sglang 0.5.2rc2__py3-none-any.whl → 0.5.3rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (238) hide show
  1. sglang/bench_one_batch_server.py +10 -1
  2. sglang/bench_serving.py +257 -29
  3. sglang/srt/configs/__init__.py +4 -0
  4. sglang/srt/configs/device_config.py +3 -1
  5. sglang/srt/configs/dots_vlm.py +139 -0
  6. sglang/srt/configs/load_config.py +1 -0
  7. sglang/srt/configs/model_config.py +50 -6
  8. sglang/srt/configs/qwen3_next.py +326 -0
  9. sglang/srt/connector/__init__.py +8 -1
  10. sglang/srt/connector/remote_instance.py +82 -0
  11. sglang/srt/constrained/base_grammar_backend.py +48 -12
  12. sglang/srt/constrained/llguidance_backend.py +0 -1
  13. sglang/srt/constrained/outlines_backend.py +0 -1
  14. sglang/srt/constrained/xgrammar_backend.py +28 -9
  15. sglang/srt/custom_op.py +11 -1
  16. sglang/srt/debug_utils/dump_comparator.py +81 -44
  17. sglang/srt/debug_utils/dump_loader.py +97 -0
  18. sglang/srt/debug_utils/dumper.py +11 -3
  19. sglang/srt/debug_utils/text_comparator.py +73 -11
  20. sglang/srt/disaggregation/base/conn.py +1 -1
  21. sglang/srt/disaggregation/common/conn.py +15 -12
  22. sglang/srt/disaggregation/decode.py +21 -10
  23. sglang/srt/disaggregation/decode_schedule_batch_mixin.py +4 -1
  24. sglang/srt/disaggregation/fake/conn.py +1 -1
  25. sglang/srt/disaggregation/mini_lb.py +6 -445
  26. sglang/srt/disaggregation/mooncake/conn.py +18 -10
  27. sglang/srt/disaggregation/nixl/conn.py +180 -16
  28. sglang/srt/disaggregation/prefill.py +5 -3
  29. sglang/srt/disaggregation/utils.py +5 -50
  30. sglang/srt/distributed/parallel_state.py +24 -3
  31. sglang/srt/entrypoints/engine.py +38 -17
  32. sglang/srt/entrypoints/grpc_request_manager.py +580 -0
  33. sglang/srt/entrypoints/grpc_server.py +680 -0
  34. sglang/srt/entrypoints/http_server.py +85 -54
  35. sglang/srt/entrypoints/openai/protocol.py +4 -1
  36. sglang/srt/entrypoints/openai/serving_base.py +46 -3
  37. sglang/srt/entrypoints/openai/serving_chat.py +36 -16
  38. sglang/srt/entrypoints/openai/serving_completions.py +12 -3
  39. sglang/srt/entrypoints/openai/serving_embedding.py +8 -3
  40. sglang/srt/entrypoints/openai/serving_rerank.py +3 -1
  41. sglang/srt/entrypoints/openai/serving_responses.py +6 -3
  42. sglang/srt/entrypoints/openai/serving_score.py +1 -0
  43. sglang/srt/eplb/eplb_manager.py +2 -2
  44. sglang/srt/eplb/expert_distribution.py +26 -13
  45. sglang/srt/eplb/expert_location.py +8 -3
  46. sglang/srt/eplb/expert_location_updater.py +1 -1
  47. sglang/srt/function_call/base_format_detector.py +3 -6
  48. sglang/srt/function_call/ebnf_composer.py +11 -9
  49. sglang/srt/function_call/function_call_parser.py +6 -0
  50. sglang/srt/function_call/glm4_moe_detector.py +1 -1
  51. sglang/srt/function_call/qwen3_coder_detector.py +1 -1
  52. sglang/srt/grpc/__init__.py +1 -0
  53. sglang/srt/grpc/sglang_scheduler_pb2.py +106 -0
  54. sglang/srt/grpc/sglang_scheduler_pb2.pyi +427 -0
  55. sglang/srt/grpc/sglang_scheduler_pb2_grpc.py +236 -0
  56. sglang/srt/hf_transformers_utils.py +4 -0
  57. sglang/srt/layers/activation.py +142 -9
  58. sglang/srt/layers/attention/ascend_backend.py +11 -4
  59. sglang/srt/layers/attention/fla/chunk.py +242 -0
  60. sglang/srt/layers/attention/fla/chunk_delta_h.py +314 -0
  61. sglang/srt/layers/attention/fla/chunk_o.py +178 -0
  62. sglang/srt/layers/attention/fla/chunk_scaled_dot_kkt.py +151 -0
  63. sglang/srt/layers/attention/fla/cumsum.py +300 -0
  64. sglang/srt/layers/attention/fla/fused_recurrent.py +640 -0
  65. sglang/srt/layers/attention/fla/fused_sigmoid_gating_recurrent.py +232 -0
  66. sglang/srt/layers/attention/fla/index.py +37 -0
  67. sglang/srt/layers/attention/fla/l2norm.py +150 -0
