- sglang/srt/constrained/outlines_backend.py +0 -1
- sglang/srt/constrained/xgrammar_backend.py +28 -9
- sglang/srt/custom_op.py +11 -1
- sglang/srt/debug_utils/dump_comparator.py +81 -44
- sglang/srt/debug_utils/dump_loader.py +97 -0
- sglang/srt/debug_utils/dumper.py +11 -3
- sglang/srt/debug_utils/text_comparator.py +73 -11
- sglang/srt/disaggregation/base/conn.py +1 -1
- sglang/srt/disaggregation/common/conn.py +15 -12
- sglang/srt/disaggregation/decode.py +21 -10
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -1
- sglang/srt/disaggregation/fake/conn.py +1 -1
- sglang/srt/disaggregation/mini_lb.py +6 -445
- sglang/srt/disaggregation/mooncake/conn.py +18 -10
- sglang/srt/disaggregation/nixl/conn.py +180 -16
- sglang/srt/disaggregation/prefill.py +5 -3
- sglang/srt/disaggregation/utils.py +5 -50
- sglang/srt/distributed/parallel_state.py +24 -3
- sglang/srt/entrypoints/engine.py +38 -17
- sglang/srt/entrypoints/grpc_request_manager.py +580 -0
- sglang/srt/entrypoints/grpc_server.py +680 -0
- sglang/srt/entrypoints/http_server.py +85 -54
- sglang/srt/entrypoints/openai/protocol.py +4 -1
- sglang/srt/entrypoints/openai/serving_base.py +46 -3
- sglang/srt/entrypoints/openai/serving_chat.py +36 -16
- sglang/srt/entrypoints/openai/serving_completions.py +12 -3
- sglang/srt/entrypoints/openai/serving_embedding.py +8 -3
- sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
- sglang/srt/entrypoints/openai/serving_responses.py +6 -3
- sglang/srt/entrypoints/openai/serving_score.py +1 -0
- sglang/srt/eplb/eplb_manager.py +2 -2
- sglang/srt/eplb/expert_distribution.py +26 -13
- sglang/srt/eplb/expert_location.py +8 -3
- sglang/srt/eplb/expert_location_updater.py +1 -1
- sglang/srt/function_call/base_format_detector.py +3 -6
- sglang/srt/function_call/ebnf_composer.py +11 -9
- sglang/srt/function_call/function_call_parser.py +6 -0
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/qwen3_coder_detector.py +1 -1
- sglang/srt/grpc/__init__.py +1 -0
- sglang/srt/grpc/sglang_scheduler_pb2.py +106 -0
- sglang/srt/grpc/sglang_scheduler_pb2.pyi +427 -0
- sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +236 -0
- sglang/srt/hf_transformers_utils.py +4 -0
- sglang/srt/layers/activation.py +142 -9
- sglang/srt/layers/attention/ascend_backend.py +11 -4
- sglang/srt/layers/attention/fla/chunk.py +242 -0
- sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
- sglang/srt/layers/attention/fla/chunk_o.py +178 -0
- sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
- sglang/srt/layers/attention/fla/cumsum.py +300 -0
- sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
- sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
- sglang/srt/layers/attention/fla/index.py +37 -0
- sglang/srt/layers/attention/fla/l2norm.py +150 -0
- sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
- sglang/srt/layers/attention/fla/op.py +66 -0
- sglang/srt/layers/attention/fla/solve_tril.py +465 -0
- sglang/srt/layers/attention/fla/utils.py +331 -0
- sglang/srt/layers/attention/fla/wy_fast.py +158 -0
- sglang/srt/layers/attention/flashinfer_backend.py +6 -4
- sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
- sglang/srt/layers/attention/hybrid_attn_backend.py +57 -50
- sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
- sglang/srt/layers/attention/intel_amx_backend.py +3 -0
- sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
- sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
- sglang/srt/layers/attention/mamba/mamba.py +64 -0
- sglang/srt/layers/attention/torch_native_backend.py +12 -6
- sglang/srt/layers/attention/triton_backend.py +18 -1
- sglang/srt/layers/attention/trtllm_mla_backend.py +124 -31
- sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
- sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
