sglang 0.4.4.post1__py3-none-any.whl → 0.4.4.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +2 -0
- sglang/api.py +6 -0
- sglang/bench_one_batch.py +1 -1
- sglang/bench_one_batch_server.py +1 -1
- sglang/bench_serving.py +26 -4
- sglang/check_env.py +3 -4
- sglang/lang/backend/openai.py +18 -5
- sglang/lang/chat_template.py +28 -7
- sglang/lang/interpreter.py +7 -3
- sglang/lang/ir.py +10 -0
- sglang/srt/_custom_ops.py +1 -1
- sglang/srt/code_completion_parser.py +174 -0
- sglang/srt/configs/__init__.py +2 -6
- sglang/srt/configs/deepseekvl2.py +676 -0
- sglang/srt/configs/janus_pro.py +3 -4
- sglang/srt/configs/load_config.py +1 -0
- sglang/srt/configs/model_config.py +49 -8
- sglang/srt/configs/utils.py +25 -0
- sglang/srt/connector/__init__.py +51 -0
- sglang/srt/connector/base_connector.py +112 -0
- sglang/srt/connector/redis.py +85 -0
- sglang/srt/connector/s3.py +122 -0
- sglang/srt/connector/serde/__init__.py +31 -0
- sglang/srt/connector/serde/safe_serde.py +29 -0
- sglang/srt/connector/serde/serde.py +43 -0
- sglang/srt/connector/utils.py +35 -0
- sglang/srt/conversation.py +88 -0
- sglang/srt/disaggregation/conn.py +81 -0
- sglang/srt/disaggregation/decode.py +495 -0
- sglang/srt/disaggregation/mini_lb.py +285 -0
- sglang/srt/disaggregation/prefill.py +249 -0
- sglang/srt/disaggregation/utils.py +44 -0
- sglang/srt/distributed/device_communicators/custom_all_reduce.py +1 -1
- sglang/srt/distributed/parallel_state.py +42 -8
- sglang/srt/entrypoints/engine.py +55 -5
- sglang/srt/entrypoints/http_server.py +78 -13
- sglang/srt/entrypoints/verl_engine.py +2 -0
- sglang/srt/function_call_parser.py +133 -55
- sglang/srt/hf_transformers_utils.py +28 -3
- sglang/srt/layers/activation.py +4 -2
- sglang/srt/layers/attention/base_attn_backend.py +1 -1
- sglang/srt/layers/attention/flashattention_backend.py +434 -0
- sglang/srt/layers/attention/flashinfer_backend.py +1 -1
- sglang/srt/layers/attention/flashmla_backend.py +284 -0
- sglang/srt/layers/attention/triton_backend.py +171 -38
- sglang/srt/layers/attention/triton_ops/decode_attention.py +94 -31
- sglang/srt/layers/attention/triton_ops/extend_attention.py +14 -5
- sglang/srt/layers/attention/utils.py +53 -0
- sglang/srt/layers/attention/vision.py +9 -28
- sglang/srt/layers/dp_attention.py +41 -19
- sglang/srt/layers/layernorm.py +24 -2
- sglang/srt/layers/linear.py +17 -5
- sglang/srt/layers/logits_processor.py +25 -7
- sglang/srt/layers/moe/ep_moe/kernels.py +110 -11
- sglang/srt/layers/moe/ep_moe/layer.py +273 -1
- sglang/srt/layers/moe/ep_moe/token_dispatcher.py +416 -0
- sglang/srt/layers/moe/fused_moe_native.py +2 -1
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L20,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=64,device_name=NVIDIA_L40S,dtype=int8_w8a8.json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=64,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +23 -32
- sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -2
- sglang/srt/layers/moe/topk.py +60 -20
- sglang/srt/layers/parameter.py +1 -1
- sglang/srt/layers/quantization/__init__.py +80 -53
- sglang/srt/layers/quantization/awq.py +200 -0
- sglang/srt/layers/quantization/base_config.py +5 -0
- sglang/srt/layers/quantization/blockwise_int8.py +1 -1
- sglang/srt/layers/quantization/compressed_tensors/__init__.py +0 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors.py +652 -0
- sglang/srt/layers/quantization/compressed_tensors/compressed_tensors_moe.py +658 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/__init__.py +9 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +56 -0
- sglang/srt/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +162 -0
- sglang/srt/layers/quantization/compressed_tensors/utils.py +218 -0
- sglang/srt/layers/quantization/fp8.py +76 -34
- sglang/srt/layers/quantization/fp8_kernel.py +25 -8
- sglang/srt/layers/quantization/fp8_utils.py +284 -28
- sglang/srt/layers/quantization/gptq.py +36 -19
- sglang/srt/layers/quantization/kv_cache.py +98 -0
- sglang/srt/layers/quantization/modelopt_quant.py +9 -7
- sglang/srt/layers/quantization/utils.py +153 -0
- sglang/srt/layers/quantization/w8a8_fp8.py +70 -19
- sglang/srt/layers/rotary_embedding.py +78 -87
- sglang/srt/layers/sampler.py +1 -1
- sglang/srt/lora/backend/base_backend.py +4 -4
- sglang/srt/lora/backend/flashinfer_backend.py +12 -9
- sglang/srt/lora/backend/triton_backend.py +5 -8
- sglang/srt/lora/layers.py +87 -33
- sglang/srt/lora/lora.py +2 -22
- sglang/srt/lora/lora_manager.py +67 -30
- sglang/srt/lora/mem_pool.py +117 -52