  68. sglang/srt/layers/attention/fla/layernorm_gated.py +326 -0
  69. sglang/srt/layers/attention/fla/op.py +66 -0
  70. sglang/srt/layers/attention/fla/solve_tril.py +465 -0
  71. sglang/srt/layers/attention/fla/utils.py +331 -0
  72. sglang/srt/layers/attention/fla/wy_fast.py +158 -0
  73. sglang/srt/layers/attention/flashinfer_backend.py +6 -4
  74. sglang/srt/layers/attention/flashinfer_mla_backend.py +16 -12
  75. sglang/srt/layers/attention/hybrid_attn_backend.py +57 -50
  76. sglang/srt/layers/attention/hybrid_linear_attn_backend.py +602 -0
  77. sglang/srt/layers/attention/intel_amx_backend.py +3 -0
  78. sglang/srt/layers/attention/mamba/causal_conv1d.py +128 -0
  79. sglang/srt/layers/attention/mamba/causal_conv1d_triton.py +1052 -0
  80. sglang/srt/layers/attention/mamba/mamba.py +64 -0
  81. sglang/srt/layers/attention/torch_native_backend.py +12 -6
  82. sglang/srt/layers/attention/triton_backend.py +18 -1
  83. sglang/srt/layers/attention/trtllm_mla_backend.py +124 -31
  84. sglang/srt/layers/attention/wave_ops/decode_attention.py +2 -4
  85. sglang/srt/layers/attention/wave_ops/extend_attention.py +1 -3
  86. sglang/srt/layers/dp_attention.py +30 -1
  87. sglang/srt/layers/layernorm.py +32 -15
  88. sglang/srt/layers/linear.py +34 -3
  89. sglang/srt/layers/logits_processor.py +29 -10
  90. sglang/srt/layers/moe/__init__.py +2 -1
  91. sglang/srt/layers/moe/cutlass_w4a8_moe.py +3 -3
  92. sglang/srt/layers/moe/ep_moe/kernels.py +1 -1
  93. sglang/srt/layers/moe/ep_moe/layer.py +182 -62
  94. sglang/srt/layers/moe/flashinfer_cutedsl_moe.py +156 -0
  95. sglang/srt/layers/moe/fused_moe_native.py +5 -3
  96. sglang/srt/layers/moe/fused_moe_triton/configs/{triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json → triton_3_3_1/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128, 128].json } +35 -35
  97. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=352,device_name=NVIDIA_RTX_5880_Ada_Generation,dtype=fp8_w8a8.json +146 -0
  98. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=256,N=512,device_name=NVIDIA_H20.json +146 -0
  99. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  100. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  101. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  102. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  103. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  104. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  105. sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  106. sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -2
  107. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_config.py +1 -1
  108. sglang/srt/layers/moe/fused_moe_triton/fused_moe_triton_kernels.py +23 -20
  109. sglang/srt/layers/moe/fused_moe_triton/layer.py +61 -59
  110. sglang/srt/layers/moe/moe_runner/__init__.py +2 -1
  111. sglang/srt/layers/moe/moe_runner/base.py +274 -1
  112. sglang/srt/layers/moe/moe_runner/runner.py +80 -0
  113. sglang/srt/layers/moe/moe_runner/triton.py +448 -0
  114. sglang/srt/layers/moe/token_dispatcher/__init__.py +16 -4
  115. sglang/srt/layers/moe/token_dispatcher/{base_dispatcher.py → base.py} +67 -17
  116. sglang/srt/layers/moe/token_dispatcher/deepep.py +43 -39
  117. sglang/srt/layers/moe/token_dispatcher/standard.py +44 -2
  118. sglang/srt/layers/moe/topk.py +30 -9
  119. sglang/srt/layers/moe/utils.py +12 -6
  120. sglang/srt/layers/quantization/awq.py +19 -7
  121. sglang/srt/layers/quantization/base_config.py +11 -6
  122. sglang/srt/layers/quantization/blockwise_int8.py +38 -27
  123. sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +50 -30
  124. sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +13 -1