- sglang/srt/layers/dp_attention.py +30 -1
- sglang/srt/layers/layernorm.py +32 -15
- sglang/srt/layers/linear.py +34 -3
- sglang/srt/layers/logits_processor.py +29 -10
- sglang/srt/layers/moe/__init__.py +2 -1
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
- sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
- sglang/srt/layers/moe/ep_moe/layer.py +182 -62
- sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +156 -0
- sglang/srt/layers/moe/fused_moe_native.py +5 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +1 -1
- sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
- sglang/srt/layers/moe/fused_moe_triton/layer.py +61 -59
- sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
- sglang/srt/layers/moe/moe_runner/base.py +274 -1
- sglang/srt/layers/moe/moe_runner/runner.py +80 -0
- sglang/srt/layers/moe/moe_runner/triton.py +448 -0
- sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
- sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
- sglang/srt/layers/moe/token_dispatcher/deepep.py +43 -39
- sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
- sglang/srt/layers/moe/topk.py +30 -9
- sglang/srt/layers/moe/utils.py +12 -6
- sglang/srt/layers/quantization/awq.py +19 -7
- sglang/srt/layers/quantization/base_config.py +11 -6
- sglang/srt/layers/quantization/blockwise_int8.py +38 -27
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
- sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
- sglang/srt/layers/quantization/fp8.py +76 -47
- sglang/srt/layers/quantization/fp8_utils.py +50 -31
- sglang/srt/layers/quantization/gptq.py +25 -17
- sglang/srt/layers/quantization/modelopt_quant.py +147 -47
- sglang/srt/layers/quantization/moe_wna16.py +21 -18
- sglang/srt/layers/quantization/mxfp4.py +64 -40
- sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
- sglang/srt/layers/quantization/unquant.py +135 -47
- sglang/srt/layers/quantization/w4afp8.py +30 -17
- sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
- sglang/srt/layers/quantization/w8a8_int8.py +76 -38
- sglang/srt/layers/sampler.py +162 -18
- sglang/srt/lora/backend/base_backend.py +50 -8
- sglang/srt/lora/backend/triton_backend.py +90 -2
- sglang/srt/lora/layers.py +32 -0
- sglang/srt/lora/lora.py +4 -1
- sglang/srt/lora/lora_manager.py +35 -112
- sglang/srt/lora/mem_pool.py +24 -10
- sglang/srt/lora/utils.py +18 -9
- sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
- sglang/srt/managers/cache_controller.py +158 -160
- sglang/srt/managers/data_parallel_controller.py +105 -35
- sglang/srt/managers/detokenizer_manager.py +8 -4
- sglang/srt/managers/disagg_service.py +46 -0
- sglang/srt/managers/io_struct.py +199 -12
- sglang/srt/managers/mm_utils.py +1 -0
- sglang/srt/managers/multi_tokenizer_mixin.py +350 -400
- sglang/srt/managers/schedule_batch.py +77 -56
- sglang/srt/managers/schedule_policy.py +1 -1
- sglang/srt/managers/scheduler.py +187 -39
- sglang/srt/managers/scheduler_metrics_mixin.py +4 -3
- sglang/srt/managers/scheduler_output_processor_mixin.py +55 -11
- sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
- sglang/srt/managers/tokenizer_communicator_mixin.py +569 -0
- sglang/srt/managers/tokenizer_manager.py +259 -519
- sglang/srt/managers/tp_worker.py +53 -4
- sglang/srt/managers/tp_worker_overlap_thread.py +42 -19
- sglang/srt/mem_cache/hicache_storage.py +3 -23
- sglang/srt/mem_cache/hiradix_cache.py +103 -43
- sglang/srt/mem_cache/memory_pool.py +347 -48
- sglang/srt/mem_cache/memory_pool_host.py +105 -46
- sglang/srt/mem_cache/radix_cache.py +0 -2
- sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
- sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +86 -4
- sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
- sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +49 -7
