sglang 0.4.6.post4__py3-none-any.whl → 0.4.6.post5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/bench_offline_throughput.py +6 -6
- sglang/bench_one_batch.py +5 -4
- sglang/bench_one_batch_server.py +23 -15
- sglang/bench_serving.py +133 -57
- sglang/compile_deep_gemm.py +4 -4
- sglang/srt/configs/model_config.py +39 -28
- sglang/srt/conversation.py +1 -1
- sglang/srt/disaggregation/decode.py +122 -133
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +142 -0
- sglang/srt/disaggregation/fake/conn.py +3 -13
- sglang/srt/disaggregation/kv_events.py +357 -0
- sglang/srt/disaggregation/mini_lb.py +57 -24
- sglang/srt/disaggregation/mooncake/conn.py +11 -2
- sglang/srt/disaggregation/mooncake/transfer_engine.py +2 -1
- sglang/srt/disaggregation/nixl/conn.py +9 -19
- sglang/srt/disaggregation/prefill.py +126 -44
- sglang/srt/disaggregation/utils.py +116 -5
- sglang/srt/distributed/utils.py +3 -3
- sglang/srt/entrypoints/EngineBase.py +5 -0
- sglang/srt/entrypoints/engine.py +28 -8
- sglang/srt/entrypoints/http_server.py +6 -4
- sglang/srt/entrypoints/http_server_engine.py +5 -2
- sglang/srt/function_call/base_format_detector.py +250 -0
- sglang/srt/function_call/core_types.py +34 -0
- sglang/srt/function_call/deepseekv3_detector.py +157 -0
- sglang/srt/function_call/ebnf_composer.py +234 -0
- sglang/srt/function_call/function_call_parser.py +175 -0
- sglang/srt/function_call/llama32_detector.py +74 -0
- sglang/srt/function_call/mistral_detector.py +84 -0
- sglang/srt/function_call/pythonic_detector.py +163 -0
- sglang/srt/function_call/qwen25_detector.py +67 -0
- sglang/srt/function_call/utils.py +35 -0
- sglang/srt/hf_transformers_utils.py +46 -7
- sglang/srt/layers/attention/aiter_backend.py +513 -0
- sglang/srt/layers/attention/flashattention_backend.py +63 -17
- sglang/srt/layers/attention/flashinfer_mla_backend.py +8 -4
- sglang/srt/layers/attention/flashmla_backend.py +340 -78
- sglang/srt/layers/attention/triton_backend.py +3 -0
- sglang/srt/layers/attention/utils.py +2 -2
- sglang/srt/layers/attention/vision.py +1 -1
- sglang/srt/layers/communicator.py +451 -0
- sglang/srt/layers/dp_attention.py +0 -10
- sglang/srt/layers/moe/cutlass_moe.py +207 -0
- sglang/srt/layers/moe/ep_moe/kernels.py +33 -11
- sglang/srt/layers/moe/ep_moe/layer.py +104 -50
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +82 -7
- sglang/srt/layers/moe/fused_moe_triton/layer.py +14 -0
- sglang/srt/layers/moe/topk.py +66 -9
- sglang/srt/layers/multimodal.py +70 -0
- sglang/srt/layers/quantization/__init__.py +7 -2
- sglang/srt/layers/quantization/deep_gemm.py +5 -3
- sglang/srt/layers/quantization/fp8.py +90 -0
- sglang/srt/layers/quantization/fp8_utils.py +6 -0
- sglang/srt/layers/quantization/gptq.py +298 -6
- sglang/srt/layers/quantization/int8_kernel.py +18 -5