  125. sglang/srt/layers/quantization/deep_gemm_wrapper/entrypoint.py +27 -0
  126. sglang/srt/layers/quantization/fp8.py +76 -47
  127. sglang/srt/layers/quantization/fp8_utils.py +50 -31
  128. sglang/srt/layers/quantization/gptq.py +25 -17
  129. sglang/srt/layers/quantization/modelopt_quant.py +147 -47
  130. sglang/srt/layers/quantization/moe_wna16.py +21 -18
  131. sglang/srt/layers/quantization/mxfp4.py +64 -40
  132. sglang/srt/layers/quantization/quark/quark_moe.py +32 -27
  133. sglang/srt/layers/quantization/unquant.py +135 -47
  134. sglang/srt/layers/quantization/w4afp8.py +30 -17
  135. sglang/srt/layers/quantization/w8a8_fp8.py +35 -20
  136. sglang/srt/layers/quantization/w8a8_int8.py +76 -38
  137. sglang/srt/layers/sampler.py +162 -18
  138. sglang/srt/lora/backend/base_backend.py +50 -8
  139. sglang/srt/lora/backend/triton_backend.py +90 -2
  140. sglang/srt/lora/layers.py +32 -0
  141. sglang/srt/lora/lora.py +4 -1
  142. sglang/srt/lora/lora_manager.py +35 -112
  143. sglang/srt/lora/mem_pool.py +24 -10
  144. sglang/srt/lora/utils.py +18 -9
  145. sglang/srt/managers/async_dynamic_batch_tokenizer.py +170 -0
  146. sglang/srt/managers/cache_controller.py +158 -160
  147. sglang/srt/managers/data_parallel_controller.py +105 -35
  148. sglang/srt/managers/detokenizer_manager.py +8 -4
  149. sglang/srt/managers/disagg_service.py +46 -0
  150. sglang/srt/managers/io_struct.py +199 -12
  151. sglang/srt/managers/mm_utils.py +1 -0
  152. sglang/srt/managers/multi_tokenizer_mixin.py +350 -400
  153. sglang/srt/managers/schedule_batch.py +77 -56
  154. sglang/srt/managers/schedule_policy.py +1 -1
  155. sglang/srt/managers/scheduler.py +187 -39
  156. sglang/srt/managers/scheduler_metrics_mixin.py +4 -3
  157. sglang/srt/managers/scheduler_output_processor_mixin.py +55 -11
  158. sglang/srt/managers/scheduler_profiler_mixin.py +1 -1
  159. sglang/srt/managers/tokenizer_communicator_mixin.py +569 -0
  160. sglang/srt/managers/tokenizer_manager.py +259 -519
  161. sglang/srt/managers/tp_worker.py +53 -4
  162. sglang/srt/managers/tp_worker_overlap_thread.py +42 -19
  163. sglang/srt/mem_cache/hicache_storage.py +3 -23
  164. sglang/srt/mem_cache/hiradix_cache.py +103 -43
  165. sglang/srt/mem_cache/memory_pool.py +347 -48
  166. sglang/srt/mem_cache/memory_pool_host.py +105 -46
  167. sglang/srt/mem_cache/radix_cache.py +0 -2
  168. sglang/srt/mem_cache/storage/hf3fs/hf3fs_client.py +164 -0
  169. sglang/srt/mem_cache/storage/hf3fs/{client_hf3fs.py → hf3fs_usrbio_client.py} +5 -1
  170. sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +86 -4
  171. sglang/srt/mem_cache/storage/lmcache/lmc_radix_cache.py +280 -0
  172. sglang/srt/mem_cache/storage/lmcache/unit_test.py +121 -0
  173. sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +49 -7
  174. sglang/srt/mem_cache/swa_radix_cache.py +0 -2
  175. sglang/srt/metrics/collector.py +493 -76
  176. sglang/srt/metrics/startup_func_log_and_timer.py +150 -0
  177. sglang/srt/model_executor/cpu_graph_runner.py +640 -0
  178. sglang/srt/model_executor/cuda_graph_runner.py +13 -5
  179. sglang/srt/model_executor/forward_batch_info.py +59 -2
  180. sglang/srt/model_executor/model_runner.py +356 -29
  181. sglang/srt/model_loader/__init__.py +9 -3
  182. sglang/srt/model_loader/loader.py +128 -4
  183. sglang/srt/model_loader/weight_utils.py +2 -1
  184. sglang/srt/models/apertus.py +686 -0
  185. sglang/srt/models/bailing_moe.py +798 -218
  186. sglang/srt/models/bailing_moe_nextn.py +168 -0
  187. sglang/srt/models/deepseek_v2.py +109 -15
  188. sglang/srt/models/dots_vlm.py +174 -0
  189. sglang/srt/models/dots_vlm_vit.py +337 -0
  190. sglang/srt/models/ernie4.py +1 -1