- sglang/srt/lora/triton_ops/gate_up_lora_b.py +10 -4
- sglang/srt/lora/triton_ops/qkv_lora_b.py +8 -3
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +16 -5
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +11 -6
- sglang/srt/lora/utils.py +18 -1
- sglang/srt/managers/cache_controller.py +2 -5
- sglang/srt/managers/data_parallel_controller.py +30 -8
- sglang/srt/managers/expert_distribution.py +81 -0
- sglang/srt/managers/io_struct.py +43 -5
- sglang/srt/managers/mm_utils.py +373 -0
- sglang/srt/managers/multimodal_processor.py +68 -0
- sglang/srt/managers/multimodal_processors/base_processor.py +275 -0
- sglang/srt/managers/multimodal_processors/clip.py +63 -0
- sglang/srt/managers/multimodal_processors/deepseek_vl_v2.py +119 -0
- sglang/srt/managers/multimodal_processors/gemma3.py +83 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/janus_pro.py +20 -15
- sglang/srt/managers/{image_processors → multimodal_processors}/llava.py +10 -15
- sglang/srt/managers/multimodal_processors/minicpm.py +167 -0
- sglang/srt/managers/{image_processors → multimodal_processors}/mlama.py +7 -8
- sglang/srt/managers/{image_processors → multimodal_processors}/qwen_vl.py +28 -22
- sglang/srt/managers/schedule_batch.py +134 -30
- sglang/srt/managers/scheduler.py +290 -31
- sglang/srt/managers/session_controller.py +1 -1
- sglang/srt/managers/tokenizer_manager.py +59 -24
- sglang/srt/managers/tp_worker.py +4 -1
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -3
- sglang/srt/managers/utils.py +6 -1
- sglang/srt/mem_cache/hiradix_cache.py +18 -7
- sglang/srt/mem_cache/memory_pool.py +255 -98
- sglang/srt/mem_cache/paged_allocator.py +2 -2
- sglang/srt/mem_cache/radix_cache.py +4 -4
- sglang/srt/model_executor/cuda_graph_runner.py +36 -21
- sglang/srt/model_executor/forward_batch_info.py +68 -11
- sglang/srt/model_executor/model_runner.py +75 -8
- sglang/srt/model_loader/loader.py +171 -3
- sglang/srt/model_loader/weight_utils.py +51 -3
- sglang/srt/models/clip.py +563 -0
- sglang/srt/models/deepseek_janus_pro.py +31 -88
- sglang/srt/models/deepseek_nextn.py +22 -10
- sglang/srt/models/deepseek_v2.py +329 -73
- sglang/srt/models/deepseek_vl2.py +358 -0
- sglang/srt/models/gemma3_causal.py +694 -0
- sglang/srt/models/gemma3_mm.py +468 -0
- sglang/srt/models/llama.py +47 -7
- sglang/srt/models/llama_eagle.py +1 -0
- sglang/srt/models/llama_eagle3.py +196 -0
- sglang/srt/models/llava.py +3 -3
- sglang/srt/models/llavavid.py +3 -3
- sglang/srt/models/minicpmo.py +1995 -0
- sglang/srt/models/minicpmv.py +62 -137
- sglang/srt/models/mllama.py +4 -4
- sglang/srt/models/phi3_small.py +1 -1
- sglang/srt/models/qwen2.py +3 -0
- sglang/srt/models/qwen2_5_vl.py +68 -146
- sglang/srt/models/qwen2_classification.py +75 -0
- sglang/srt/models/qwen2_moe.py +9 -1
- sglang/srt/models/qwen2_vl.py +25 -63
- sglang/srt/openai_api/adapter.py +201 -104
- sglang/srt/openai_api/protocol.py +33 -7
- sglang/srt/patch_torch.py +71 -0
- sglang/srt/sampling/sampling_batch_info.py +1 -1
- sglang/srt/sampling/sampling_params.py +6 -6
- sglang/srt/server_args.py +114 -14
- sglang/srt/speculative/build_eagle_tree.py +7 -347
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +41 -5
- sglang/srt/speculative/eagle_utils.py +208 -252
- sglang/srt/speculative/eagle_worker.py +140 -54
- sglang/srt/speculative/spec_info.py +6 -1
- sglang/srt/torch_memory_saver_adapter.py +22 -0
- sglang/srt/utils.py +215 -21
- sglang/test/__init__.py +0 -0
- sglang/test/attention/__init__.py +0 -0
- sglang/test/attention/test_flashattn_backend.py +312 -0
- sglang/test/runners.py +29 -2
- sglang/test/test_activation.py +2 -1
- sglang/test/test_block_fp8.py +5 -4
- sglang/test/test_block_fp8_ep.py +2 -1
- sglang/test/test_dynamic_grad_mode.py +58 -0
- sglang/test/test_layernorm.py +3 -2
- sglang/test/test_utils.py +56 -5
- sglang/utils.py +31 -0
- sglang/version.py +1 -1
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/METADATA +16 -8
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/RECORD +180 -132
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/WHEEL +1 -1
- sglang/srt/configs/qwen2_5_vl_config.py +0 -1006
- sglang/srt/managers/image_processor.py +0 -55
- sglang/srt/managers/image_processors/base_image_processor.py +0 -219
- sglang/srt/managers/image_processors/minicpmv.py +0 -86
- sglang/srt/managers/multi_modality_padding.py +0 -134
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info/licenses}/LICENSE +0 -0
- {sglang-0.4.4.post1.dist-info → sglang-0.4.4.post3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,468 @@
