sglang 0.4.2.post1__py3-none-any.whl → 0.4.2.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/srt/constrained/outlines_backend.py +9 -1
- sglang/srt/custom_op.py +40 -0
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/function_call_parser.py +96 -69
- sglang/srt/layers/activation.py +10 -5
- sglang/srt/layers/attention/double_sparsity_backend.py +1 -3
- sglang/srt/layers/attention/flashinfer_backend.py +284 -39
- sglang/srt/layers/attention/triton_backend.py +124 -12
- sglang/srt/layers/attention/triton_ops/decode_attention.py +53 -59
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +337 -3
- sglang/srt/layers/attention/triton_ops/extend_attention.py +70 -42
- sglang/srt/layers/layernorm.py +1 -5
- sglang/srt/layers/moe/ep_moe/layer.py +1 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json +178 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json +175 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -13
- sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -3
- sglang/srt/layers/moe/topk.py +4 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/fp8_kernel.py +173 -2
- sglang/srt/layers/rotary_embedding.py +1 -3
- sglang/srt/layers/sampler.py +4 -4
- sglang/srt/lora/backend/__init__.py +8 -0
- sglang/srt/lora/backend/base_backend.py +95 -0
- sglang/srt/lora/backend/flashinfer_backend.py +91 -0
- sglang/srt/lora/backend/triton_backend.py +61 -0
- sglang/srt/lora/lora.py +127 -112
- sglang/srt/lora/lora_manager.py +50 -18
- sglang/srt/lora/triton_ops/__init__.py +5 -0
- sglang/srt/lora/triton_ops/qkv_lora_b.py +182 -0
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +143 -0
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +159 -0
- sglang/srt/model_executor/cuda_graph_runner.py +77 -80
- sglang/srt/model_executor/forward_batch_info.py +58 -59
- sglang/srt/model_executor/model_runner.py +2 -2
- sglang/srt/models/llama.py +8 -3
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/server_args.py +13 -2
- sglang/srt/speculative/build_eagle_tree.py +486 -104
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +213 -0
- sglang/srt/speculative/eagle_utils.py +420 -401
- sglang/srt/speculative/eagle_worker.py +177 -45
- sglang/srt/utils.py +7 -0
- sglang/test/runners.py +2 -0
- sglang/version.py +1 -1
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/METADATA +15 -6
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/RECORD +77 -38
- sglang/srt/layers/custom_op_util.py +0 -25
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/LICENSE +0 -0
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/WHEEL +0 -0
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/top_level.txt +0 -0
@@ -1,5 +1,6 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
+
import dataclasses
|
3
4
|
from typing import TYPE_CHECKING, List
|
4
5
|
|
5
6
|
import torch
|
@@ -9,201 +10,33 @@ import triton.language as tl
|
|
9
10
|
from sglang.srt.layers.attention.flashinfer_backend import (
|
10
11
|
create_flashinfer_kv_indices_triton,
|
11
12
|
)
|
12
|
-
from sglang.srt.model_executor.forward_batch_info import
|
13
|
+
from sglang.srt.model_executor.forward_batch_info import CaptureHiddenMode
|
13
14
|
from sglang.srt.speculative.build_eagle_tree import build_tree_kernel
|
14
|
-
from sglang.srt.speculative.spec_info import SpecInfo
|
15
15
|
|
16
16
|
if TYPE_CHECKING:
|
17
17
|
from sglang.srt.managers.schedule_batch import ScheduleBatch
|
18
|
-
from sglang.srt.server_args import ServerArgs
|
19
18
|
|
20
19
|
|
21
|
-
@
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
draft_token_num: tl.constexpr,
|
31
|
-
max_len_upper: tl.constexpr,
|
32
|
-
):
|
33
|
-
pid = tl.program_id(axis=0)
|
34
|
-
|
35
|
-
retrive_end = tl.load(retrive_cum_len + pid + 1)
|
36
|
-
retrive_start = tl.load(retrive_cum_len + pid)
|
37
|
-
retrive_len = retrive_end - retrive_start
|
38
|
-
accept_ptr = accept_mask + retrive_start
|
39
|
-
accept_offset = tl.arange(0, draft_token_num)
|
40
|
-
accept_load_mask = accept_offset < retrive_len
|
41
|
-
