sglang 0.4.4.post1__py3-none-any.whl → 0.4.4.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -0
- sglang/api.py +6 -0
- sglang/bench_one_batch.py +1 -1
- sglang/bench_one_batch_server.py +1 -1
- sglang/bench_serving.py +26 -4
- sglang/check_env.py +3 -4
- sglang/lang/backend/openai.py +18 -5
- sglang/lang/chat_template.py +28 -7
- sglang/lang/interpreter.py +7 -3
- sglang/lang/ir.py +10 -0
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/code_completion_parser.py +174 -0
- sglang/srt/configs/__init__.py +2 -6
- sglang/srt/configs/deepseekvl2.py +676 -0
- sglang/srt/configs/janus_pro.py +3 -4
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +49 -8
- sglang/srt/configs/utils.py +25 -0
- sglang/srt/connector/__init__.py +51 -0
- sglang/srt/connector/base_connector.py +112 -0
- sglang/srt/connector/redis.py +85 -0
- sglang/srt/connector/s3.py +122 -0
- sglang/srt/connector/serde/__init__.py +31 -0
- sglang/srt/connector/serde/safe_serde.py +29 -0
- sglang/srt/connector/serde/serde.py +43 -0
- sglang/srt/connector/utils.py +35 -0
- sglang/srt/conversation.py +88 -0
- sglang/srt/disaggregation/conn.py +81 -0
- sglang/srt/disaggregation/decode.py +495 -0
- sglang/srt/disaggregation/mini_lb.py +285 -0
- sglang/srt/disaggregation/prefill.py +249 -0
- sglang/srt/disaggregation/utils.py +44 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +1 -1
- sglang/srt/distributed/parallel_state.py +42 -8
- sglang/srt/entrypoints/engine.py +55 -5
- sglang/srt/entrypoints/http_server.py +78 -13
- sglang/srt/entrypoints/verl_engine.py +2 -0
- sglang/srt/function_call_parser.py +133 -55
- sglang/srt/hf_transformers_utils.py +28 -3
- sglang/srt/layers/activation.py +4 -2
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/flashattention_backend.py +434 -0
- sglang/srt/layers/attention/flashinfer_backend.py +1 -1
- sglang/srt/layers/attention/flashmla_backend.py +284 -0
- sglang/srt/layers/attention/triton_backend.py +171 -38
- sglang/srt/layers/attention/triton_ops/decode_attention.py +94 -31
- sglang/srt/layers/attention/triton_ops/extend_attention.py +14 -5
- sglang/srt/layers/attention/utils.py +53 -0
- sglang/srt/layers/attention/vision.py +9 -28
- sglang/srt/layers/dp_attention.py +41 -19
- sglang/srt/layers/layernorm.py +24 -2
- sglang/srt/layers/linear.py +17 -5
- sglang/srt/layers/logits_processor.py +25 -7
- sglang/srt/layers/moe/ep_moe/kernels.py +110 -11
- sglang/srt/layers/moe/ep_moe/layer.py +273 -1
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +416 -0
- sglang/srt/layers/moe/fused_moe_native.py +2 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +23 -32
- sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -2
- sglang/srt/layers/moe/topk.py +60 -20
- sglang/srt/layers/parameter.py +1 -1
- sglang/srt/layers/quantization/__init__.py +80 -53
- sglang/srt/layers/quantization/awq.py +200 -0
- sglang/srt/layers/quantization/base_config.py +5 -0
- sglang/srt/layers/quantization/blockwise_int8.py +1 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +0 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +652 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +658 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +9 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +56 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +162 -0
- sglang/srt/layers/quantization/compressed_tensors/utils.py +218 -0
- sglang/srt/layers/quantization/fp8.py +76 -34
- sglang/srt/layers/quantization/fp8_kernel.py +25 -8
- sglang/srt/layers/quantization/fp8_utils.py +284 -28
- sglang/srt/layers/quantization/gptq.py +36 -19
- sglang/srt/layers/quantization/kv_cache.py +98 -0