  191. sglang/srt/models/gemma3n_mm.py +1 -1
  192. sglang/srt/models/glm4_moe.py +1 -1
  193. sglang/srt/models/glm4v.py +4 -2
  194. sglang/srt/models/glm4v_moe.py +3 -0
  195. sglang/srt/models/gpt_oss.py +1 -1
  196. sglang/srt/models/llama4.py +9 -0
  197. sglang/srt/models/llama_eagle3.py +13 -0
  198. sglang/srt/models/longcat_flash.py +2 -2
  199. sglang/srt/models/mllama4.py +25 -0
  200. sglang/srt/models/opt.py +637 -0
  201. sglang/srt/models/qwen2.py +7 -0
  202. sglang/srt/models/qwen2_5_vl.py +27 -3
  203. sglang/srt/models/qwen2_moe.py +56 -12
  204. sglang/srt/models/qwen3_moe.py +1 -1
  205. sglang/srt/models/qwen3_next.py +1042 -0
  206. sglang/srt/models/qwen3_next_mtp.py +112 -0
  207. sglang/srt/models/step3_vl.py +1 -1
  208. sglang/srt/multimodal/processors/dots_vlm.py +99 -0
  209. sglang/srt/multimodal/processors/glm4v.py +9 -9
  210. sglang/srt/multimodal/processors/internvl.py +141 -129
  211. sglang/srt/multimodal/processors/qwen_vl.py +15 -5
  212. sglang/srt/offloader.py +27 -3
  213. sglang/srt/remote_instance_weight_loader_utils.py +69 -0
  214. sglang/srt/sampling/sampling_batch_info.py +18 -15
  215. sglang/srt/server_args.py +276 -35
  216. sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +5 -0
  217. sglang/srt/speculative/eagle_draft_extend_cuda_graph_runner.py +10 -1
  218. sglang/srt/speculative/eagle_utils.py +0 -2
  219. sglang/srt/speculative/eagle_worker.py +43 -4
  220. sglang/srt/speculative/spec_info.py +5 -0
  221. sglang/srt/speculative/standalone_worker.py +109 -0
  222. sglang/srt/tracing/trace.py +552 -0
  223. sglang/srt/utils.py +34 -3
  224. sglang/srt/weight_sync/utils.py +1 -1
  225. sglang/test/attention/test_trtllm_mla_backend.py +169 -5
  226. sglang/test/runners.py +4 -0
  227. sglang/test/test_cutlass_moe.py +24 -6
  228. sglang/test/test_disaggregation_utils.py +66 -0
  229. sglang/test/test_fp4_moe.py +370 -1
  230. sglang/test/test_utils.py +28 -1
  231. sglang/utils.py +11 -0
  232. sglang/version.py +1 -1
  233. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/METADATA +59 -123
  234. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/RECORD +237 -178
  235. sglang/srt/disaggregation/launch_lb.py +0 -118
  236. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/WHEEL +0 -0
  237. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/licenses/LICENSE +0 -0
  238. {sglang-0.5.2rc2.dist-info → sglang-0.5.3rc0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,280 @@
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ import threading
5
+ from typing import TYPE_CHECKING, List, Optional
6
+
7
+ import torch
8
+
9
+ from sglang.srt.mem_cache.allocator import BaseTokenToKVPoolAllocator
10
+ from sglang.srt.mem_cache.base_prefix_cache import MatchResult
11
+ from sglang.srt.mem_cache.memory_pool import ReqToTokenPool
12
+ from sglang.srt.mem_cache.radix_cache import RadixCache, TreeNode
13
+
14
+ try:
15
+ from lmcache.integration.sglang.sglang_adapter import (
16
+ LMCacheLayerwiseConnector,
17
+ LoadMetadata,
18
+ StoreMetadata,
19
+ )
20
+ except ImportError as e:
21
+ raise RuntimeError(
22
+ "LMCache is not installed. Please install it by running `pip install lmcache`"
23
+ ) from e
24
+
25
+ if TYPE_CHECKING:
26
+ from sglang.srt.configs.model_config import ModelConfig
27
+ from sglang.srt.managers.schedule_batch import Req
28
+
29
+ logger = logging.getLogger(__name__)
30
+
31
+
32
+ class LayerTransferCounter:
33
+ """Minimal adapter that lets the memory pool notify LMCache per-layer.
34
+
35
+ The KV pool calls `wait_until(layer_id)` after finishing a layer, which we
36
+ translate into a `load_kv_layerwise(layer_id)` call on the LMCache connector
37
+ within the provided CUDA stream.