- sglang/srt/mem_cache/swa_radix_cache.py +0 -2
- sglang/srt/metrics/collector.py +493 -76
- sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
- sglang/srt/model_executor/cpu_graph_runner.py +640 -0
- sglang/srt/model_executor/cuda_graph_runner.py +13 -5
- sglang/srt/model_executor/forward_batch_info.py +59 -2
- sglang/srt/model_executor/model_runner.py +356 -29
- sglang/srt/model_loader/__init__.py +9 -3
- sglang/srt/model_loader/loader.py +128 -4
- sglang/srt/model_loader/weight_utils.py +2 -1
- sglang/srt/models/apertus.py +686 -0
- sglang/srt/models/bailing_moe.py +798 -218
- sglang/srt/models/bailing_moe_nextn.py +168 -0
- sglang/srt/models/deepseek_v2.py +109 -15
- sglang/srt/models/dots_vlm.py +174 -0
- sglang/srt/models/dots_vlm_vit.py +337 -0
- sglang/srt/models/ernie4.py +1 -1
- sglang/srt/models/gemma3n_mm.py +1 -1
- sglang/srt/models/glm4_moe.py +1 -1
- sglang/srt/models/glm4v.py +4 -2
- sglang/srt/models/glm4v_moe.py +3 -0
- sglang/srt/models/gpt_oss.py +1 -1
- sglang/srt/models/llama4.py +9 -0
- sglang/srt/models/llama_eagle3.py +13 -0
- sglang/srt/models/longcat_flash.py +2 -2
- sglang/srt/models/mllama4.py +25 -0
- sglang/srt/models/opt.py +637 -0
- sglang/srt/models/qwen2.py +7 -0
- sglang/srt/models/qwen2_5_vl.py +27 -3
- sglang/srt/models/qwen2_moe.py +56 -12
- sglang/srt/models/qwen3_moe.py +1 -1
- sglang/srt/models/qwen3_next.py +1042 -0
- sglang/srt/models/qwen3_next_mtp.py +112 -0
- sglang/srt/models/step3_vl.py +1 -1
- sglang/srt/multimodal/processors/dots_vlm.py +99 -0
- sglang/srt/multimodal/processors/glm4v.py +9 -9
- sglang/srt/multimodal/processors/internvl.py +141 -129
- sglang/srt/multimodal/processors/qwen_vl.py +15 -5
- sglang/srt/offloader.py +27 -3
- sglang/srt/remote_instance_weight_loader_utils.py +69 -0
- sglang/srt/sampling/sampling_batch_info.py +18 -15
- sglang/srt/server_args.py +276 -35
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
- sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
- sglang/srt/speculative/eagle_utils.py +0 -2
- sglang/srt/speculative/eagle_worker.py +43 -4
- sglang/srt/speculative/spec_info.py +5 -0
- sglang/srt/speculative/standalone_worker.py +109 -0
- sglang/srt/tracing/trace.py +552 -0
- sglang/srt/utils.py +34 -3
- sglang/srt/weight_sync/utils.py +1 -1
- sglang/test/attention/test_trtllm_mla_backend.py +169 -5
- sglang/test/runners.py +4 -0
- sglang/test/test_cutlass_moe.py +24 -6
- sglang/test/test_disaggregation_utils.py +66 -0
- sglang/test/test_fp4_moe.py +370 -1
- sglang/test/test_utils.py +28 -1
- sglang/utils.py +11 -0
- sglang/version.py +1 -1
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/METADATA +59 -123
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/RECORD +237 -178
- sglang/srt/disaggregation/launch_lb.py +0 -118
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/WHEEL +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,337 @@
|
|
1
|
+
import logging
|
2
|
+
from typing import Optional
|
3
|
+
|
4
|
+
import torch
|
5
|
+
import torch.nn as nn
|
6
|
+
import torch.nn.functional as F
|
7
|
+
import torch.utils.checkpoint
|
8
|
+
from torch.nn import LayerNorm
|
9
|
+
from transformers.modeling_utils import PreTrainedModel
|
10
|
+
|
11
|
+
from sglang.srt.configs.dots_vlm import DotsVisionConfig
|
12
|
+
from sglang.srt.distributed import parallel_state
|
13
|
+
from sglang.srt.layers.attention.vision import VisionAttention
|
14
|
+
from sglang.srt.layers.quantization import QuantizationConfig
|
15
|
+
from sglang.srt.utils import add_prefix
|
16
|
+
|
17
|
+
logger = logging.getLogger(__name__)
|
18
|
+
|
19
|
+
|
20
|
+
class VisionRotaryEmbedding(nn.Module):
|
21
|
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
22
|
+
super().__init__()
|
23
|