- sglang/srt/layers/quantization/modelopt_quant.py +9 -7
- sglang/srt/layers/quantization/utils.py +153 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +70 -19
- sglang/srt/layers/rotary_embedding.py +78 -87
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/lora/backend/base_backend.py +4 -4
- sglang/srt/lora/backend/flashinfer_backend.py +12 -9
- sglang/srt/lora/backend/triton_backend.py +5 -8
- sglang/srt/lora/layers.py +87 -33
- sglang/srt/lora/lora.py +2 -22
- sglang/srt/lora/lora_manager.py +67 -30
- sglang/srt/lora/mem_pool.py +117 -52
- sglang/srt/lora/triton_ops/gate_up_lora_b.py +10 -4
- sglang/srt/lora/triton_ops/qkv_lora_b.py +8 -3
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +16 -5
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +11 -6
- sglang/srt/lora/utils.py +18 -1
- sglang/srt/managers/cache_controller.py +2 -5
- sglang/srt/managers/data_parallel_controller.py +30 -8
- sglang/srt/managers/expert_distribution.py +81 -0
- sglang/srt/managers/io_struct.py +43 -5
- sglang/srt/managers/mm_utils.py +373 -0
- sglang/srt/managers/multimodal_processor.py +68 -0
- sglang/srt/managers/multimodal_processors/base_processor.py +275 -0
- sglang/srt/managers/multimodal_processors/clip.py +63 -0
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +119 -0
- sglang/srt/managers/multimodal_processors/gemma3.py +83 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/janus_pro.py +20 -15
- sglang/srt/managers/{image_processors → multimodal_processors}/llava.py +10 -15
- sglang/srt/managers/multimodal_processors/minicpm.py +167 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/mlama.py +7 -8
- sglang/srt/managers/{image_processors → multimodal_processors}/qwen_vl.py +28 -22
- sglang/srt/managers/schedule_batch.py +134 -30
- sglang/srt/managers/scheduler.py +290 -31
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +59 -24
- sglang/srt/managers/tp_worker.py +4 -1
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -3
- sglang/srt/managers/utils.py +6 -1
- sglang/srt/mem_cache/hiradix_cache.py +18 -7
- sglang/srt/mem_cache/memory_pool.py +255 -98
- sglang/srt/mem_cache/paged_allocator.py +2 -2
- sglang/srt/mem_cache/radix_cache.py +4 -4
- sglang/srt/model_executor/cuda_graph_runner.py +36 -21
- sglang/srt/model_executor/forward_batch_info.py +68 -11
- sglang/srt/model_executor/model_runner.py +75 -8
- sglang/srt/model_loader/loader.py +171 -3
- sglang/srt/model_loader/weight_utils.py +51 -3
- sglang/srt/models/clip.py +563 -0
- sglang/srt/models/deepseek_janus_pro.py +31 -88
- sglang/srt/models/deepseek_nextn.py +22 -10
- sglang/srt/models/deepseek_v2.py +329 -73
- sglang/srt/models/deepseek_vl2.py +358 -0
- sglang/srt/models/gemma3_causal.py +694 -0
- sglang/srt/models/gemma3_mm.py +468 -0
- sglang/srt/models/llama.py +47 -7
- sglang/srt/models/llama_eagle.py +1 -0
- sglang/srt/models/llama_eagle3.py +196 -0
- sglang/srt/models/llava.py +3 -3
- sglang/srt/models/llavavid.py +3 -3
- sglang/srt/models/minicpmo.py +1995 -0
- sglang/srt/models/minicpmv.py +62 -137
- sglang/srt/models/mllama.py +4 -4
- sglang/srt/models/phi3_small.py +1 -1
- sglang/srt/models/qwen2.py +3 -0
- sglang/srt/models/qwen2_5_vl.py +68 -146
- sglang/srt/models/qwen2_classification.py +75 -0
- sglang/srt/models/qwen2_moe.py +9 -1
- sglang/srt/models/qwen2_vl.py +25 -63
- sglang/srt/openai_api/adapter.py +201 -104
- sglang/srt/openai_api/protocol.py +33 -7
- sglang/srt/patch_torch.py +71 -0
- sglang/srt/sampling/sampling_batch_info.py +1 -1
- sglang/srt/sampling/sampling_params.py +6 -6
- sglang/srt/server_args.py +114 -14
- sglang/srt/speculative/build_eagle_tree.py +7 -347