|
|
1
|
+
# Copyright 2025 SGLang Team
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3
|
+
# you may not use this file except in compliance with the License.
|
4
|
+
# You may obtain a copy of the License at
|
5
|
+
#
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7
|
+
#
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11
|
+
# See the License for the specific language governing permissions and
|
12
|
+
# limitations under the License.
|
13
|
+
# ==============================================================================
|
14
|
+
|
15
|
+
# Adapted from:
|
16
|
+
# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/gemma3_mm.py
|
17
|
+
|
18
|
+
import logging
|
19
|
+
from functools import lru_cache
|
20
|
+
from typing import Dict, Iterable, List, Optional, Set, Tuple, TypedDict
|
21
|
+
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
from transformers import (
|
25
|
+
AutoModel,
|
26
|
+
BatchFeature,
|
27
|
+
Gemma3Config,
|
28
|
+
Gemma3Processor,
|
29
|
+
PreTrainedModel,
|
30
|
+
)
|
31
|
+
from transformers.models.gemma3.processing_gemma3 import Gemma3ProcessorKwargs
|
32
|
+
|
33
|
+
from sglang.srt.hf_transformers_utils import get_processor
|
34
|
+
from sglang.srt.layers.layernorm import Gemma3RMSNorm
|
35
|
+
from sglang.srt.layers.logits_processor import LogitsProcessor
|
36
|
+
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
37
|
+
from sglang.srt.managers.mm_utils import (
|
38
|
+
MultiModalityDataPaddingPatternTokenPairs,
|
39
|
+
general_mm_embed_routine,
|
40
|
+
)
|
41
|
+
from sglang.srt.managers.schedule_batch import MultimodalInputs
|
42
|
+
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
43
|
+
from sglang.srt.model_loader.weight_utils import (
|
44
|
+
default_weight_loader,
|
45
|
+
maybe_remap_kv_scale_name,
|
46
|
+
)
|
47
|
+
from sglang.srt.models.gemma3_causal import Gemma3ForCausalLM
|
48
|
+
from sglang.srt.utils import add_prefix
|
49
|
+
|
50
|
+
logger = logging.getLogger(__name__)
|
51
|
+
|
52
|
+
cached_get_processor = lru_cache(get_processor)
|
53
|
+
|
54
|
+
|
55
|
+
class Gemma3ImagePixelInputs(TypedDict):
|
56
|
+
pixel_values: torch.Tensor
|
57
|
+
"""Shape: `(batch_size * num_images, num_channels, height, width)`"""
|
58
|
+
|
59
|
+
|
60
|
+
class Gemma3MultiModalProjector(nn.Module):
|
61
|
+
"""Projector for Gemma3 multimodal."""
|
62
|
+
|
63
|
+
def __init__(self, config: Gemma3Config):
|
64
|
+
super().__init__()
|
65
|
+
|
66
|
+
self.mm_input_projection_weight = nn.Parameter(
|
67
|
+
torch.zeros(
|
68
|
+
config.vision_config.hidden_size, config.text_config.hidden_size
|
69
|
+
)
|
70
|
+
)
|
71
|
+
|
72
|
+
self.mm_soft_emb_norm = Gemma3RMSNorm(
|
73
|
+
config.vision_config.hidden_size, eps=config.vision_config.layer_norm_eps
|
74
|
+
)
|
75
|
+
|
76
|
+
self.patches_per_image = int(
|
77
|
+
config.vision_config.image_size // config.vision_config.patch_size
|
78
|
+
)
|
79
|
+
self.tokens_per_side = int(config.mm_tokens_per_image**0.5)
|
80
|
+
self.kernel_size = self.patches_per_image // self.tokens_per_side
|
81
|
+
self.avg_pool = nn.AvgPool2d(
|
82
|
+
kernel_size=self.kernel_size, stride=self.kernel_size
|
83
|
+
)
|
84
|
+
|
85
|
+
def forward(self, vision_outputs: torch.Tensor) -> torch.Tensor:
|
86
|
+
batch_size, seq_length, hidden_size = vision_outputs.shape
|
87
|
+
|
88
|
+
# Reshape for pooling
|
89
|
+
reshaped_vision_outputs = vision_outputs.transpose(1, 2)
|
90
|
+
reshaped_vision_outputs = reshaped_vision_outputs.reshape(
|
91
|
+
batch_size, hidden_size, self.patches_per_image, self.patches_per_image
|
92
|
+
)
|
93
|
+
reshaped_vision_outputs = reshaped_vision_outputs.contiguous()
|
94
|
+
|
95
|
+
# Apply pooling
|
96
|
+
pooled_vision_outputs = self.avg_pool(reshaped_vision_outputs)
|
97
|
+
pooled_vision_outputs = pooled_vision_outputs.flatten(2)
|
98
|
+
pooled_vision_outputs = pooled_vision_outputs.transpose(1, 2)
|
99
|
+
|
100
|
+
# Apply normalization
|
101
|
+
normed_vision_outputs = self.mm_soft_emb_norm(pooled_vision_outputs)
|
102
|
+
|
103
|
+
# Project to text embedding space
|
104
|
+
projected_vision_outputs = torch.matmul(
|
105
|
+
normed_vision_outputs, self.mm_input_projection_weight
|
106
|
+
)
|
107
|
+
|
108
|
+
return projected_vision_outputs.type_as(vision_outputs)
|
109
|
+
|
110
|
+
|
111
|
+
class Gemma3ForConditionalGeneration(PreTrainedModel):
|
112
|
+
config_class = Gemma3Config
|
113
|
+
"""Gemma3 multimodal model for conditional generation."""