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
24
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
25
|
+
|
26
|
+
def forward(self, seqlen: int) -> torch.Tensor:
|
27
|
+
seq = torch.arange(
|
28
|
+
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
|
29
|
+
)
|
30
|
+
freqs = torch.outer(seq, self.inv_freq)
|
31
|
+
return freqs
|
32
|
+
|
33
|
+
|
34
|
+
class PatchMerger(nn.Module):
|
35
|
+
def __init__(
|
36
|
+
self,
|
37
|
+
dim: int,
|
38
|
+
context_dim: int,
|
39
|
+
spatial_merge_size: int = 2,
|
40
|
+
pre_norm="layernorm",
|
41
|
+
init_merger_std=None,
|
42
|
+
quant_config: Optional[QuantizationConfig] = None,
|
43
|
+
) -> None:
|
44
|
+
super().__init__()
|
45
|
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
46
|
+
self.pre_norm = pre_norm
|
47
|
+
if self.pre_norm == "layernorm":
|
48
|
+
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
49
|
+
elif self.pre_norm == "rmsnorm":
|
50
|
+
self.ln_q = RMSNorm(context_dim, eps=1e-6)
|
51
|
+
else:
|
52
|
+
logger.warning(f"no norm in patch merger: {self.pre_norm}")
|
53
|
+
|
54
|
+
self.mlp = nn.Sequential(
|
55
|
+
nn.Linear(self.hidden_size, self.hidden_size),
|
56
|
+
nn.GELU(),
|
57
|
+
nn.Linear(self.hidden_size, dim),
|
58
|
+
)
|
59
|
+
|
60
|
+
if init_merger_std is not None:
|
61
|
+
nn.init.normal_(self.mlp[0].weight, mean=0.0, std=init_merger_std)
|
62
|
+
nn.init.zeros_(self.mlp[0].bias)
|
63
|
+
nn.init.normal_(self.mlp[2].weight, mean=0.0, std=init_merger_std)
|
64
|
+
nn.init.zeros_(self.mlp[2].bias)
|
65
|
+
|
66
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
67
|
+
if self.pre_norm:
|
68
|
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
69
|
+
else:
|
70
|
+
x = self.mlp(x.view(-1, self.hidden_size))
|
71
|
+
return x
|
72
|
+
|
73
|
+
|
74
|
+
class RMSNorm(nn.Module):
|
75
|
+
def __init__(self, dim: int, eps: float = 1e-6):
|
76
|
+
super().__init__()
|
77
|
+
self.weight = nn.Parameter(torch.ones(dim))
|
78
|
+
self.eps = eps
|
79
|
+
|
80
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
81
|
+
output = self._norm(x.float()).type_as(x)
|
82
|
+
return output * self.weight
|
83
|
+
|
84
|
+
def extra_repr(self) -> str:
|
85
|
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
86
|
+
|
87
|
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
88
|
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
89
|
+
|
90
|
+
|
91
|
+
class DotsSwiGLUFFN(nn.Module):
|
92
|
+
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
|
93
|
+
super().__init__()
|
94
|
+
hidden_features = config.intermediate_size
|
95
|
+
in_features = config.embed_dim
|
96
|
+
bias = config.use_bias
|
97
|
+
|
98
|
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
99
|
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
100
|
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
101
|
+
|
102
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
103
|
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
104
|
+
x = self.fc2(x)
|
105
|
+
return x
|
106
|
+
|
107
|
+
|
108
|
+
class DotsPatchEmbed(nn.Module):
|
109
|
+
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
|
110
|
+
super().__init__()
|
111
|
+
self.num_channels = config.num_channels
|
112
|
+
self.patch_size = config.patch_size
|
113
|
+
self.temporal_patch_size = config.temporal_patch_size
|
114
|
+
self.embed_dim = config.embed_dim
|
115
|
+
self.config = config
|
116
|
+
self.proj = nn.Conv2d(
|
117
|
+
config.num_channels,
|
118
|
+
config.embed_dim,
|
119
|
+
kernel_size=(config.patch_size, config.patch_size),
|
120
|
+
stride=(config.patch_size, config.patch_size),
|
121
|
+
)
|
122
|
+
self.norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
123
|
+
|
124
|
+
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
125
|
+
x = x.view(
|
126
|
+