38
+ """
39
+
40
+ def __init__(
41
+ self,
42
+ num_layers: int,
43
+ load_stream: torch.cuda.Stream,
44
+ lmc_connector: LMCacheLayerwiseConnector,
45
+ printable: bool = False,
46
+ ):
47
+ self.num_layers = num_layers
48
+ self.load_stream = load_stream
49
+ self.lmc_connector = lmc_connector
50
+
51
+ def wait_until(self, layer_id: int):
52
+ # Ensure ordering of the async loads wrt compute stream(s).
53
+ self.load_stream.synchronize()
54
+ with self.load_stream:
55
+ self.lmc_connector.load_kv_layerwise(layer_id)
56
+
57
+
58
+ class LMCRadixCache(RadixCache):
59
+ """RadixCache + LMCache IO.
60
+
61
+ This subclass adds:
62
+ - LMCache connector setup (device/host buffers, TP rank/size)
63
+ - Two CUDA streams for async load/store
64
+ - Layer-wise transfer executor wiring to the KV cache
65
+ - Overridden `match_prefix` to fetch missing prefix chunks from LMCache
66
+ - Extended cache_finalization paths to store back into LMCache
67
+ - Eviction barrier that respects any in-flight host->device stores
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ req_to_token_pool: ReqToTokenPool,
73
+ token_to_kv_pool_allocator: BaseTokenToKVPoolAllocator,
74
+ page_size: int,
75
+ disable: bool = False,
76
+ enable_kv_cache_events: bool = False,
77
+ model_config: Optional["ModelConfig"] = None,
78
+ tp_size: int = 1,
79
+ rank: int = 0,
80
+ tp_group: Optional[torch.distributed.ProcessGroup] = None,
81
+ ):
82
+ super().__init__(
83
+ req_to_token_pool=req_to_token_pool,
84
+ token_to_kv_pool_allocator=token_to_kv_pool_allocator,
85
+ page_size=page_size,
86
+ disable=disable,
87
+ enable_kv_cache_events=enable_kv_cache_events,
88
+ )
89
+
90
+ kvcache = self.token_to_kv_pool_allocator.get_kvcache()
91
+ self.lmcache_connector = LMCacheLayerwiseConnector(
92
+ sgl_config=model_config,
93
+ tp_size=tp_size,
94
+ rank=rank,
95
+ # NOTE: The original implementation accessed private buffers via
96
+ # `_kvcache.k_buffer` / `.v_buffer`. We prefer public accessors when
97
+ # available; fall back to private fields if needed.
98
+ k_pool=getattr(
99
+ kvcache,
100
+ "k_buffer",
101
+ getattr(self.token_to_kv_pool_allocator._kvcache, "k_buffer"),
102
+ ),
103
+ v_pool=getattr(
104
+ kvcache,
105
+ "v_buffer",
106
+ getattr(self.token_to_kv_pool_allocator._kvcache, "v_buffer"),
107
+ ),
108
+ tp_group=tp_group,
109
+ )
110
+
111
+ self.load_stream = torch.cuda.Stream()
112
+ self.store_stream = torch.cuda.Stream()
113
+
114
+ self.layer_done_executor = LayerTransferCounter(
115
+ num_layers=(
116
+ model_config.num_hidden_layers if model_config is not None else 0
117
+ ),
118
+ load_stream=self.load_stream,
119
+ lmc_connector=self.lmcache_connector,
120
+ )
121
+ kvcache.register_layer_transfer_counter(self.layer_done_executor)
122
+
123
+ self._in_flight_nodes: list[TreeNode] = []
124
+ self._node_lock = threading.Lock()
125
+
126
+ def reset(self): # type: ignore[override]
127
+ super().reset()
128
+ if hasattr(self, "_in_flight_nodes"):
129
+ with self._node_lock:
130
+ self._in_flight_nodes.clear()
131
+
132
+ def match_prefix(self, key: List[int], **kwargs) -> MatchResult: # type: ignore[override]
133
+ """Match cached prefix; if there's a tail miss, prefetch from LMCache.
134
+
135
+ Reuses the base matching logic to obtain (value, last_node). If there
136
+ remains a *page-aligned* uncached suffix and there is room (or after
137
+ eviction), we allocate token slots and trigger an async LMCache load
138
+ into those slots, then materialize a new child node for the retrieved
139
+ chunk.