|
114
|
+
|
115
|
+
# BitandBytes specific attributes
|
116
|
+
default_bitsandbytes_target_modules = [
|
117
|
+
".gate_proj.",
|
118
|
+
".down_proj.",
|
119
|
+
".up_proj.",
|
120
|
+
".q_proj.",
|
121
|
+
".k_proj.",
|
122
|
+
".v_proj.",
|
123
|
+
".o_proj.",
|
124
|
+
]
|
125
|
+
bitsandbytes_stacked_params_mapping = {
|
126
|
+
# shard_name, weight_name, index
|
127
|
+
"q_proj": ("qkv_proj", 0),
|
128
|
+
"k_proj": ("qkv_proj", 1),
|
129
|
+
"v_proj": ("qkv_proj", 2),
|
130
|
+
"gate_proj": ("gate_up_proj", 0),
|
131
|
+
"up_proj": ("gate_up_proj", 1),
|
132
|
+
}
|
133
|
+
|
134
|
+
packed_modules_mapping = {
|
135
|
+
"qkv_proj": [
|
136
|
+
"q_proj",
|
137
|
+
"k_proj",
|
138
|
+
"v_proj",
|
139
|
+
],
|
140
|
+
"gate_up_proj": [
|
141
|
+
"gate_proj",
|
142
|
+
"up_proj",
|
143
|
+
],
|
144
|
+
}
|
145
|
+
|
146
|
+
# LoRA specific attributes
|
147
|
+
supported_lora_modules = [
|
148
|
+
"qkv_proj",
|
149
|
+
"o_proj",
|
150
|
+
"gate_up_proj",
|
151
|
+
"down_proj",
|
152
|
+
]
|
153
|
+
# Gemma does not apply LoRA to the embedding layer.
|
154
|
+
embedding_modules = {}
|
155
|
+
embedding_padding_modules = []
|
156
|
+
supports_lora = True
|
157
|
+
|
158
|
+
def __init__(
|
159
|
+
self,
|
160
|
+
config: Gemma3Config,
|
161
|
+
quant_config: Optional[QuantizationConfig] = None,
|
162
|
+
prefix: str = "",
|
163
|
+
) -> None:
|
164
|
+
super().__init__(config=config)
|
165
|
+
self.config = config
|
166
|
+
self.quant_config = quant_config
|
167
|
+
# Vision components
|
168
|
+
# TODO: replace with vision attention
|
169
|
+
# self.vision_tower = SiglipVisionModel(
|
170
|
+
# config.vision_config,
|
171
|
+
# quant_config,
|
172
|
+
# prefix=add_prefix("vision_tower", prefix),
|
173
|
+
# )
|
174
|
+
self.vision_tower = AutoModel.from_config(config=config.vision_config)
|
175
|
+
self.multi_modal_projector = Gemma3MultiModalProjector(config)
|
176
|
+
self.vocab_size = config.text_config.vocab_size
|
177
|
+
|
178
|
+
# Text model
|
179
|
+
self.language_model = Gemma3ForCausalLM(
|
180
|
+
config.text_config, quant_config, prefix=add_prefix("model", prefix)
|
181
|
+
)
|
182
|
+
if self.language_model.logits_processor.logit_scale:
|
183
|
+
logit_scale = getattr(config, "logit_scale", 1.0)
|
184
|
+
self.language_model.logits_processor.logit_scale *= logit_scale
|
185
|
+
self.post_init()
|
186
|
+
|
187
|
+
def pad_input_ids(
|
188
|
+
self, input_ids: List[int], image_inputs: MultimodalInputs
|
189
|
+
) -> List[int]:
|
190
|
+
"""Pad input IDs with image tokens."""