-1,
|
127
|
+
self.num_channels,
|
128
|
+
self.temporal_patch_size,
|
129
|
+
self.patch_size,
|
130
|
+
self.patch_size,
|
131
|
+
)[:, :, 0]
|
132
|
+
x = self.proj(x).view(-1, self.embed_dim)
|
133
|
+
x = self.norm(x)
|
134
|
+
return x
|
135
|
+
|
136
|
+
|
137
|
+
class DotsViTPreprocessor(nn.Module):
|
138
|
+
def __init__(self, config, quant_config: Optional[QuantizationConfig] = None):
|
139
|
+
super().__init__()
|
140
|
+
self.patch_h = config.patch_size
|
141
|
+
self.patch_w = config.patch_size
|
142
|
+
self.embed_dim = config.embed_dim
|
143
|
+
self.config = config
|
144
|
+
self.patchifier = DotsPatchEmbed(config, quant_config)
|
145
|
+
|
146
|
+
def forward(self, x: torch.Tensor, grid_thw=None) -> torch.Tensor:
|
147
|
+
tokens = self.patchifier(x, grid_thw)
|
148
|
+
return tokens
|
149
|
+
|
150
|
+
|
151
|
+
class DotsVisionBlock(nn.Module):
|
152
|
+
def __init__(
|
153
|
+
self,
|
154
|
+
config: DotsVisionConfig,
|
155
|
+
quant_config: Optional[QuantizationConfig] = None,
|
156
|
+
prefix: str = "",
|
157
|
+
attn_implementation: str = "flash_attention_2",
|
158
|
+
):
|
159
|
+
super().__init__()
|
160
|
+
if attn_implementation == "flash_attention_2":
|
161
|
+
qkv_backend = "fa3"
|
162
|
+
softmax_in_single_precision = False
|
163
|
+
else:
|
164
|
+
raise RuntimeError("Unimplemented")
|
165
|
+
self.attn = VisionAttention(
|
166
|
+
embed_dim=config.embed_dim,
|
167
|
+
num_heads=config.num_attention_heads,
|
168
|
+
projection_size=config.embed_dim,
|
169
|
+
use_qkv_parallel=True,
|
170
|
+
qkv_backend=qkv_backend,
|
171
|
+
softmax_in_single_precision=softmax_in_single_precision,
|
172
|
+
flatten_batch=True,
|
173
|
+
quant_config=quant_config,
|
174
|
+
prefix=add_prefix("attn", prefix),
|
175
|
+
num_dummy_heads=config.num_dummy_heads,
|
176
|
+
qkv_bias=config.use_bias,
|
177
|
+
proj_bias=config.use_bias,
|
178
|
+
)
|
179
|
+
self.norm1 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
180
|
+
self.mlp = DotsSwiGLUFFN(config, quant_config)
|
181
|
+
self.norm2 = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
182
|
+
|
183
|
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
184
|
+
hidden_states = hidden_states + self.attn(
|
185
|
+
self.norm1(hidden_states),
|
186
|
+
cu_seqlens=cu_seqlens,
|
187
|
+
position_embeddings=rotary_pos_emb,
|
188
|
+
)
|
189
|
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
190
|
+
return hidden_states
|
191
|
+
|
192
|
+
|
193
|
+
class DotsVisionTransformer(PreTrainedModel):
|
194
|
+
def __init__(
|
195
|
+
self,
|
196
|
+
config: DotsVisionConfig,
|
197
|
+
quant_config: Optional[QuantizationConfig] = None,
|
198
|
+
) -> None:
|
199
|
+
super().__init__(config)
|
200
|
+
self.config = config
|
201
|
+
self._update_vision_config()
|
202
|
+
self.spatial_merge_size = config.spatial_merge_size
|
203
|
+
|
204
|
+
self.patch_embed = DotsViTPreprocessor(config, quant_config)
|
205
|
+
self._init_weights(self.patch_embed.patchifier.proj)
|
206
|
+
|
207
|
+
head_dim = config.embed_dim // config.num_attention_heads
|
208
|
+
|
209
|
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
210
|
+
|
211
|
+
_num_hidden_layers = config.num_hidden_layers
|
212
|
+
self.blocks = nn.ModuleList(
|
213
|
+
[
|
214
|
+
DotsVisionBlock(
|
215
|
+
config, quant_config, f"blocks.{i}", config.attn_implementation
|
216
|
+
)
|
217
|
+
for i in range(_num_hidden_layers)
|
218
|
+
]
|
219
|
+
)
|
220
|
+
|
221
|
+
if self.config.post_norm:
|
222
|
+
self.post_trunk_norm = RMSNorm(config.embed_dim, eps=config.rms_norm_eps)
|
223
|
+
|
224
|
+
self.merger = PatchMerger(
|
225
|
+
dim=config.hidden_size,
|
226
|
+
context_dim=config.embed_dim,
|
227
|
+
spatial_merge_size=config.spatial_merge_size,
|
228
|
+
init_merger_std=self.config.init_merger_std,