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +41 -5
- sglang/srt/speculative/eagle_utils.py +208 -252
- sglang/srt/speculative/eagle_worker.py +140 -54
- sglang/srt/speculative/spec_info.py +6 -1
- sglang/srt/torch_memory_saver_adapter.py +22 -0
- sglang/srt/utils.py +215 -21
- sglang/test/__init__.py +0 -0
- sglang/test/attention/__init__.py +0 -0
- sglang/test/attention/test_flashattn_backend.py +312 -0
- sglang/test/runners.py +29 -2
- sglang/test/test_activation.py +2 -1
- sglang/test/test_block_fp8.py +5 -4
- sglang/test/test_block_fp8_ep.py +2 -1
- sglang/test/test_dynamic_grad_mode.py +58 -0
- sglang/test/test_layernorm.py +3 -2
- sglang/test/test_utils.py +56 -5
- sglang/utils.py +31 -0
- sglang/version.py +1 -1
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/METADATA +16 -8
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/RECORD +180 -132
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/WHEEL +1 -1
- sglang/srt/configs/qwen2_5_vl_config.py +0 -1006
- sglang/srt/managers/image_processor.py +0 -55
- sglang/srt/managers/image_processors/base_image_processor.py +0 -219
- sglang/srt/managers/image_processors/minicpmv.py +0 -86
- sglang/srt/managers/multi_modality_padding.py +0 -134
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info/licenses}/LICENSE +0 -0
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,7 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
3
|
from dataclasses import dataclass
|
4
|
-
from typing import TYPE_CHECKING, List
|
4
|
+
from typing import TYPE_CHECKING, List, Optional
|
5
5
|
|
6
6
|
import torch
|
7
7
|
import torch.nn.functional as F
|
@@ -13,18 +13,26 @@ from sglang.srt.layers.logits_processor import LogitsProcessorOutput
|
|
13
13
|
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
14
14
|
from sglang.srt.mem_cache.memory_pool import TokenToKVPoolAllocator
|
15
15
|
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode
|
16
|
-
from sglang.srt.speculative.build_eagle_tree import
|
17
|
-
|
18
|
-
build_tree_kernel_efficient,
|
19
|
-
)
|
20
|
-
from sglang.srt.utils import is_cuda_available
|
16
|
+
from sglang.srt.speculative.build_eagle_tree import build_tree_kernel_efficient
|
17
|
+
from sglang.srt.utils import is_cuda_available, is_hip
|
21
18
|
|
22
19
|
if is_cuda_available():
|
23
|
-
from sgl_kernel import
|
20
|
+
from sgl_kernel import (
|
21
|
+
top_k_renorm_prob,
|
22
|
+
top_p_renorm_prob,
|
23
|
+
tree_speculative_sampling_target_only,
|
24
|
+
verify_tree_greedy,
|
25
|
+
)
|
26
|
+
elif is_hip():
|
27
|
+
from sgl_kernel import verify_tree_greedy
|
24
28
|
|
25
29
|
if TYPE_CHECKING:
|
26
30
|
from sglang.srt.managers.schedule_batch import ScheduleBatch
|
27
31
|
|
32
|
+
import logging
|
33
|
+
|
34
|
+
logger = logging.getLogger(__name__)
|
35
|
+
|
28
36
|
|
29
37
|
@dataclass
|
30
38
|
class EagleDraftInput:
|
@@ -47,44 +55,32 @@ class EagleDraftInput:
|
|
47
55
|
kv_indptr: torch.Tensor = None
|
48
56
|
kv_indices: torch.Tensor = None
|
49
57
|
|
50
|
-
|
51
|
-
# e.g. [0, 2, 3, 4] if only the 1st request is finished
|
52
|
-
keep_indices: List[int] = None
|
58
|
+
all_padding_lens: Optional[torch.Tensor] = None
|
53
59
|
|
54
60
|
def prepare_for_extend(self, batch: ScheduleBatch):
|
55
|
-
assert batch.input_ids.numel() == batch.out_cache_loc.shape[0]
|
56
61
|
# Prefill only generate 1 token.
|
57
62
|
assert len(self.verified_id) == len(batch.seq_lens)
|
58
63
|
|
59
64
|
pt = 0
|
60
65
|
for i, extend_len in enumerate(batch.extend_lens):
|
61
66
|
input_ids = batch.input_ids[pt : pt + extend_len]
|
62
|
-
batch.input_ids[pt : pt + extend_len] = torch.