|
191
|
+
# Get special token IDs
|
192
|
+
im_start_id: int = image_inputs.im_start_id
|
193
|
+
im_end_id: int = image_inputs.im_end_id
|
194
|
+
|
195
|
+
media_token_pairs = [(im_start_id, im_end_id)]
|
196
|
+
pattern = MultiModalityDataPaddingPatternTokenPairs(media_token_pairs)
|
197
|
+
ids = pattern.pad_input_tokens(input_ids, image_inputs)
|
198
|
+
return ids
|
199
|
+
|
200
|
+
def prepare_attn_masks(
|
201
|
+
self,
|
202
|
+
input_ids: torch.Tensor,
|
203
|
+
positions: torch.Tensor,
|
204
|
+
mask_dtype: torch.dtype,
|
205
|
+
**kwargs,
|
206
|
+
) -> Dict:
|
207
|
+
"""Prepare attention masks for multimodal inputs."""
|
208
|
+
kwargs["has_images"] = True
|
209
|
+
|
210
|
+
# Distinguish sequences by position id 0
|
211
|
+
start_indices = (positions == 0).cpu().nonzero()
|
212
|
+
num_seqs = len(start_indices)
|
213
|
+
seq_lens = []
|
214
|
+
|
215
|
+
for i in range(num_seqs):
|
216
|
+
start_idx = start_indices[i].item()
|
217
|
+
if i < num_seqs - 1:
|
218
|
+
end_idx = start_indices[i + 1].item()
|
219
|
+
else:
|
220
|
+
end_idx = len(input_ids)
|
221
|
+
seq_lens.append(end_idx - start_idx)
|
222
|
+
|
223
|
+
kwargs["seq_lens"] = seq_lens
|
224
|
+
|
225
|
+
# Create attention masks
|
226
|
+
global_attn_masks = []
|
227
|
+
local_attn_masks = []
|
228
|
+
sliding_window = self.config.text_config.interleaved_sliding_window
|
229
|
+
|
230
|
+
start_idx = 0
|
231
|
+
for seq_len in seq_lens:
|
232
|
+
end_idx = start_idx + seq_len
|
233
|
+
input_token_ids = input_ids[start_idx:end_idx]
|
234
|
+
start_idx = end_idx
|
235
|
+
|
236
|
+
# Create global causal mask
|
237
|
+
global_attn_mask = torch.empty(
|
238
|
+
1,
|
239
|
+
1,
|
240
|
+
seq_len,
|
241
|
+
seq_len,
|
242
|
+
dtype=mask_dtype,
|
243
|
+
device=input_ids.device,
|
244
|
+
)
|
245
|
+
global_attn_mask.fill_(float("-inf"))
|
246
|
+
global_attn_mask = global_attn_mask.triu(diagonal=1)
|
247
|
+
|
248
|
+
# Consider bidirectional attention between image tokens
|
249
|
+
img_mask = torch.zeros_like(global_attn_mask)
|
250
|
+
img_pos = input_token_ids == self.config.image_token_index
|
251
|
+
img_mask[:, :, :, img_pos] += 1
|
252
|
+
img_mask[:, :, img_pos, :] += 1
|
253
|
+
global_attn_mask = torch.where(img_mask == 2, 0, global_attn_mask)
|
254
|
+
global_attn_masks.append(global_attn_mask)
|
255
|
+
|
256
|
+
# Create local causal mask with sliding window
|
257
|
+
local_attn_mask = torch.ones_like(global_attn_mask)
|
258
|
+
local_attn_mask = torch.tril(local_attn_mask, diagonal=-sliding_window)
|
259
|
+
local_attn_mask = torch.where(
|
260
|
+
local_attn_mask == 0, global_attn_mask, float("-inf")
|
261
|
+
)
|
262
|
+
local_attn_masks.append(local_attn_mask)
|
263
|
+
|
264
|
+
kwargs["global_attn_masks"] = global_attn_masks
|
265
|
+
kwargs["local_attn_masks"] = local_attn_masks
|
266
|
+
return kwargs
|
267
|
+
|
268
|
+
def get_input_embeddings(self) -> nn.Embedding:
|
269
|
+
return self.language_model.get_input_embeddings()
|
270
|
+
|
271
|
+
def get_attention_sliding_window_size(self):
|
272
|
+
"""
|
273
|
+
This value is used to initialize attention backends in `ForwardBatch`.
|
274
|
+
"""
|
275
|
+
return self.language_model.get_attention_sliding_window_size()
|
276
|
+
|
277
|
+
def get_image_feature(self, image_input: MultimodalInputs):
|
278
|
+
"""
|
279
|
+
Projects the last hidden state from the vision model into language model space.
|
280
|
+
|
281
|
+
Args:
|
282
|
+
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
|
283
|
+
The tensors corresponding to the input images.
|
284
|
+
Returns:
|
285
|
+
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`).