- sglang/srt/layers/quantization/qoq.py +244 -0
- sglang/srt/lora/lora_manager.py +1 -3
- sglang/srt/managers/deepseek_eplb.py +278 -0
- sglang/srt/managers/eplb_manager.py +55 -0
- sglang/srt/managers/expert_distribution.py +704 -56
- sglang/srt/managers/expert_location.py +394 -0
- sglang/srt/managers/expert_location_dispatch.py +91 -0
- sglang/srt/managers/io_struct.py +16 -3
- sglang/srt/managers/mm_utils.py +293 -139
- sglang/srt/managers/multimodal_processors/base_processor.py +127 -42
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +6 -1
- sglang/srt/managers/multimodal_processors/gemma3.py +31 -6
- sglang/srt/managers/multimodal_processors/internvl.py +14 -5
- sglang/srt/managers/multimodal_processors/janus_pro.py +7 -1
- sglang/srt/managers/multimodal_processors/kimi_vl.py +7 -6
- sglang/srt/managers/multimodal_processors/llava.py +3 -3
- sglang/srt/managers/multimodal_processors/minicpm.py +25 -31
- sglang/srt/managers/multimodal_processors/mllama4.py +6 -0
- sglang/srt/managers/multimodal_processors/pixtral.py +9 -9
- sglang/srt/managers/multimodal_processors/qwen_vl.py +58 -16
- sglang/srt/managers/schedule_batch.py +49 -21
- sglang/srt/managers/schedule_policy.py +4 -5
- sglang/srt/managers/scheduler.py +92 -50
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +99 -24
- sglang/srt/mem_cache/base_prefix_cache.py +3 -0
- sglang/srt/mem_cache/chunk_cache.py +3 -1
- sglang/srt/mem_cache/hiradix_cache.py +4 -4
- sglang/srt/mem_cache/memory_pool.py +74 -52
- sglang/srt/mem_cache/multimodal_cache.py +45 -0
- sglang/srt/mem_cache/radix_cache.py +58 -5
- sglang/srt/metrics/collector.py +2 -2
- sglang/srt/mm_utils.py +10 -0
- sglang/srt/model_executor/cuda_graph_runner.py +20 -9
- sglang/srt/model_executor/expert_location_updater.py +422 -0
- sglang/srt/model_executor/forward_batch_info.py +4 -0
- sglang/srt/model_executor/model_runner.py +144 -54
- sglang/srt/model_loader/loader.py +10 -6
- sglang/srt/models/clip.py +5 -1
- sglang/srt/models/deepseek_v2.py +297 -343
- sglang/srt/models/exaone.py +8 -3
- sglang/srt/models/gemma3_mm.py +70 -33
- sglang/srt/models/llama4.py +10 -2
- sglang/srt/models/llava.py +26 -18
- sglang/srt/models/mimo_mtp.py +220 -0
- sglang/srt/models/minicpmo.py +5 -12
- sglang/srt/models/mistral.py +71 -1
- sglang/srt/models/mllama.py +3 -3
- sglang/srt/models/qwen2.py +95 -26
- sglang/srt/models/qwen2_5_vl.py +8 -0
- sglang/srt/models/qwen2_moe.py +330 -60
- sglang/srt/models/qwen2_vl.py +6 -0
- sglang/srt/models/qwen3.py +52 -10
- sglang/srt/models/qwen3_moe.py +411 -48
- sglang/srt/models/siglip.py +294 -0
- sglang/srt/openai_api/adapter.py +28 -16
- sglang/srt/openai_api/protocol.py +6 -0
- sglang/srt/operations.py +154 -0
- sglang/srt/operations_strategy.py +31 -0