|
67
|
+
batch.input_ids[pt : pt + extend_len] = torch.cat(
|
63
68
|
(input_ids[1:], self.verified_id[i].reshape(1))
|
64
69
|
)
|
65
70
|
pt += extend_len
|
66
71
|
|
67
|
-
def prepare_extend_after_decode(
|
68
|
-
|
72
|
+
def prepare_extend_after_decode(
|
73
|
+
self,
|
74
|
+
batch: ScheduleBatch,
|
75
|
+
speculative_num_steps: int,
|
76
|
+
):
|
77
|
+
assert len(self.verified_id) == len(batch.out_cache_loc)
|
69
78
|
accept_length_cpu = batch.spec_info.accept_length_cpu
|
70
79
|
batch.extend_lens = [x + 1 for x in accept_length_cpu]
|
71
80
|
batch.extend_num_tokens = sum(batch.extend_lens)
|
72
81
|
batch.seq_lens = batch.spec_info.seq_lens_for_draft_extend
|
82
|
+
batch.req_pool_indices = batch.spec_info.req_pool_indices_for_draft_extend
|
73
83
|
seq_lens_cpu = batch.seq_lens.tolist()
|
74
|
-
assert len(batch.req_pool_indices) == len(batch.reqs)
|
75
|
-
|
76
|
-
pt = 0
|
77
|
-
i = 0
|
78
|
-
self.keep_indices = []
|
79
|
-
for idx, req in enumerate(batch.reqs):
|
80
|
-
if req.finished():
|
81
|
-
continue
|
82
|
-
self.keep_indices.append(idx)
|
83
|
-
# assert seq_len - pre_len == req.extend_input_len
|
84
|
-
input_len = batch.extend_lens[i]
|
85
|
-
seq_len = seq_lens_cpu[i]
|
86
|
-
pt += input_len
|
87
|
-
i += 1
|
88
84
|
|
89
85
|
self.positions = torch.empty_like(self.verified_id, dtype=torch.long)
|
90
86
|
new_verified_id = torch.empty_like(self.accept_length, dtype=torch.int32)
|
@@ -112,10 +108,6 @@ class EagleDraftInput:
|
|
112
108
|
req_to_token: torch.Tensor,
|
113
109
|
):
|
114
110
|
bs = self.accept_length.numel()
|
115
|
-
keep_indices = torch.tensor(self.keep_indices, device=req_pool_indices.device)
|
116
|
-
req_pool_indices = req_pool_indices[keep_indices]
|
117
|
-
assert req_pool_indices.shape[0] == bs
|
118
|
-
assert req_pool_indices.shape[0] == paged_kernel_lens.shape[0]
|
119
111
|
|
120
112
|
qo_indptr = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
121
113
|
qo_indptr[1:] = torch.cumsum(self.accept_length, dim=0)
|
@@ -172,7 +164,7 @@ class EagleVerifyOutput:
|
|
172
164
|
# Accepeted token length per sequence in a batch in CPU.
|
173
165
|
accept_length_per_req_cpu: List[int]
|
174
166
|
# Accepeted indices from logits_output.next_token_logits
|
175
|
-
|
167
|
+
accepeted_indices: torch.Tensor
|
176
168
|
|
177
169
|
|
178
170
|
@dataclass
|
@@ -200,67 +192,38 @@ class EagleVerifyInput:
|
|
200
192
|
topk: int,
|
201
193
|
spec_steps: int,
|
202
194
|
num_verify_tokens: int,
|
203
|
-
is_all_greedy: bool,
|
204
195
|
):
|
205
|
-
|
206
|
-
tree_mask,
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
position,
|
224
|
-
retrive_index,
|
225
|
-
None,
|
226
|
-
None,
|
227
|
-
retrive_cum_len,
|
228
|
-
num_verify_tokens,
|
229
|
-
spec_steps,
|
230
|
-
CaptureHiddenMode.FULL,
|
231
|
-
)
|
232
|
-
else:
|
233
|
-
(
|
234
|
-
tree_mask,
|
235
|
-
position,
|
236
|
-
retrive_index,
|
237
|
-
retrive_next_token,
|
238
|
-
retrive_next_sibling,
|
239
|
-
draft_tokens,
|
240
|
-
) = build_tree_kernel_efficient(
|
241
|
-
verified_id,
|
242
|
-
score_list,
|
243
|
-
token_list,
|
244
|
-
parents_list,
|
245
|
-
seq_lens,
|
246
|
-
seq_lens_sum,
|
247
|
-
topk,
|
248
|
-
spec_steps,
|
249
|
-
num_verify_tokens,
|
250
|
-
)
|
196
|
+
(
|
197
|
+
tree_mask,
|
198
|
+
position,
|
199
|
+
retrive_index,
|
200
|
+
retrive_next_token,
|
201
|
+
retrive_next_sibling,
|
202
|
+
draft_tokens,
|
203
|
+
) = build_tree_kernel_efficient(
|
204
|
+
verified_id,
|
205
|
+
score_list,
|
206
|
+
token_list,
|
207
|
+
parents_list,
|
208
|
+
seq_lens,
|
209
|
+
seq_lens_sum,
|
210
|
+
topk,
|
211
|
+
spec_steps,
|
212
|
+
num_verify_tokens,
|
213
|
+
)
|
251
214
|
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
215
|
+
return cls(
|
216
|
+
draft_tokens,
|
217
|
+
tree_mask,
|
218
|
+
position,
|
219
|
+
retrive_index,
|
220
|
+
retrive_next_token,
|
221
|
+
retrive_next_sibling,
|
222
|
+
None,
|
223
|
+
num_verify_tokens,
|
224
|
+
spec_steps,
|
225
|
+
CaptureHiddenMode.FULL,
|
226
|
+
)
|
264
227
|
|
265
228
|
def prepare_for_verify(self, batch: ScheduleBatch):
|
266
229
|
batch.input_ids = self.draft_token
|
@@ -291,7 +254,6 @@ class EagleVerifyInput:
|
|
291
254
|
dtype=torch.int32,
|
292
255
|
device="cuda",
|
293
256
|
)
|
294
|
-
|
295
257
|
cum_kv_seq_len = torch.zeros(
|
296
258
|
(batch_size + 1,), dtype=torch.int32, device="cuda"
|
297
259
|
)
|
@@ -304,7 +266,6 @@ class EagleVerifyInput:
|
|
304
266
|
dtype=torch.int32,
|
305
267
|
device="cuda",
|
306
268
|
)
|
307
|
-
|
308
269
|
create_flashinfer_kv_indices_triton[(batch_size,)](
|
309
270
|
req_to_token,
|
310
271
|
req_pool_indices,
|
@@ -322,65 +283,79 @@ class EagleVerifyInput:
|
|
322
283
|
logits_output: torch.Tensor,
|
323
284
|
token_to_kv_pool_allocator: TokenToKVPoolAllocator,
|
324
285
|
) -> torch.Tensor:
|
325
|
-
"""
|
326
|
-
|
286
|
+
"""
|
327
287
|
Verify and find accepted tokens based on logits output and batch
|
328
288
|
(which contains spec decoding information).
|
329
289
|
|
290
|
+
WARNING: This API in-place modifies the states of logits_output
|
291
|
+
|
330
292
|
This API updates values inside logits_output based on the accepted
|
331
293
|
tokens. I.e., logits_output.next_token_logits only contains
|
332
294
|
accepeted token logits.
|
333
295
|
"""
|
334
|
-
|
335
|
-
|
336
|
-
|
296
|
+
bs = self.retrive_index.shape[0]
|
297
|
+
candidates = self.draft_token.reshape(bs, self.draft_token_num)
|
298
|
+
sampling_info = batch.sampling_info
|
299
|
+
|
300
|
+
predict_shape = list(logits_output.next_token_logits.shape)[:-1]
|
301
|
+
predict_shape[-1] += 1
|
302
|
+
predict = torch.empty(predict_shape, dtype=torch.int32, device="cuda")
|
303
|
+
accept_index = torch.full(
|
304
|
+
(bs, self.spec_steps + 1), -1, dtype=torch.int32, device="cuda"
|
337
305
|
)
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
|
306
|
+
accept_length = torch.empty((bs,), dtype=torch.int32, device="cuda")
|
307
|
+
|
308
|
+
if sampling_info.penalizer_orchestrator.is_required:
|
309
|
+
# This is a relaxed version of penalties for speculative decoding.
|
310
|
+
linear_penalty = torch.zeros(
|
311
|
+
(bs, logits_output.next_token_logits.shape[1]),
|
312
|
+
dtype=torch.float32,
|
313
|
+
device="cuda",
|
345
314
|
)
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
accept_mask = candidates[:, 1:] == target_predict[:, :-1]
|
350
|
-
|
351
|
-
accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
|
352
|
-
max_draft_len = self.retrive_index.shape[-1]
|
353
|
-
accept_index = torch.full(
|
354
|
-
(bs, max_draft_len), -1, dtype=torch.int32, device="cuda"
|
315
|
+
sampling_info.apply_logits_bias(linear_penalty)
|
316
|
+
logits_output.next_token_logits.add_(
|
317
|
+
torch.repeat_interleave(linear_penalty, self.draft_token_num, dim=0)
|
355
318
|
)
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
|
366
|
-
self.
|
367
|
-
|
319
|
+
|
320
|
+
if batch.sampling_info.is_all_greedy:
|
321
|
+
target_predict = torch.argmax(logits_output.next_token_logits, dim=-1)
|
322
|
+
target_predict = target_predict.reshape(bs, self.draft_token_num)
|
323
|
+
|
324
|
+
verify_tree_greedy(
|
325
|
+
predicts=predict, # mutable
|
326
|
+
accept_index=accept_index, # mutable
|
327
|
+
accept_token_num=accept_length, # mutable
|
328
|
+
candidates=candidates.to(torch.int32),
|
329
|
+
retrive_index=self.retrive_index.to(torch.int32),
|
330
|
+
retrive_next_token=self.retrive_next_token.to(torch.int32),
|
331
|
+
retrive_next_sibling=self.retrive_next_sibling.to(torch.int32),
|
332
|
+
target_predict=target_predict.to(torch.int32),
|
368
333
|
)
|
369
334
|
else:
|
370
|
-
#
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
|
335
|
+
# apply temperature and get target probs
|
336
|
+
expanded_temperature = torch.repeat_interleave(
|
337
|
+
sampling_info.temperatures, self.draft_token_num, dim=0
|
338
|
+
) # (bs * draft_token_num, 1)
|
339
|
+
|
340
|
+
target_probs = F.softmax(
|
341
|
+
logits_output.next_token_logits / expanded_temperature, dim=-1
|
342
|
+
) # (bs * draft_token_num, vocab_size)
|
343
|
+
target_probs = top_k_renorm_prob(
|
344
|
+
target_probs,
|
345
|
+
torch.repeat_interleave(
|
346
|
+
sampling_info.top_ks, self.draft_token_num, dim=0
|
347
|
+
),
|
348
|
+
) # (bs * draft_token_num, vocab_size)
|
349
|
+
target_probs = top_p_renorm_prob(
|
350
|
+
target_probs,
|
351
|
+
torch.repeat_interleave(
|
352
|
+
sampling_info.top_ps, self.draft_token_num, dim=0
|
353
|
+
),
|
378
354
|
)
|
379
|
-
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
target_probs, 0, dtype=torch.float32, device="cuda"
|
355
|
+
target_probs = target_probs.reshape(bs, self.draft_token_num, -1)
|
356
|
+
|
357
|
+
draft_probs = torch.zeros(
|
358
|
+
target_probs.shape, dtype=torch.float32, device="cuda"
|
384
359
|
)
|
385
360
|
coins = torch.rand_like(candidates, dtype=torch.float32, device="cuda")
|
386
361
|
tree_speculative_sampling_target_only(
|
@@ -394,6 +369,12 @@ class EagleVerifyInput:
|
|
394
369
|
uniform_samples=coins,
|
395
370
|
target_probs=target_probs,
|
396
371
|
draft_probs=draft_probs,
|
372
|
+
threshold_single=global_server_args_dict[
|
373
|
+
"speculative_accept_threshold_single"
|
374
|
+
],
|
375
|
+
threshold_acc=global_server_args_dict[