|
286
|
+
"""
|
287
|
+
pixel_values = image_input.pixel_values
|
288
|
+
pixel_values = pixel_values.to("cuda")
|
289
|
+
pixel_values = pixel_values.to(dtype=self.language_model.dtype())
|
290
|
+
|
291
|
+
vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state
|
292
|
+
image_features = self.multi_modal_projector(vision_outputs)
|
293
|
+
return image_features
|
294
|
+
|
295
|
+
def embed_mm_inputs(
|
296
|
+
self,
|
297
|
+
input_ids: torch.Tensor,
|
298
|
+
forward_batch: ForwardBatch,
|
299
|
+
image_input: MultimodalInputs,
|
300
|
+
) -> torch.Tensor:
|
301
|
+
if input_ids is None:
|
302
|
+
raise ValueError("Unimplemented")
|
303
|
+
# boolean-masking image tokens
|
304
|
+
special_image_mask = torch.isin(
|
305
|
+
input_ids,
|
306
|
+
torch.tensor(image_input.pad_values, device=input_ids.device),
|
307
|
+
).unsqueeze(-1)
|
308
|
+
num_image_tokens_in_input_ids = special_image_mask.sum()
|
309
|
+
|
310
|
+
inputs_embeds = None
|
311
|
+
if num_image_tokens_in_input_ids == 0:
|
312
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
313
|
+
return inputs_embeds
|
314
|
+
else:
|
315
|
+
# print(f"image tokens from input_ids: {inputs_embeds[special_image_mask].numel()}")
|
316
|
+
image_features = self.get_image_feature(image_input.pixel_values)
|
317
|
+
|
318
|
+
# print(f"image tokens from image embeddings: {image_features.numel()}")
|
319
|
+
num_image_tokens_in_embedding = (
|
320
|
+
image_features.shape[0] * image_features.shape[1]
|
321
|
+
)
|
322
|
+
|
323
|
+
if num_image_tokens_in_input_ids != num_image_tokens_in_embedding:
|
324
|
+
num_image = num_image_tokens_in_input_ids // image_features.shape[1]
|
325
|
+
image_features = image_features[:num_image, :]
|
326
|
+
logger.warning(
|
327
|
+
f"Number of images does not match number of special image tokens in the input text. "
|
328
|
+
f"Got {num_image_tokens_in_input_ids} image tokens in the text but {num_image_tokens_in_embedding} "
|
329
|
+
"tokens from image embeddings."
|
330
|
+
)
|
331
|
+
|
332
|
+
# Important: clamp after extracting original image boundaries
|
333
|
+
input_ids.clamp_(min=0, max=self.vocab_size - 1)
|
334
|
+
|
335
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
336
|
+
|
337
|
+
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(
|
338
|
+
inputs_embeds.device
|
339
|
+
)
|
340
|
+
|
341
|
+
image_features = image_features.to(
|
342
|
+
inputs_embeds.device, inputs_embeds.dtype
|
343
|
+
)
|
344
|
+
inputs_embeds = inputs_embeds.masked_scatter(
|
345
|
+
special_image_mask, image_features
|
346
|
+
)
|
347
|
+
|
348
|
+
return inputs_embeds
|
349
|
+
|
350
|
+
@torch.no_grad()
|
351
|
+
def forward(
|
352
|
+
self,
|
353
|
+
input_ids: torch.LongTensor,
|
354
|
+
positions: torch.Tensor,
|
355
|
+
forward_batch: ForwardBatch,
|
356
|
+
input_embeds: torch.Tensor = None,
|
357
|
+
**kwargs: object,
|
358
|
+
) -> LogitsProcessor:
|
359
|
+
r"""
|
360
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
361
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
362
|
+
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
363
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
|
364
|
+
|
365
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
366
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
367
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
368
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
369
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
370
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
371
|
+
|
372
|
+
Returns:
|
373
|
+
|
374
|
+
Example:
|
375
|
+
|
376
|
+
```python
|
377
|
+
>>> from PIL import Image
|
378
|
+
>>> import requests
|
379
|
+
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
380
|
+
|
381
|
+
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf")
|
382
|
+
>>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf")
|
383
|
+
|
384
|
+
>>> prompt = "answer en Where is the cow standing?"
|
385
|
+
>>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png"
|
386
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
387
|
+
|
388
|
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
389
|
+
|
390
|
+
>>> # Generate
|
391
|
+
>>> generate_ids = model.generate(**inputs, max_length=30)
|
392
|
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
393
|
+
"answer en Where is the cow standing?\nbeach"
|
394
|
+
```"""
|
395
|
+
|
396
|
+
# Important: position_ids in Gemma3 are 1-indexed
|
397
|
+
# This really does cost me sometime
|
398
|
+
positions += 1
|
399
|
+
|
400
|
+
# Replace image id with PAD if the image token if OOV, to avoid index-errors
|
401
|
+
if input_ids is not None and self.config.image_token_index >= self.vocab_size:
|
402
|
+
special_image_mask = input_ids == self.config.image_token_index
|
403
|
+
llm_input_ids = input_ids.clone()
|
404
|
+
llm_input_ids[special_image_mask] = 0
|
405
|
+
else:
|
406
|
+
llm_input_ids = input_ids
|
407
|
+
|
408
|
+
inputs_embeds = general_mm_embed_routine(
|
409
|
+
input_ids=llm_input_ids,
|
410
|
+
forward_batch=forward_batch,
|
411
|
+
embed_tokens=self.get_input_embeddings(),
|
412
|
+
mm_data_embedding_func=self.get_image_feature,
|
413
|
+
)
|
414
|
+
|
415
|
+
outputs = self.language_model(
|
416
|
+
input_ids=None,
|
417
|
+
positions=positions,
|
418
|
+
forward_batch=forward_batch,
|
419
|
+
input_embeds=inputs_embeds,
|
420
|
+
**kwargs,
|
421
|
+
)
|
422
|
+
|
423
|
+
return outputs
|
424
|
+
|
425
|
+
def tie_weights(self):
|
426
|
+
return self.language_model.tie_weights()
|
427
|
+
|
428
|
+
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
429
|
+
"""Load weights for the model."""