accept_len_list = tl.load(
|
42
|
-
accept_ptr + accept_offset, mask=accept_load_mask, other=-1
|
43
|
-
)
|
44
|
-
|
45
|
-
accept_len = tl.max(accept_len_list)
|
46
|
-
max_index = tl.argmax(accept_len_list, axis=0, tie_break_left=True)
|
47
|
-
# triton is not support argmax with tie_break_right, so I need implement it by some way
|
48
|
-
mask_max = accept_len_list == accept_len
|
49
|
-
|
50
|
-
count_mask = tl.full(shape=[draft_token_num], value=0, dtype=tl.int32)
|
51
|
-
count = tl.sum(tl.where(mask_max, 1, count_mask))
|
52
|
-
if count > 1:
|
53
|
-
index = tl.arange(0, draft_token_num)
|
54
|
-
mask_left = index != max_index
|
55
|
-
remained_index = tl.where(mask_max and mask_left, index, 0)
|
56
|
-
max_index = tl.max(remained_index)
|
57
|
-
|
58
|
-
tl.store(accept_length + pid, accept_len)
|
59
|
-
retrive_index_ptr = retrive_index + (retrive_start + max_index) * max_len
|
60
|
-
retrive_offset = tl.arange(0, max_len_upper)
|
61
|
-
retrive_load_mask = retrive_offset < accept_len + 1
|
62
|
-
data = tl.load(retrive_index_ptr + retrive_offset, mask=retrive_load_mask)
|
63
|
-
|
64
|
-
tl.store(
|
65
|
-
accept_index + pid * max_len + retrive_offset, data, mask=retrive_load_mask
|
66
|
-
)
|
67
|
-
|
68
|
-
extract_load_ptr = accept_index + pid * max_len + accept_len
|
69
|
-
if accept_len == max_len - 1:
|
70
|
-
extract_data = tl.load(extract_load_ptr - 1)
|
71
|
-
tl.store(extract_index + pid * 2, extract_data)
|
72
|
-
extract_data = tl.load(extract_load_ptr)
|
73
|
-
tl.store(extract_index + pid * 2 + 1, extract_data)
|
74
|
-
|
75
|
-
else:
|
76
|
-
extract_data = tl.load(extract_load_ptr)
|
77
|
-
tl.store(extract_index + pid * 2, extract_data)
|
78
|
-
|
79
|
-
|
80
|
-
@triton.jit
|
81
|
-
def create_extend_spec_info(
|
82
|
-
verified_id,
|
83
|
-
seq_len,
|
84
|
-
accept_len,
|
85
|
-
accept_len_cum,
|
86
|
-
positions,
|
87
|
-
new_verified_id,
|
88
|
-
accept_len_upper: tl.constexpr,
|
89
|
-
):
|
90
|
-
pid = tl.program_id(axis=0)
|
91
|
-
offset = 0 if pid == 0 else tl.load(accept_len_cum + pid - 1)
|
92
|
-
seq_length = tl.load(seq_len + pid)
|
93
|
-
accept_length = tl.load(accept_len + pid)
|
94
|
-
positions_ptr = positions + offset
|
95
|
-
data = tl.arange(0, accept_len_upper)
|
96
|
-
mask = data < accept_length
|
97
|
-
tl.store(positions_ptr + data, seq_length - accept_length + data, mask)
|
98
|
-
|
99
|
-
offset = tl.load(accept_len_cum + pid) - 1
|
100
|
-
verified_id_data = tl.load(verified_id + offset)
|
101
|
-
tl.store(new_verified_id + pid, verified_id_data)
|
102
|
-
|
103
|
-
|
104
|
-
@triton.jit
|
105
|
-
def assign_req_to_token_pool(
|
106
|
-
req_pool_indices,
|
107
|
-
req_to_token,
|
108
|
-
start_offset,
|
109
|
-
end_offset,
|
110
|
-
out_cache_loc,
|
111
|
-
pool_len: tl.constexpr,
|
112
|
-
bs_upper: tl.constexpr,
|
113
|
-
):
|
114
|
-
BLOCK_SIZE: tl.constexpr = 32
|
115
|
-
pid = tl.program_id(axis=0)
|
116
|
-
kv_start = tl.load(start_offset + pid)
|
117
|
-
kv_end = tl.load(end_offset + pid)
|
118
|
-
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
119
|
-
|
120
|
-
length_offset = tl.arange(0, bs_upper)
|
121
|
-
start = tl.load(start_offset + length_offset, mask=length_offset < pid)
|
122
|
-
end = tl.load(end_offset + length_offset, mask=length_offset < pid)
|
123
|
-
out_offset = tl.sum(end - start, axis=0)
|
124
|
-
|
125
|
-
out_cache_ptr = out_cache_loc + out_offset
|
126
|
-
|
127
|
-
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
|
128
|
-
load_offset = tl.arange(0, BLOCK_SIZE)
|
129
|
-
|
130
|
-
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
|
131
|
-
for _ in range(num_loop):
|
132
|
-
mask = save_offset < kv_end
|
133
|
-
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
134
|
-
tl.store(token_pool + save_offset, data, mask=mask)
|
135
|
-
save_offset += BLOCK_SIZE
|
136
|
-
load_offset += BLOCK_SIZE
|
137
|
-
|
138
|
-
|
139
|
-
@triton.jit
|
140
|
-
def generate_draft_decode_kv_indices(
|
141
|
-
req_pool_indices,
|
142
|
-
req_to_token,
|
143
|
-