|
229
|
+
quant_config=quant_config,
|
230
|
+
)
|
231
|
+
|
232
|
+
self.gradient_checkpointing = False
|
233
|
+
|
234
|
+
def _update_vision_config(self):
|
235
|
+
"""update vision config to support tp"""
|
236
|
+
world_size = parallel_state.get_tensor_model_parallel_world_size()
|
237
|
+
num_heads = self.config.num_attention_heads
|
238
|
+
head_dim = self.config.embed_dim // num_heads
|
239
|
+
num_dummy_heads = 0
|
240
|
+
|
241
|
+
if num_heads % world_size != 0:
|
242
|
+
num_dummy_heads = (
|
243
|
+
(num_heads + world_size) // world_size
|
244
|
+
) * world_size - num_heads
|
245
|
+
|
246
|
+
setattr(self.config, "head_dim", head_dim)
|
247
|
+
setattr(self.config, "num_dummy_heads", num_dummy_heads)
|
248
|
+
|
249
|
+
def _init_weights(self, module):
|
250
|
+
std = self.config.initializer_range
|
251
|
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
252
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
253
|
+
if module.bias is not None:
|
254
|
+
module.bias.data.zero_()
|
255
|
+
elif isinstance(module, nn.Embedding):
|
256
|
+
module.weight.data.normal_(mean=0.0, std=std)
|
257
|
+
if module.padding_idx is not None:
|
258
|
+
module.weight.data[module.padding_idx].zero_()
|
259
|
+
|
260
|
+
@property
|
261
|
+
def dtype(self) -> torch.dtype:
|
262
|
+
return self.blocks[0].mlp.fc2.weight.dtype
|
263
|
+
|
264
|
+
@property
|
265
|
+
def device(self) -> torch.device:
|
266
|
+
return self.blocks[0].mlp.fc2.weight.device
|
267
|
+
|
268
|
+
def get_pos_ids_by_grid(self, grid_thw):
|
269
|
+
pos_ids = []
|
270
|
+
for t, h, w in grid_thw:
|
271
|
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
272
|
+
hpos_ids = hpos_ids.reshape(
|
273
|
+
h // self.spatial_merge_size,
|
274
|
+
self.spatial_merge_size,
|
275
|
+
w // self.spatial_merge_size,
|
276
|
+
self.spatial_merge_size,
|
277
|
+
)
|
278
|
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
279
|
+
hpos_ids = hpos_ids.flatten()
|
280
|
+
|
281
|
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
282
|
+
wpos_ids = wpos_ids.reshape(
|
283
|
+
h // self.spatial_merge_size,
|
284
|
+
self.spatial_merge_size,
|
285
|
+
w // self.spatial_merge_size,
|
286
|
+
self.spatial_merge_size,
|
287
|
+
)
|
288
|
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
289
|
+
wpos_ids = wpos_ids.flatten()
|
290
|
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
291
|
+
|
292
|
+
return pos_ids
|
293
|
+
|
294
|
+
def rot_pos_emb(self, grid_thw):
|
295
|
+
pos_ids = self.get_pos_ids_by_grid(grid_thw)
|
296
|
+
pos_ids = torch.cat(pos_ids, dim=0)
|
297
|
+
max_grid_size = grid_thw[:, 1:].max()
|
298
|
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
299
|
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
300
|
+
return rotary_pos_emb
|
301
|
+
|
302
|
+
def calc_cos_sin(self, rotary_pos_emb):
|
303
|
+
cos = rotary_pos_emb.cos()
|
304
|
+
sin = rotary_pos_emb.sin()
|
305
|
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
306
|
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
307
|
+
rotary_pos_emb = (cos, sin)
|
308
|
+
return rotary_pos_emb
|
309
|
+
|
310
|
+
def forward(
|
311
|
+
self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, bf16=True
|
312
|
+
) -> torch.Tensor:
|
313
|
+
if bf16:
|
314
|
+
hidden_states = hidden_states.bfloat16()
|
315
|
+
hidden_states = self.patch_embed(hidden_states, grid_thw)
|
316
|
+
|
317
|
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
318
|
+
rotary_pos_emb = self.calc_cos_sin(rotary_pos_emb)
|
319
|
+
|
320
|
+
cu_seqlens = torch.repeat_interleave(
|
321
|
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
322
|
+
).cumsum(
|
323
|
+
dim=0,
|
324
|
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
325
|
+
)
|
326