140
+ """
141
+ if self.disable or not key:
142
+ return super().match_prefix(key, **kwargs)
143
+
144
+ if self.page_size != 1:
145
+ aligned_len = len(key) // self.page_size * self.page_size
146
+ key = key[:aligned_len]
147
+
148
+ base_res = super().match_prefix(key, **kwargs)
149
+ value: torch.Tensor = base_res.device_indices
150
+ last_node: TreeNode = base_res.last_device_node
151
+
152
+ if value.numel() == len(key):
153
+ return base_res
154
+
155
+ uncached_len = len(key) - value.numel()
156
+ if uncached_len == 0:
157
+ return base_res
158
+
159
+ chunk_size = self.lmcache_connector.chunk_size()
160
+ prefix_pad = value.numel() % chunk_size
161
+
162
+ if self.token_to_kv_pool_allocator.available_size() < uncached_len:
163
+ self.evict(uncached_len)
164
+
165
+ token_slots = self.token_to_kv_pool_allocator.alloc(uncached_len)
166
+ if token_slots is None:
167
+ return base_res
168
+
169
+ slot_mapping = torch.cat(
170
+ [
171
+ torch.full((value.numel(),), -1, dtype=torch.int64, device=self.device),
172
+ token_slots.detach().clone().to(torch.int64).to(self.device),
173
+ ]
174
+ )
175
+
176
+ with torch.cuda.stream(self.load_stream):
177
+ num_retrieved = self.lmcache_connector.start_load_kv(
178
+ LoadMetadata(
179
+ token_ids=key, # full page-aligned key
180
+ slot_mapping=slot_mapping,
181
+ offset=value.numel() - prefix_pad, # LMCache offset convention
182
+ )
183
+ )
184
+ logger.debug("num_retrieved_tokens: %s", num_retrieved)
185
+
186
+ if num_retrieved > 0:
187
+ self.token_to_kv_pool_allocator.free(
188
+ token_slots[(num_retrieved - prefix_pad) :]
189
+ )
190
+ else:
191
+ self.token_to_kv_pool_allocator.free(token_slots)
192
+
193
+ if num_retrieved > 0:
194
+ fetched = num_retrieved - prefix_pad
195
+ new_node = TreeNode()
196
+ start = value.numel()
197
+ end = start + fetched
198
+ new_node.key = key[start:end]
199
+ new_node.value = token_slots[:fetched]
200
+ new_node.parent = last_node
201
+ last_node.children[self.get_child_key_fn(new_node.key)] = new_node
202
+ last_node = new_node
203
+
204
+ value = torch.cat([value, token_slots[:fetched]])
205
+ self.evictable_size_ += fetched
206
+
207
+ self._record_store_event(new_node.parent)
208
+ self._record_store_event(new_node)
209
+
210
+ return MatchResult(
211
+ device_indices=value,
212
+ last_device_node=last_node,
213
+ last_host_node=last_node,
214
+ )
215
+
216
+ return base_res
217
+
218
+ def cache_finished_req(self, req: "Req") -> None: # type: ignore[override]
219
+ """On request completion, insert device KV into radix and store to LMCache."""
220
+
221
+ super().cache_finished_req(req)
222
+
223
+ token_ids = (req.origin_input_ids + req.output_ids)[:-1]
224
+ kv_indices = self.req_to_token_pool.req_to_token[
225
+ req.req_pool_idx, : len(token_ids)
226
+ ]
227
+
228
+ _, new_last_node, _, _ = self.match_prefix(token_ids)
229
+ assert new_last_node is not None
230
+
231
+ self.inc_lock_ref(new_last_node)
232
+ store_md = StoreMetadata(
233
+ last_node=new_last_node,
234
+ token_ids=token_ids,
235
+ kv_indices=kv_indices,
236
+ offset=0,
237
+ )
238
+ with torch.cuda.stream(self.store_stream):
239
+ self.lmcache_connector.store_kv(store_md)
240
+ with self._node_lock:
241
+ self._in_flight_nodes.append(new_last_node)
242
+
243
+ def evict(self, num_tokens: int) -> None: # type: ignore[override]
244
+ """Before base eviction, wait for any outstanding stores and release locks."""