|
430
|
+
params_dict = dict(self.named_parameters())
|
431
|
+
loaded_params: Set[str] = set()
|
432
|
+
|
433
|
+
for name, loaded_weight in weights:
|
434
|
+
if "language_model" in name:
|
435
|
+
# Gemma3ForCausalLM.load_weights(self, [(name.replace("language_model.", ""), loaded_weight)])
|
436
|
+
causal_loaded_params = Gemma3ForCausalLM.load_weights(
|
437
|
+
self, [(name, loaded_weight)]
|
438
|
+
)
|
439
|
+
loaded_params.update(causal_loaded_params)
|
440
|
+
continue
|
441
|
+
else:
|
442
|
+
# Skip lm_head.weight as it's tied with embed_tokens
|
443
|
+
if "lm_head.weight" in name:
|
444
|
+
continue
|
445
|
+
|
446
|
+
# Skip loading extra bias for GPTQ models
|
447
|
+
if name.endswith(".bias") and name not in params_dict:
|
448
|
+
continue
|
449
|
+
|
450
|
+
# Remapping the name of FP8 kv-scale
|
451
|
+
name = maybe_remap_kv_scale_name(name, params_dict)
|
452
|
+
if name is None:
|
453
|
+
continue
|
454
|
+
param = params_dict[name]
|
455
|
+
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
456
|
+
weight_loader(param, loaded_weight)
|
457
|
+
loaded_params.add(name)
|
458
|
+
unloaded_params = params_dict.keys() - loaded_params
|
459
|
+
if unloaded_params:
|
460
|
+
pass
|
461
|
+
# raise RuntimeError(
|
462
|
+
# f"Some weights are not initialized from checkpoints: {unloaded_params}")
|
463
|
+
return loaded_params
|
464
|
+
|
465
|
+
|
466
|
+
EntryClass = Gemma3ForConditionalGeneration
|
467
|
+
|
468
|
+
AutoModel.register(Gemma3Config, Gemma3ForConditionalGeneration, exist_ok=True)
|
sglang/srt/models/llama.py
CHANGED
@@ -17,7 +17,7 @@
|
|
17
17
|
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
18
18
|
|
19
19
|
import logging
|
20
|
-
from typing import Any, Dict, Iterable, Optional, Tuple
|
20
|
+
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union
|
21
21
|
|
22
22
|
import torch
|
23
23
|
from torch import nn
|
@@ -129,6 +129,8 @@ class LlamaAttention(nn.Module):
|
|
129
129
|
self.head_dim = getattr(
|
130
130
|
config, "head_dim", self.hidden_size // self.total_num_heads
|
131
131
|
)
|
132
|
+
partial_rotary_factor = getattr(config, "partial_rotary_factor", 1)
|
133
|
+
self.rotary_dim = int(partial_rotary_factor * self.head_dim)
|
132
134
|
self.q_size = self.num_heads * self.head_dim
|
133
135
|
self.kv_size = self.num_kv_heads * self.head_dim
|
134
136
|
self.scaling = self.head_dim**-0.5
|
@@ -154,7 +156,7 @@ class LlamaAttention(nn.Module):
|
|
154
156
|
|
155
157
|
self.rotary_emb = get_rope(
|
156
158
|
self.head_dim,
|
157
|
-
rotary_dim=self.