|
376
|
+
"speculative_accept_threshold_acc"
|
377
|
+
],
|
397
378
|
deterministic=True,
|
398
379
|
)
|
399
380
|
|
@@ -425,119 +406,94 @@ class EagleVerifyInput:
|
|
425
406
|
new_accept_index.extend(new_accept_index_)
|
426
407
|
unfinished_index.append(i)
|
427
408
|
req.spec_verify_ct += 1
|
428
|
-
accept_length = (accept_index != -1).sum(dim=1) - 1
|
429
|
-
|
430
|
-
accept_index = accept_index[accept_index != -1]
|
431
|
-
accept_length_cpu = accept_length.tolist()
|
432
|
-
verified_id = predict[accept_index]
|
433
|
-
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
434
|
-
evict_mask[accept_index] = False
|
435
|
-
mem_need_free_idx = batch.out_cache_loc[evict_mask]
|
436
|
-
token_to_kv_pool_allocator.free(mem_need_free_idx)
|
437
|
-
assign_req_to_token_pool[(bs,)](
|
438
|
-
batch.req_pool_indices,
|
439
|
-
batch.req_to_token_pool.req_to_token,
|
440
|
-
batch.seq_lens,
|
441
|
-
batch.seq_lens + accept_length + 1,
|
442
|
-
batch.out_cache_loc[accept_index],
|
443
|
-
batch.req_to_token_pool.req_to_token.shape[1],
|
444
|
-
triton.next_power_of_2(bs),
|
445
|
-
)
|
446
|
-
batch.seq_lens.add_(accept_length + 1)
|
447
|
-
|
448
|
-
draft_input = EagleDraftInput()
|
449
|
-
if len(new_accept_index) > 0:
|
450
|
-
new_accept_index = torch.tensor(new_accept_index, device="cuda")
|
451
|
-
draft_input.hidden_states = batch.spec_info.hidden_states[new_accept_index]
|
452
|
-
draft_input.verified_id = predict[new_accept_index]
|
453
|
-
draft_input.accept_length = accept_length[unfinished_index]
|
454
|
-
draft_input.accept_length_cpu = [
|
455
|
-
accept_length_cpu[i] for i in unfinished_index
|
456
|
-
]
|
457
|
-
if has_finished:
|
458
|
-
draft_input.seq_lens_for_draft_extend = batch.seq_lens[unfinished_index]
|
459
|
-
else:
|
460
|
-
draft_input.seq_lens_for_draft_extend = batch.seq_lens
|
461
|
-
batch.out_cache_loc = batch.out_cache_loc[new_accept_index]
|
462
|
-
|
463
|
-
return EagleVerifyOutput(
|
464
|
-
draft_input=draft_input,
|
465
|
-
logits_output=logits_output,
|
466
|
-
verified_id=verified_id,
|
467
|
-
accept_length_per_req_cpu=accept_length_cpu,
|
468
|
-
accepeted_indices_cpu=accept_index,
|
469
|
-
)
|
470
409
|
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
483
|
-
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
|
504
|
-
|
505
|
-
|
506
|
-
|
507
|
-
|
508
|
-
|
509
|
-
|
510
|
-
|
511
|
-
|
512
|
-
|
513
|
-
|
514
|
-
|
515
|
-
|
516
|
-
|
517
|
-
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
|
526
|
-
|
527
|
-
|
528
|
-
|
529
|
-
|
530
|
-
|
531
|
-
|
532
|
-
|
533
|
-
|
534
|
-
|
535
|
-
|
536
|
-
|
537
|
-
|
538
|
-
|
539
|
-
|
540
|
-
|
410
|
+
if not has_finished:
|
411
|
+
accept_index = accept_index[accept_index != -1]
|
412
|
+
verified_id = predict[accept_index]
|
413
|
+
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
414
|
+
evict_mask[accept_index] = False
|
415
|
+
mem_need_free_idx = batch.out_cache_loc[evict_mask]
|
416
|
+
token_to_kv_pool_allocator.free(mem_need_free_idx)
|
417
|
+
batch.out_cache_loc = batch.out_cache_loc[accept_index]
|
418
|
+
assign_req_to_token_pool[(bs,)](
|
419
|
+
batch.req_pool_indices,
|
420
|
+
batch.req_to_token_pool.req_to_token,
|
421
|
+