- sglang/srt/server_args.py +134 -24
- sglang/srt/speculative/eagle_utils.py +131 -0
- sglang/srt/speculative/eagle_worker.py +47 -2
- sglang/srt/utils.py +68 -12
- sglang/test/test_cutlass_moe.py +278 -0
- sglang/test/test_utils.py +2 -36
- sglang/utils.py +2 -2
- sglang/version.py +1 -1
- {sglang-0.4.6.post4.dist-info → sglang-0.4.6.post5.dist-info}/METADATA +20 -11
- {sglang-0.4.6.post4.dist-info → sglang-0.4.6.post5.dist-info}/RECORD +128 -102
- {sglang-0.4.6.post4.dist-info → sglang-0.4.6.post5.dist-info}/WHEEL +1 -1
- sglang/srt/function_call_parser.py +0 -858
- sglang/srt/platforms/interface.py +0 -371
- /sglang/srt/models/{xiaomi_mimo.py → mimo.py} +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.6.post5.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.6.post4.dist-info → sglang-0.4.6.post5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,278 @@
|
|
1
|
+
# This file is copied from https://github.com/deepseek-ai/EPLB/blob/main/eplb.py since that one is not a pypi package
|
2
|
+
|
3
|
+
from typing import Literal, Tuple
|
4
|
+
|
5
|
+
import torch
|
6
|
+
|
7
|
+
|
8
|
+
def pack_groups(tokens_per_group: torch.Tensor, num_nodes: int) -> torch.Tensor:
|
9
|
+
num_layers, num_groups = tokens_per_group.shape
|
10
|
+
assert num_groups % num_nodes == 0
|
11
|
+
groups_per_rank = num_groups // num_nodes
|
12
|
+
|
13
|
+
indices = tokens_per_group.float().sort(-1, descending=True).indices.cpu()
|
14
|
+
ret = torch.full_like(
|
15
|
+
tokens_per_group, fill_value=-1, dtype=torch.int64, device="cpu"
|
16
|
+
)
|
17
|
+
for layer in range(num_layers):
|
18
|
+
node_tokens = [0] * num_nodes
|
19
|
+
node_groups = [0] * num_nodes
|
20
|
+
for group in indices[layer]:
|
21
|
+
|
22
|
+
def key_func(rank: int) -> int:
|
23
|
+
if node_groups[rank] >= groups_per_rank:
|
24
|
+
return 1, 0
|
25
|
+
else:
|
26
|
+
return 0, node_tokens[rank]
|
27
|
+
|
28
|
+
rank = min(range(num_nodes), key=key_func)
|
29
|
+
assert node_groups[rank] < groups_per_rank
|
30
|
+
ret[layer, group] = rank * groups_per_rank + node_groups[rank]
|
31
|
+
node_tokens[rank] += tokens_per_group[layer, group]
|
32
|
+
node_groups[rank] += 1
|
33
|
+
return ret
|
34
|
+
|
35
|
+
|
36
|
+
def make_redundant_experts_chunkwise(
|
37
|
+
tokens_per_expert: torch.Tensor,
|
38
|
+
num_physical_experts: int,
|
39
|
+
num_local_physical_experts: int,
|
40
|
+
num_physical_experts_per_chunk: int,
|
41
|
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
42
|
+
num_steps, num_moe_layers, num_logical_experts = tokens_per_expert.shape
|
43
|
+
num_redundancy_experts = num_physical_experts - num_logical_experts
|
44
|
+
|
45
|
+
physical_to_logical_map = torch.empty(
|
46
|
+
num_moe_layers,
|
47
|
+
num_physical_experts,
|
48
|
+
dtype=torch.int,
|
49