245
+ if self.disable:
246
+ return
247
+
248
+ self.store_stream.synchronize()
249
+ with self._node_lock:
250
+ for node in self._in_flight_nodes:
251
+ self.dec_lock_ref(node)
252
+ self._in_flight_nodes.clear()
253
+
254
+ super().evict(num_tokens)
255
+
256
+ def pretty_print(self): # type: ignore[override]
257
+ super().pretty_print()
258
+ try:
259
+ logger.debug(
260
+ "evictable=%d protected=%d", self.evictable_size_, self.protected_size_
261
+ )
262
+ except Exception: # pragma: no cover
263
+ pass
264
+
265
+
266
+ if __name__ == "__main__":
267
+ cache = LMCRadixCache(
268
+ req_to_token_pool=None,
269
+ token_to_kv_pool_allocator=None,
270
+ page_size=1,
271
+ disable=False,
272
+ enable_kv_cache_events=False,
273
+ model_config=None,
274
+ tp_size=1,
275
+ rank=0,
276
+ tp_group=None,
277
+ )
278
+ cache.insert([1, 2, 3], torch.tensor([10, 11, 12], dtype=torch.int64))
279
+ cache.insert([1, 2, 3, 4], torch.tensor([10, 11, 12, 13], dtype=torch.int64))
280
+ cache.pretty_print()
@@ -0,0 +1,121 @@
1
+ try:
2
+ from lmcache.integration.sglang.sglang_adapter import (
3
+ LMCacheLayerwiseConnector,
4
+ LoadMetadata,
5
+ StoreMetadata,
6
+ )
7
+ except ImportError:
8
+ raise RuntimeError(
9
+ "LMCache is not installed. Please install it by running `pip install lmcache` in the root directory of LMCache"
10
+ )
11
+
12
+ import os
13
+
14
+ import torch
15
+
16
+ from sglang.srt.configs.model_config import ModelConfig
17
+
18
+ os.environ["LMCACHE_USE_EXPERIMENTAL"] = "True"
19
+ os.environ["LMCACHE_CONFIG_FILE"] = "example_config.yaml"
20
+
21
+
22
+ def test_load_store_metadata():
23
+ model_config = ModelConfig(
24
+ model_path="Qwen/Qwen3-4B",
25
+ )
26
+
27
+ # Generate Dummy KV Cache
28
+ head_num = model_config.num_key_value_heads
29
+ head_dim = model_config.head_dim
30
+ layer_num = model_config.num_hidden_layers
31
+ buffer_size = 256
32
+ input_id_len = 16
33
+
34
+ k_buffer = [
35
+ torch.randn(buffer_size, head_num, head_dim, dtype=torch.bfloat16).cuda()
36
+ for _ in range(layer_num)
37
+ ]
38
+ v_buffer = [
39
+ torch.randn(buffer_size, head_num, head_dim, dtype=torch.bfloat16).cuda()
40
+ for _ in range(layer_num)
41
+ ]
42
+
43
+ connector = LMCacheLayerwiseConnector(model_config, 1, 0, k_buffer, v_buffer)
44
+
45
+ fake_token_ids = torch.randint(0, model_config.vocab_size, (input_id_len,)).tolist()
46
+ fake_kv_indices = torch.randint(0, buffer_size, (input_id_len,))
47
+ offset = 0
48
+
49
+ store_metadata = StoreMetadata(
50
+ last_node=None,
51
+ token_ids=fake_token_ids,
52
+ kv_indices=fake_kv_indices,
53
+ offset=offset,
54
+ )
55
+
56
+ load_metadata = LoadMetadata(
57
+ token_ids=fake_token_ids,
58
+ slot_mapping=fake_kv_indices,
59
+ offset=offset,
60
+ )
61
+
62
+ current_stream = torch.cuda.current_stream()
63
+
64
+ retrieve_token_num = connector.start_load_kv(load_metadata)
65
+ assert retrieve_token_num == 0
66
+
67
+ connector.store_kv(store_metadata)
68
+ current_stream.synchronize()
69
+
70
+ # check retrieve
71
+ gt_key_buffer = [
72
+ torch.zeros(input_id_len, head_num, head_dim, dtype=torch.bfloat16).cuda()
73
+ for _ in range(layer_num)
74
+ ]
75
+ gt_value_buffer = [
76
+ torch.zeros(input_id_len, head_num, head_dim, dtype=torch.bfloat16).cuda()
77
+ for _ in range(layer_num)
78
+ ]
79
+
80
+ for i in range(layer_num):
81
+ gt_key_buffer[i] = k_buffer[i][fake_kv_indices]
82
+ gt_value_buffer[i] = v_buffer[i][fake_kv_indices]
83
+
84
+ # clear the k_buffer and v_buffer
85
+ for _ in range(layer_num):
86
+ k_buffer[i].zero_()
87
+ v_buffer[i].zero_()
88
+
89
+ retrieve_token_num = connector.start_load_kv(load_metadata)
90
+ assert retrieve_token_num == input_id_len
91
+
92
+ for i in range(layer_num):
93
+ current_stream.synchronize()
94
+ connector.load_kv_layerwise(i)
95
+
96
+ current_stream.synchronize()
97
+ test_key_buffer = [
98
+ torch.zeros(input_id_len, head_num, head_dim, dtype=torch.bfloat16).cuda()
99
+ for _ in range(layer_num)
100
+ ]
101
+ test_value_buffer = [
102
+ torch.zeros(input_id_len, head_num, head_dim, dtype=torch.bfloat16).cuda()
103
+ for _ in range(layer_num)
104
+ ]
105
+
106
+ for i in range(layer_num):
107
+ test_key_buffer[i] = k_buffer[i][fake_kv_indices]
108
+ test_value_buffer[i] = v_buffer[i][fake_kv_indices]
109
+
110
+ for i in range(layer_num):
111
+ assert torch.allclose(test_key_buffer[i], gt_key_buffer[i])
112
+ assert torch.allclose(test_value_buffer[i], gt_value_buffer[i])
113
+
114
+ print("================================================")
115
+ print("TEST_LOAD_STORE_METADATA PASSED!")