batch.seq_lens,
|
422
|
+
batch.seq_lens + accept_length + 1,
|
423
|
+
batch.out_cache_loc,
|
424
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
425
|
+
triton.next_power_of_2(bs),
|
426
|
+
)
|
427
|
+
batch.seq_lens.add_(accept_length + 1)
|
428
|
+
accept_length_cpu = accept_length.tolist()
|
429
|
+
|
430
|
+
draft_input = EagleDraftInput()
|
431
|
+
draft_input.hidden_states = batch.spec_info.hidden_states[accept_index]
|
432
|
+
draft_input.verified_id = verified_id
|
433
|
+
draft_input.accept_length = accept_length
|
434
|
+
draft_input.accept_length_cpu = accept_length_cpu
|
435
|
+
draft_input.seq_lens_for_draft_extend = batch.seq_lens
|
436
|
+
draft_input.req_pool_indices_for_draft_extend = batch.req_pool_indices
|
437
|
+
|
438
|
+
return EagleVerifyOutput(
|
439
|
+
draft_input=draft_input,
|
440
|
+
logits_output=logits_output,
|
441
|
+
verified_id=verified_id,
|
442
|
+
accept_length_per_req_cpu=accept_length_cpu,
|
443
|
+
accepeted_indices=accept_index,
|
444
|
+
)
|
445
|
+
else:
|
446
|
+
accept_length = (accept_index != -1).sum(dim=1) - 1
|
447
|
+
accept_index = accept_index[accept_index != -1]
|
448
|
+
verified_id = predict[accept_index]
|
449
|
+
evict_mask = torch.full_like(self.draft_token, True, dtype=torch.bool)
|
450
|
+
evict_mask[accept_index] = False
|
451
|
+
mem_need_free_idx = batch.out_cache_loc[evict_mask]
|
452
|
+
token_to_kv_pool_allocator.free(mem_need_free_idx)
|
453
|
+
assign_req_to_token_pool[(bs,)](
|
454
|
+
batch.req_pool_indices,
|
455
|
+
batch.req_to_token_pool.req_to_token,
|
456
|
+
batch.seq_lens,
|
457
|
+
batch.seq_lens + accept_length + 1,
|
458
|
+
batch.out_cache_loc[accept_index],
|
459
|
+
batch.req_to_token_pool.req_to_token.shape[1],
|
460
|
+
triton.next_power_of_2(bs),
|
461
|
+
)
|
462
|
+
batch.seq_lens.add_(accept_length + 1)
|
463
|
+
accept_length_cpu = accept_length.tolist()
|
464
|
+
|
465
|
+
draft_input = EagleDraftInput()
|
466
|
+
if len(new_accept_index) > 0:
|
467
|
+
new_accept_index = torch.tensor(new_accept_index, device="cuda")
|
468
|
+
draft_input.hidden_states = batch.spec_info.hidden_states[
|
469
|
+
new_accept_index
|
470
|
+
]
|
471
|
+
draft_input.verified_id = predict[new_accept_index]
|
472
|
+
draft_input.accept_length = accept_length[unfinished_index]
|
473
|
+
draft_input.accept_length_cpu = [
|
474
|
+
accept_length_cpu[i] for i in unfinished_index
|
475
|
+
]
|
476
|
+
if has_finished:
|
477
|
+
draft_input.seq_lens_for_draft_extend = batch.seq_lens[
|
478
|
+
unfinished_index
|
479
|
+
]
|
480
|
+
draft_input.req_pool_indices_for_draft_extend = (
|
481
|
+
batch.req_pool_indices[unfinished_index]
|
482
|
+
)
|
483
|
+
else:
|
484
|
+
draft_input.seq_lens_for_draft_extend = batch.seq_lens
|
485
|
+
draft_input.req_pool_indices_for_draft_extend = (
|
486
|
+
batch.req_pool_indices
|
487
|
+
)
|
488
|
+
batch.out_cache_loc = batch.out_cache_loc[new_accept_index]
|
489
|
+
|
490
|
+
return EagleVerifyOutput(
|
491
|
+
draft_input=draft_input,
|
492
|
+
logits_output=logits_output,
|
493
|
+
verified_id=verified_id,
|
494
|
+
accept_length_per_req_cpu=accept_length_cpu,
|
495
|
+
accepeted_indices=accept_index,
|
496
|
+
)
|
541
497
|
|
542
498
|
|
543
499
|
@triton.jit
|