|
+
device=tokens_per_expert.device,
|
50
|
+
)
|
51
|
+
logical_to_physical_map = torch.full(
|
52
|
+
(num_moe_layers, num_logical_experts, num_redundancy_experts + 1),
|
53
|
+
-1,
|
54
|
+
dtype=torch.int,
|
55
|
+
device=tokens_per_expert.device,
|
56
|
+
)
|
57
|
+
logical_count = torch.ones(
|
58
|
+
num_moe_layers,
|
59
|
+
num_logical_experts,
|
60
|
+
dtype=torch.int,
|
61
|
+
device=tokens_per_expert.device,
|
62
|
+
)
|
63
|
+
|
64
|
+
assert num_physical_experts % num_physical_experts_per_chunk == 0
|
65
|
+
num_chunks = num_physical_experts // num_physical_experts_per_chunk
|
66
|
+
assert num_logical_experts % num_chunks == 0
|
67
|
+
num_logical_experts_per_group = num_logical_experts // num_chunks
|
68
|
+
assert num_redundancy_experts % num_chunks == 0
|
69
|
+
num_redundancy_experts_per_group = num_redundancy_experts // num_chunks
|
70
|
+
|
71
|
+
arange_num_moe_layers_num_groups = torch.arange(
|
72
|
+
num_moe_layers * num_chunks, dtype=torch.int, device=tokens_per_expert.device
|
73
|
+
)
|
74
|
+
arange_num_logical_experts = torch.arange(
|
75
|
+
num_logical_experts, dtype=torch.int, device=tokens_per_expert.device
|
76
|
+
)
|
77
|
+
arange_num_logical_experts_per_group = torch.arange(
|
78
|
+
num_logical_experts_per_group, dtype=torch.int, device=tokens_per_expert.device
|
79
|
+
)
|
80
|
+
arange_num_groups = torch.arange(
|
81
|
+
num_chunks, dtype=torch.int, device=tokens_per_expert.device
|
82
|
+
)
|
83
|
+
physical_to_logical_map.view(
|
84
|
+
num_moe_layers, num_chunks, num_physical_experts_per_chunk
|
85
|
+
)[:, :, :num_logical_experts_per_group] = arange_num_logical_experts.view(
|
86
|
+
num_chunks, num_logical_experts_per_group
|
87
|
+
)
|
88
|
+
logical_to_physical_map[:, :, 0] = (
|
89
|
+
arange_num_logical_experts_per_group.expand(
|
90
|
+
num_chunks, num_logical_experts_per_group
|
91
|
+
)
|
92
|
+
+ arange_num_groups[:, None] * num_physical_experts_per_chunk
|
93
|
+
).view(num_logical_experts)
|
94
|
+
|
95
|
+
tokens_per_expert_all_diff = tokens_per_expert + arange_num_logical_experts * 1e-4
|
96
|
+
for i in range(num_redundancy_experts_per_group):
|
97
|
+
score = (
|
98
|
+
tokens_per_expert_all_diff / logical_count
|
99
|
+
) # NOTE: Values in score must be different from each other
|
100
|
+
score1 = tokens_per_expert / (logical_count + 1)
|
101
|
+
score = score.view(
|
102
|
+
num_steps, num_moe_layers, num_chunks, num_logical_experts_per_group
|
103
|
+
)
|
104
|
+
score1 = score1.view_as(score)
|
105
|
+
values, indices = score.max(-1, keepdim=True)
|
106
|
+
values = values.expand_as(score).contiguous()
|
107
|
+
score.scatter_(-1, indices, score1.gather(-1, indices))
|
108
|
+
values.scatter_(-1, indices, score.max(-1, keepdim=True).values)
|
109
|
+