116
+ print("================================================")
117
+ connector.close()
118
+
119
+
120
+ if __name__ == "__main__":
121
+ test_load_store_metadata()
@@ -72,6 +72,26 @@ class MooncakeStoreConfig:
72
72
  master_server_address=os.getenv("MOONCAKE_MASTER"),
73
73
  )
74
74
 
75
+ @staticmethod
76
+ def load_from_extra_config(extra_config: dict) -> "MooncakeStoreConfig":
77
+ """Load config from extra_config dictionary."""
78
+ if "master_server_address" not in extra_config:
79
+ raise ValueError("master_server_address is required in extra_config")
80
+
81
+ return MooncakeStoreConfig(
82
+ local_hostname=extra_config.get("local_hostname", "localhost"),
83
+ metadata_server=extra_config.get("metadata_server", "P2PHANDSHAKE"),
84
+ global_segment_size=extra_config.get(
85
+ "global_segment_size", DEFAULT_GLOBAL_SEGMENT_SIZE
86
+ ),
87
+ local_buffer_size=extra_config.get(
88
+ "local_buffer_size", DEFAULT_LOCAL_BUFFER_SIZE
89
+ ),
90
+ protocol=extra_config.get("protocol", "tcp"),
91
+ device_name=extra_config.get("device_name", "auto"),
92
+ master_server_address=extra_config["master_server_address"],
93
+ )
94
+
75
95
  def __post_init__(self):
76
96
  if self.device_name == "auto":
77
97
  os.environ["MC_MS_AUTO_DISC"] = "1"
@@ -93,14 +113,39 @@ class MooncakeStore(HiCacheStorage):
93
113
 
94
114
  try:
95
115
  self.store = MooncakeDistributedStore()
96
- self.config = MooncakeStoreConfig.load_from_env()
97
- logger.info("Mooncake Configuration loaded from env successfully.")
116
+
117
+ extra_config = (
118
+ getattr(storage_config, "extra_config", None)
119
+ if storage_config
120
+ else None
121
+ )
122
+ # Load configuration with master_server_address prioritized from extra_config if available
123
+ if (
124
+ extra_config is not None
125
+ and extra_config.get("master_server_address") is not None
126
+ ):
127
+ # Load from extra_config
128
+ self.config = MooncakeStoreConfig.load_from_extra_config(extra_config)
129
+ logger.info(
130
+ "Mooncake Configuration loaded from extra_config successfully."
131
+ )
132
+ else:
133
+ # Load from environment variables
134
+ self.config = MooncakeStoreConfig.load_from_env()
135
+ logger.info("Mooncake Configuration loaded from env successfully.")
136
+
137
+ tp_scale_factor = 1 if storage_config is None else storage_config.tp_size
138
+
139
+ per_tp_global_segment_size = (
140
+ self.config.global_segment_size // tp_scale_factor
141
+ )
142
+ per_tp_local_buffer_size = self.config.local_buffer_size // tp_scale_factor
98
143
 
99
144
  ret_code = self.store.setup(
100
145
  self.config.local_hostname,
101
146
  self.config.metadata_server,
102
- self.config.global_segment_size,
103
- self.config.local_buffer_size,
147
+ per_tp_global_segment_size,
148
+ per_tp_local_buffer_size,
104
149
  self.config.protocol,
105
150
  self.config.device_name,
106
151
  self.config.master_server_address,
@@ -264,9 +309,6 @@ class MooncakeStore(HiCacheStorage):
264
309
  return i // key_multiplier
265
310
  return len(query_keys) // key_multiplier
266
311
 
267
- def delete(self, key) -> None:
268
- raise (NotImplementedError)
269
-
270
312
  def close(self):
271
313
  # MooncakeDistributedStore will automatically call the destructor, so
272
314
  # it is unnecessary to close it manually.
@@ -60,8 +60,6 @@ class TreeNode:
60
60
  self.last_access_time = time.monotonic()
61
61
 
62
62
  self.hit_count = 0
63
- # indicating the node is loading KV cache from host
64
- self.loading = False
65
63
  # store the host indices of KV cache
66
64
  self.host_value = None
67
65