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
327
|
+
|
328
|
+
for blk in self.blocks:
|
329
|
+
hidden_states = blk(
|
330
|
+
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
331
|
+
)
|
332
|
+
|
333
|
+
if self.config.post_norm:
|
334
|
+
hidden_states = self.post_trunk_norm(hidden_states)
|
335
|
+
|
336
|
+
hidden_states = self.merger(hidden_states)
|
337
|
+
return hidden_states
|
sglang/srt/models/ernie4.py
CHANGED
@@ -92,7 +92,7 @@ class Ernie4Moe(nn.Module):
|
|
92
92
|
correction_bias=self.gate.e_score_correction_bias,
|
93
93
|
)
|
94
94
|
|
95
|
-
self.experts = get_moe_impl_class()(
|
95
|
+
self.experts = get_moe_impl_class(quant_config)(
|
96
96
|
num_experts=config.moe_num_experts,
|
97
97
|
top_k=config.moe_k,
|
98
98
|
hidden_size=config.hidden_size,
|
sglang/srt/models/gemma3n_mm.py
CHANGED
@@ -499,7 +499,7 @@ class Gemma3nForConditionalGeneration(PreTrainedModel):
|
|
499
499
|
def should_apply_lora(self, module_name: str) -> bool:
|
500
500
|
return bool(self.lora_pattern.match(module_name))
|
501
501
|
|
502
|
-
def get_hidden_dim(self, module_name):
|
502
|
+
def get_hidden_dim(self, module_name, layer_idx):
|
503
503
|
# return input_dim, output_dim
|
504
504
|
if module_name == "qkv_proj":
|
505
505
|
return (
|
sglang/srt/models/glm4_moe.py
CHANGED
@@ -429,7 +429,7 @@ class Glm4MoeSparseMoeBlock(DeepseekV2MoE):
|
|
429
429
|
routed_scaling_factor=self.routed_scaling_factor,
|
430
430
|
)
|
431
431
|
|
432
|
-
self.experts = get_moe_impl_class()(
|
432
|
+
self.experts = get_moe_impl_class(quant_config)(
|
433
433
|
num_experts=config.n_routed_experts
|
434
434
|
+ self.num_fused_shared_experts
|
435
435
|
+ global_server_args_dict["ep_num_redundant_experts"],
|
sglang/srt/models/glm4v.py
CHANGED
@@ -93,9 +93,8 @@ class Glm4vVisionBlock(Qwen2_5_VisionBlock):
|
|
93
93
|
quant_config=quant_config,
|
94
94
|
prefix=prefix,
|
95
95
|
num_dummy_heads=config.num_dummy_heads,
|
96
|
+
rms_norm_eps=config.rms_norm_eps,
|
96
97
|
)
|
97
|
-
self.norm1 = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
98
|
-
self.norm2 = Glm4vRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
99
98
|
|
100
99
|
self.mlp = Glm4vVisionMLP(
|
101
100
|
config.hidden_size,
|
@@ -498,6 +497,9 @@ class Glm4vForConditionalGeneration(Qwen2_5_VLForConditionalGeneration):
|
|
498
497
|
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
499
498
|
self.is_mrope_enabled = "mrope_section" in self.config.rope_scaling
|
500
499
|
|
500
|
+
# For EAGLE3 support
|
501
|
+
self.capture_aux_hidden_states = False
|
502
|
+
|
501
503
|
def get_image_feature(self, items: List[MultimodalDataItem]) -> torch.Tensor:
|
502
504
|
pixel_values = torch.cat(
|
503
505
|
[item.feature.squeeze(0) for item in items], dim=0
|
sglang/srt/models/glm4v_moe.py
CHANGED
@@ -74,6 +74,9 @@ class Glm4vMoeForConditionalGeneration(Glm4vForConditionalGeneration):
|
|
74
74
|
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
|
75
75
|
self.is_mrope_enabled = "mrope_section" in self.config.rope_scaling
|
76
76
|
|
77
|
+
# For EAGLE3 support
|
78
|
+
self.capture_aux_hidden_states = False
|
79
|
+
|
77
80
|
def determine_num_fused_shared_experts(
|
78
81
|
self, architecture: str = "Glm4MoeForCausalLM"
|
79
82
|
):
|
sglang/srt/models/gpt_oss.py
CHANGED
@@ -121,7 +121,7 @@ class GptOssSparseMoeBlock(nn.Module):
|
|
121
121
|
)
|
122
122
|
|
123
123
|
self.top_k = config.num_experts_per_tok
|
124
|
-
experts_type = get_moe_impl_class()
|
124
|
+
experts_type = get_moe_impl_class(quant_config)
|
125
125
|
extra_kwargs = {}
|
126
126
|
if experts_type.__name__ == "FusedMoE":
|
127
127
|
quant_config_name = (
|
sglang/srt/models/llama4.py
CHANGED
@@ -423,6 +423,12 @@ class Llama4DecoderLayer(nn.Module):
|
|
423
423
|
return self.config.num_local_experts > 0