redundancy_indices = values.sum(0).argmin(-1)
|
110
|
+
physical_to_logical_map.view(
|
111
|
+
num_moe_layers, num_chunks, num_physical_experts_per_chunk
|
112
|
+
)[:, :, num_logical_experts_per_group + i] = (
|
113
|
+
redundancy_indices + arange_num_groups * num_logical_experts_per_group
|
114
|
+
)
|
115
|
+
redundancy_count = (
|
116
|
+
logical_count.view(
|
117
|
+
num_moe_layers * num_chunks, num_logical_experts_per_group
|
118
|
+
)
|
119
|
+
.gather(-1, redundancy_indices.view(num_moe_layers * num_chunks, 1))
|
120
|
+
.squeeze(1)
|
121
|
+
)
|
122
|
+
physical_redundancy_indices = (
|
123
|
+
(
|
124
|
+
arange_num_groups * num_physical_experts_per_chunk
|
125
|
+
+ num_logical_experts_per_group
|
126
|
+
+ i
|
127
|
+
)
|
128
|
+
.expand(num_moe_layers, num_chunks)
|
129
|
+
.flatten()
|
130
|
+
)
|
131
|
+
logical_to_physical_map.view(
|
132
|
+
num_moe_layers * num_chunks,
|
133
|
+
num_logical_experts_per_group,
|
134
|
+
num_redundancy_experts + 1,
|
135
|
+
)[
|
136
|
+
arange_num_moe_layers_num_groups,
|
137
|
+
redundancy_indices.view(num_moe_layers * num_chunks),
|
138
|
+
redundancy_count,
|
139
|
+
] = physical_redundancy_indices
|
140
|
+
logical_count.view(num_moe_layers * num_chunks, num_logical_experts_per_group)[
|
141
|
+
arange_num_moe_layers_num_groups,
|
142
|
+
redundancy_indices.view(num_moe_layers * num_chunks),
|
143
|
+
] += 1
|
144
|
+
|
145
|
+
if num_local_physical_experts > 1:
|
146
|
+
# Load-balancing between GPUs
|
147
|
+
physical_to_logical_map_int64 = physical_to_logical_map.to(torch.int64)
|
148
|
+
counts = logical_count.gather(-1, physical_to_logical_map_int64)
|
149
|
+
score = tokens_per_expert.sum(0).gather(-1, physical_to_logical_map_int64)
|
150
|
+
score = score / counts
|
151
|
+
score = score.view(num_moe_layers, num_chunks, num_physical_experts_per_chunk)
|
152
|
+
indices = score.argsort(-1, descending=True)
|
153
|
+
indices += torch.arange(
|
154
|
+
0,
|
155
|
+
num_physical_experts,
|
156
|
+
num_physical_experts_per_chunk,
|
157
|
+
dtype=indices.dtype,
|
158
|
+
device=indices.device,
|
159
|
+
)[None, :, None]
|
160
|
+
|
161
|
+
assert num_physical_experts_per_chunk % num_local_physical_experts == 0
|
162
|
+
num_local_groups = num_physical_experts_per_chunk // num_local_physical_experts
|
163
|
+
indices = indices.view(
|
164
|
+
num_moe_layers, num_chunks, num_local_physical_experts, num_local_groups
|
165
|
+
)
|
166
|
+
indices[:, :, 1::2, :] = indices[:, :, 1::2, :].flip(-1)
|
167
|
+
indices = indices.transpose(2, 3)
|
168
|
+
indices = indices.reshape(num_moe_layers, num_physical_experts)
|
169
|
+
physical_to_logical_map = physical_to_logical_map.gather(-1, indices)
|
170
|
+
mask = logical_to_physical_map == -1
|
171
|
+
logical_to_physical_map[mask] = 0
|
172
|
+