|
159
|
+
rotary_dim=self.rotary_dim,
|
158
160
|
max_position=max_position_embeddings,
|
159
161
|
base=rope_theta,
|
160
162
|
rope_scaling=rope_scaling,
|
@@ -285,6 +287,7 @@ class LlamaModel(nn.Module):
|
|
285
287
|
)
|
286
288
|
|
287
289
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
290
|
+
self.layers_to_capture = []
|
288
291
|
|
289
292
|
def forward(
|
290
293
|
self,
|
@@ -292,13 +295,16 @@ class LlamaModel(nn.Module):
|
|
292
295
|
positions: torch.Tensor,
|
293
296
|
forward_batch: ForwardBatch,
|
294
297
|
input_embeds: torch.Tensor = None,
|
295
|
-
) -> torch.Tensor:
|
298
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
296
299
|
if input_embeds is None:
|
297
300
|
hidden_states = self.embed_tokens(input_ids)
|
298
301
|
else:
|
299
302
|
hidden_states = input_embeds
|
300
303
|
residual = None
|
304
|
+
aux_hidden_states = []
|
301
305
|
for i in range(len(self.layers)):
|
306
|
+
if i in self.layers_to_capture:
|
307
|
+
aux_hidden_states.append(hidden_states + residual)
|
302
308
|
layer = self.layers[i]
|
303
309
|
hidden_states, residual = layer(
|
304
310
|
positions,
|
@@ -307,7 +313,11 @@ class LlamaModel(nn.Module):
|
|
307
313
|
residual,
|
308
314
|
)
|
309
315
|
hidden_states, _ = self.norm(hidden_states, residual)
|
310
|
-
|
316
|
+
|
317
|
+
if len(aux_hidden_states) == 0:
|
318
|
+
return hidden_states
|
319
|
+
|
320
|
+
return hidden_states, aux_hidden_states
|
311
321
|
|
312
322
|
# If this function is called, it should always initialize KV cache scale
|
313
323
|
# factors (or else raise an exception). Thus, handled exceptions should
|
@@ -335,7 +345,6 @@ class LlamaModel(nn.Module):
|
|
335
345
|
|
336
346
|
|
337
347
|
class LlamaForCausalLM(nn.Module):
|
338
|
-
|
339
348
|
# BitandBytes specific attributes
|
340
349
|
default_bitsandbytes_target_modules = [
|
341
350
|
".gate_proj.",
|
@@ -391,6 +400,8 @@ class LlamaForCausalLM(nn.Module):
|
|
391
400
|
(".gate_up_proj", ".up_proj", 1),
|
392
401
|
]
|
393
402
|
|
403
|
+
self.capture_aux_hidden_states = False
|
404
|
+
|
394
405
|
@torch.no_grad()
|
395
406
|
def forward(
|
396
407
|
self,
|
@@ -400,10 +411,19 @@ class LlamaForCausalLM(nn.Module):
|
|
400
411
|
input_embeds: torch.Tensor = None,
|
401
412
|
get_embedding: bool = False,
|
402
413
|
) -> LogitsProcessorOutput:
|
403
|
-
|
414
|
+
aux_hidden_states = None
|
415
|
+
if self.capture_aux_hidden_states:
|
416
|
+
hidden_states, aux_hidden_states = self.model(
|
417
|
+
input_ids, positions, forward_batch, input_embeds
|
418
|
+
)
|
419
|
+
else:
|
420
|
+
hidden_states = self.model(
|
421
|
+
input_ids, positions, forward_batch, input_embeds
|
422
|
+
)
|
423
|
+
|
404
424
|
if not get_embedding:
|
405
425
|
return self.logits_processor(
|
406
|
-
input_ids, hidden_states, self.lm_head, forward_batch
|
426
|
+
input_ids, hidden_states, self.lm_head, forward_batch, aux_hidden_states
|
407
427
|
)
|
408
428
|
else:
|
409
429
|
return self.pooler(hidden_states, forward_batch)
|
@@ -586,9 +606,29 @@ class LlamaForCausalLM(nn.Module):
|
|
586
606
|
torch.cuda.empty_cache()
|
587
607
|
torch.cuda.synchronize()
|
588
608
|
|
609
|
+
def get_embed(self):
|
610
|
+
return self.model.embed_tokens.weight
|
611
|
+
|
612
|
+
def set_embed(self, embed):
|
613
|
+
# NOTE: If draft hidden size != target hidden size, the embed weight cannot be shared for EAGLE3
|
614
|
+
if (
|
615
|
+
hasattr(self.config, "target_hidden_size")
|
616
|
+
and self.config.target_hidden_size != self.config.hidden_size
|
617
|
+
):
|
618
|
+
return
|
619
|
+
del self.model.embed_tokens.weight
|
620
|
+
self.model.embed_tokens.weight = embed
|
621
|
+
torch.cuda.empty_cache()
|
622
|
+
torch.cuda.synchronize()
|
623
|
+
|
589
624
|
def load_kv_cache_scales(self, quantization_param_path: str) -> None:
|
590
625
|
self.model.load_kv_cache_scales(quantization_param_path)
|
591
626
|
|
627
|
+
def set_eagle3_layers_to_capture(self):
|
628
|
+
self.capture_aux_hidden_states = True
|
629
|
+
num_layers = self.config.num_hidden_layers
|
630
|
+
self.model.layers_to_capture = [2, num_layers // 2, num_layers - 3]
|
631
|
+
|
592
632
|
|
593
633
|
class Phi3ForCausalLM(LlamaForCausalLM):
|
594
634
|
pass
|
sglang/srt/models/llama_eagle.py
CHANGED
@@ -134,6 +134,7 @@ class LlamaForCausalLMEagle(LlamaForCausalLM):
|
|
134
134
|
)
|
135
135
|
|
136
136
|
self.logits_processor = LogitsProcessor(config)
|
137
|
+
self.capture_aux_hidden_states = False
|
137
138
|
|
138
139
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
139
140
|
for name, loaded_weight in weights:
|