|
424
424
|
return (layer_id + 1) % self.config.interleave_moe_layer_step == 0
|
425
425
|
|
426
|
+
def get_intermediate_size(self) -> int:
|
427
|
+
if isinstance(self.feed_forward, Llama4MoE):
|
428
|
+
return self.config.intermediate_size
|
429
|
+
else:
|
430
|
+
return self.config.intermediate_size_mlp
|
431
|
+
|
426
432
|
def forward(
|
427
433
|
self,
|
428
434
|
positions: torch.Tensor,
|
@@ -540,6 +546,9 @@ class Llama4ForCausalLM(LlamaForCausalLM):
|
|
540
546
|
def get_input_embeddings(self):
|
541
547
|
return self.model.embed_tokens
|
542
548
|
|
549
|
+
def get_layers(self):
|
550
|
+
return self.model.layers
|
551
|
+
|
543
552
|
def _init_model(
|
544
553
|
self,
|
545
554
|
config: Llama4TextConfig,
|
@@ -109,6 +109,16 @@ class LlamaModel(nn.Module):
|
|
109
109
|
) -> None:
|
110
110
|
super().__init__()
|
111
111
|
self.config = config
|
112
|
+
|
113
|
+
self.is_mrope_enabled = (
|
114
|
+
hasattr(config, "rope_scaling")
|
115
|
+
and config.rope_scaling is not None
|
116
|
+
and "mrope_section" in config.rope_scaling
|
117
|
+
)
|
118
|
+
# fix rope_scaling for qwen2.5-vl
|
119
|
+
if self.is_mrope_enabled:
|
120
|
+
config.rope_scaling["rope_type"] = "default"
|
121
|
+
|
112
122
|
self.vocab_size = config.vocab_size
|
113
123
|
self.embed_tokens = VocabParallelEmbedding(
|
114
124
|
config.vocab_size,
|
@@ -144,6 +154,9 @@ class LlamaModel(nn.Module):
|
|
144
154
|
else:
|
145
155
|
embeds = input_embeds
|
146
156
|
|
157
|
+
if self.is_mrope_enabled:
|
158
|
+
positions = forward_batch.mrope_positions
|
159
|
+
|
147
160
|
hidden_states = forward_batch.spec_info.hidden_states
|
148
161
|
if hidden_states.shape[-1] != embeds.shape[-1]:
|
149
162
|
hidden_states = self.fc(hidden_states)
|
@@ -260,7 +260,7 @@ class LongcatFlashMoE(nn.Module):
|
|
260
260
|
)
|
261
261
|
self.topk.forward = self.topk.forward_native
|
262
262
|
|
263
|
-
self.experts = get_moe_impl_class()(
|
263
|
+
self.experts = get_moe_impl_class(quant_config)(
|
264
264
|
num_experts=self.num_experts,
|
265
265
|
top_k=self.top_k,
|
266
266
|
layer_id=self.layer_id,
|
@@ -853,7 +853,7 @@ class LongcatFlashForCausalLM(nn.Module):
|
|
853
853
|
|
854
854
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
855
855
|
# (param_name, weight_name, expert_id, shard_id)
|
856
|
-
expert_params_mapping =
|
856
|
+
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
857
857
|
ckpt_gate_proj_name="gate_proj",
|
858
858
|
ckpt_down_proj_name="down_proj",
|
859
859
|
ckpt_up_proj_name="up_proj",
|
sglang/srt/models/mllama4.py
CHANGED
@@ -961,5 +961,30 @@ class Llama4ForConditionalGeneration(nn.Module):
|
|
961
961
|
def set_embed(self, embed):
|
962
962
|
return self.language_model.set_embed(embed)
|
963
963
|
|
964
|
+
def get_hidden_dim(self, module_name, layer_idx):
|
965
|
+
# return input_dim, output_dim
|
966
|
+
if module_name == "qkv_proj":
|
967
|
+
return (
|
968
|
+
self.config.hidden_size,
|
969
|
+
self.config.head_dim
|
970
|
+
* (
|
971
|
+
self.config.num_attention_heads
|
972
|
+
+ self.config.num_key_value_heads * 2
|
973
|
+
),
|
974
|
+
)
|
975
|
+
elif module_name == "o_proj":
|
976
|
+
return (
|
977
|
+
self.config.head_dim * self.config.num_attention_heads,
|
978
|
+
self.config.hidden_size,
|
979
|
+
)
|
980
|
+
elif module_name == "gate_up_proj":
|
981
|
+
return self.config.hidden_size, self.config.intermediate_size * 2
|
982
|
+
elif module_name == "down_proj":
|
983
|
+
decoder_layer = self.language_model.get_layers()[layer_idx]
|
984
|
+
intermediate_size = decoder_layer.get_intermediate_size()
|
985
|
+
return intermediate_size, self.config.hidden_size
|
986
|
+
else:
|
987
|
+
raise NotImplementedError()
|
988
|
+
|
964
989
|
|
965
990
|
EntryClass = Llama4ForConditionalGeneration
|