logical_to_physical_map = (
|
173
|
+
indices.argsort(-1)
|
174
|
+
.gather(
|
175
|
+
-1, logical_to_physical_map.view(num_moe_layers, -1).to(torch.int64)
|
176
|
+
)
|
177
|
+
.view_as(logical_to_physical_map)
|
178
|
+
.to(torch.int)
|
179
|
+
)
|
180
|
+
logical_to_physical_map[mask] = -1
|
181
|
+
|
182
|
+
return physical_to_logical_map, logical_to_physical_map, logical_count
|
183
|
+
|
184
|
+
|
185
|
+
def decode_rebalance_experts(
|
186
|
+
tokens_per_expert: torch.Tensor,
|
187
|
+
num_physical_experts: int,
|
188
|
+
num_local_physical_experts: int,
|
189
|
+
):
|
190
|
+
return make_redundant_experts_chunkwise(
|
191
|
+
tokens_per_expert,
|
192
|
+
num_physical_experts,
|
193
|
+
num_local_physical_experts,
|
194
|
+
num_physical_experts,
|
195
|
+
)
|
196
|
+
|
197
|
+
|
198
|
+
def prefill_rebalance_experts(
|
199
|
+
tokens_per_expert: torch.Tensor,
|
200
|
+
num_physical_experts: int,
|
201
|
+
num_local_physical_experts: int,
|
202
|
+
num_groups: int,
|
203
|
+
num_nodes: int,
|
204
|
+
):
|
205
|
+
tokens_per_expert = tokens_per_expert.float().cpu()
|
206
|
+
|
207
|
+
num_steps, _, num_logical_experts = tokens_per_expert.shape
|
208
|
+
assert num_logical_experts % num_groups == 0
|
209
|
+
group_size = num_logical_experts // num_groups
|
210
|
+
assert num_groups % num_nodes == 0, f"{num_groups=} {num_nodes=}"
|
211
|
+
|
212
|
+
tokens_per_group = tokens_per_expert.sum(0).unflatten(-1, (num_groups, -1)).sum(-1)
|
213
|
+
group_perm = pack_groups(
|
214
|
+
tokens_per_group, num_nodes
|
215
|
+
) # [num_moe_layers, num_groups] => [num_moe_layers, num_nodes]
|
216
|
+
|
217
|
+
# log2mlog [layers, #logexp] -> [layers, #logexp]
|
218
|
+
log2mlog = (
|
219
|
+
(group_perm * group_size).unsqueeze(-1)
|
220
|
+
+ torch.arange(group_size, dtype=torch.int64, device=group_perm.device)
|
221
|
+
).flatten(-2)
|
222
|
+
|
223
|
+
# mlog2log [layers, #logexp] -> [layers, #logexp], inverse of log2mlog
|
224
|
+
mlog2log = torch.empty_like(log2mlog)
|
225
|
+
arange = torch.arange(
|
226
|
+
num_logical_experts, dtype=torch.int64, device=mlog2log.device
|
227
|
+
)
|
228
|
+
mlog2log.scatter_(1, log2mlog, arange.expand(log2mlog.size(0), -1))
|
229
|
+
|
230
|
+
# tokens_per_mlog[i][j][k] = tokens_per_expert[i][j][mlog2log[j][k]]
|
231
|
+
tokens_per_mlog = tokens_per_expert.gather(
|
232
|
+
2, mlog2log.unsqueeze(0).expand(num_steps, -1, -1)
|
233
|
+
)
|
234
|
+
|
235
|
+
phy2mlog, mlog2phy, mlog_count = make_redundant_experts_chunkwise(
|
236
|
+
tokens_per_mlog,
|
237
|
+
num_physical_experts,
|
238
|
+
num_local_physical_experts,
|
239
|
+
num_physical_experts // num_nodes,
|
240
|
+
)
|
241
|
+
|
242
|
+
# phy2log[i][j] = mlog2log[i][phy2mlog[i][j]]
|
243
|
+
phy2log = mlog2log.gather(1, phy2mlog.to(torch.int64))
|
244
|
+
|
245
|
+
# mlog2phy: [num_moe_layers, num_logical_experts, ...]
|
246
|
+
# log2phy[i][j][k] = mlog2phy[i][log2mlog[i][j]][k]
|
247
|
+
log2phy = mlog2phy.gather(
|
248
|
+
1, log2mlog.unsqueeze(-1).expand(-1, -1, mlog2phy.size(-1)).to(torch.int64)
|
249
|
+
)
|
250
|
+
|
251
|
+
# log_count[i][j] = mlog_count[i][log2mlog[i][j]]
|
252
|
+
log_count = mlog_count.gather(1, log2mlog)
|
253
|
+
return phy2log, log2phy, log_count
|
254
|
+
|
255
|
+
|
256
|
+
def rebalance_experts(
|
257
|
+
tokens_per_expert: torch.Tensor,
|
258
|
+
num_physical_experts: int,
|
259
|
+
num_local_physical_experts: int,
|
260
|
+
num_groups: int,
|
261
|
+
num_nodes: int,
|
262
|
+
phase: Literal["prefill", "decode"],
|
263
|
+
):
|
264
|
+
if phase == "prefill":
|
265
|
+
return prefill_rebalance_experts(
|
266
|
+
tokens_per_expert=tokens_per_expert,
|
267
|
+
num_physical_experts=num_physical_experts,
|
268
|
+
num_local_physical_experts=num_local_physical_experts,
|
269
|
+
num_groups=num_groups,
|
270
|
+
num_nodes=num_nodes,
|
271
|
+
)
|
272
|
+
if phase == "decode":
|
273
|
+
return decode_rebalance_experts(
|
274
|
+
tokens_per_expert=tokens_per_expert,
|
275
|
+
num_physical_experts=num_physical_experts,
|
276
|
+
num_local_physical_experts=num_local_physical_experts,
|
277
|
+
)
|
278
|
+
raise NotImplementedError
|
@@ -0,0 +1,55 @@
|
|
1
|
+
import logging
|
2
|
+
import time
|
3
|
+
from typing import TYPE_CHECKING
|
4
|
+
|
5
|
+
import torch.cuda
|
6
|
+
|
7
|
+
from sglang.srt.managers.expert_distribution import (
|
8
|
+
get_global_expert_distribution_recorder,
|
9
|
+
)
|
10
|
+
from sglang.srt.managers.expert_location import ExpertLocationMetadata
|
11
|
+
|
12
|
+
if TYPE_CHECKING:
|
13
|
+
from sglang.srt.model_executor.model_runner import ModelRunner
|
14
|
+
|
15
|
+
logger = logging.getLogger(__name__)
|
16
|
+
|
17
|
+
|
18
|
+
class EPLBManager:
|
19
|
+
def __init__(self, model_runner: "ModelRunner"):
|
20
|
+
super().__init__()
|
21
|
+
self._model_runner = model_runner
|
22
|
+
self._server_args = model_runner.server_args
|
23
|
+
|
24
|
+
# Otherwise, the circular buffer will contain stale data. If the case is needed, it can be implemented.
|
25
|
+
assert (
|
26
|
+
self._server_args.eplb_rebalance_num_iterations
|
27
|
+
<= self._server_args.expert_distribution_recorder_buffer_size
|
28
|
+
), "eplb_rebalance_num_iterations must be less than expert_distribution_recorder_buffer_size"
|
29
|
+
|
30
|
+
get_global_expert_distribution_recorder().start_record()
|
31
|
+
|
32
|
+
logger.info(
|
33
|
+
f"[EPLBManager] system started, will rebalance per {self._server_args.eplb_rebalance_num_iterations} iterations."
|
34
|
+
)
|
35
|
+
|
36
|
+
def on_forward_pass_end(self, forward_pass_id: int):
|
37
|
+
if forward_pass_id % self._server_args.eplb_rebalance_num_iterations == 0:
|
38
|
+
self.rebalance()
|
39
|
+
|
40
|
+
def rebalance(self):
|
41
|
+
logger.info("[EPLBManager] rebalance start")
|
42
|
+
torch.cuda.synchronize()
|
43
|
+
time_start = time.time()
|
44
|
+
|
45
|
+
logical_count = get_global_expert_distribution_recorder().dump_record(
|
46
|
+
output_mode="object"
|
47
|
+
)["logical_count"]
|
48
|
+
expert_location_metadata = ExpertLocationMetadata.init_by_eplb(
|
49
|
+
self._server_args, self._model_runner.model_config, logical_count
|
50
|
+
)
|
51
|
+
self._model_runner.update_expert_location(expert_location_metadata)
|
52
|
+
|
53
|
+
torch.cuda.synchronize()
|
54
|
+
time_end = time.time()
|
55
|
+
logger.info(f"[EPLBManager] rebalance end time={time_end - time_start:.3f}s")
|