paged_kernel_lens,
|
144
|
-
kv_indices,
|
145
|
-
iters: tl.constexpr,
|
146
|
-
topk: tl.constexpr,
|
147
|
-
pool_len: tl.constexpr,
|
148
|
-
bs_upper: tl.constexpr,
|
149
|
-
iter_upper: tl.constexpr,
|
150
|
-
):
|
151
|
-
BLOCK_SIZE: tl.constexpr = 128
|
152
|
-
bid = tl.program_id(axis=0)
|
153
|
-
topk_id = tl.program_id(axis=1)
|
154
|
-
|
155
|
-
load_offset = tl.arange(0, bs_upper)
|
156
|
-
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid)
|
157
|
-
seq_len = tl.load(paged_kernel_lens + bid)
|
158
|
-
cum_seq_len = tl.sum(seq_lens)
|
159
|
-
|
160
|
-
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
|
161
|
-
kv_ptr = kv_indices + kv_offset
|
162
|
-
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
|
163
|
-
|
164
|
-
kv_offset = tl.arange(0, BLOCK_SIZE)
|
165
|
-
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
|
166
|
-
for _ in range(num_loop):
|
167
|
-
mask = kv_offset < seq_len
|
168
|
-
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
|
169
|
-
tl.store(kv_ptr + kv_offset, data, mask=mask)
|
170
|
-
kv_offset += BLOCK_SIZE
|
171
|
-
|
172
|
-
extend_offset = tl.arange(0, iter_upper)
|
173
|
-
extend_data = tl.load(
|
174
|
-
token_pool_ptr + seq_len + tl.arange(0, iter_upper) * topk + topk_id,
|
175
|
-
mask=extend_offset < iters,
|
176
|
-
)
|
177
|
-
tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
|
178
|
-
|
179
|
-
|
180
|
-
class EAGLEDraftInput(SpecInfo):
|
181
|
-
def __init__(self):
|
182
|
-
self.prev_mode = ForwardMode.DECODE
|
20
|
+
@dataclasses.dataclass
|
21
|
+
class EagleDraftInput:
|
22
|
+
# The inputs for decode
|
23
|
+
# shape: (b, topk)
|
24
|
+
topk_p: torch.Tensor = None
|
25
|
+
topk_index: torch.Tensor = None
|
26
|
+
# shape: (b, hidden_size)
|
27
|
+
hidden_states: torch.Tensor = None
|
28
|
+
capture_hidden_mode: CaptureHiddenMode = CaptureHiddenMode.FULL
|
183
29
|
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
self.cache_list: List[torch.Tenor] = []
|
190
|
-
self.iter = 0
|
30
|
+
# Inputs for extend
|
31
|
+
# shape: (b,)
|
32
|
+
verified_id: torch.Tensor = None
|
33
|
+
accept_length: torch.Tensor = None
|
34
|
+
accept_length_cpu: List[int] = None
|
191
35
|
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
# shape: (b, vocab_size)
|
197
|
-
self.sample_output: torch.Tensor = None
|
198
|
-
|
199
|
-
self.positions: torch.Tensor = None
|
200
|
-
self.accept_length: torch.Tensor = None
|
201
|
-
self.accept_length_cpu: List[int] = None
|
202
|
-
|
203
|
-
def load_server_args(self, server_args: ServerArgs):
|
204
|
-
self.topk: int = server_args.speculative_eagle_topk
|
205
|
-
self.num_verify_token: int = server_args.speculative_num_draft_tokens
|
206
|
-
self.spec_steps = server_args.speculative_num_steps
|
36
|
+
# Inputs for the attention backends
|
37
|
+
# shape: (b + 1,)
|
38
|
+
kv_indptr: torch.Tensor = None
|
39
|
+
kv_indices: torch.Tensor = None
|
207
40
|
|
208
41
|
def prepare_for_extend(self, batch: ScheduleBatch):
|
209
42
|
req_pool_indices = batch.alloc_req_slots(len(batch.reqs))
|
@@ -231,95 +64,12 @@ class EAGLEDraftInput(SpecInfo):
|
|
231
64
|
assert len(batch.extend_lens) == 1
|
232
65
|
batch.input_ids = torch.concat((batch.input_ids[1:], self.verified_id))
|
233
66
|
|
234
|
-
def
|
235
|
-
self,
|
236
|
-
new_indices: torch.Tensor,
|
237
|
-
):
|
238
|
-
self.sample_output = self.sample_output[: len(new_indices)]
|
239
|
-
self.hidden_states = self.hidden_states[: len(new_indices)]
|
240
|
-
self.verified_id = self.verified_id[: len(new_indices)]
|
241
|
-
|
242
|
-
def prepare_for_decode(self, batch: ScheduleBatch):
|
243
|
-
prob = self.sample_output # shape: (b * top_k, vocab) or (b, vocab)
|
244
|
-
top = torch.topk(prob, self.topk, dim=-1)
|
245
|
-
topk_index, topk_p = (
|
246
|
-
top.indices,
|
247
|
-
top.values,
|
248
|
-
) # shape: (b * top_k, top_k) or (b, top_k)
|
249
|
-
|
250
|
-
if self.prev_mode.is_decode():
|
251
|
-
scores = torch.mul(
|
252
|
-
self.scores.unsqueeze(2), topk_p.reshape(-1, self.topk, self.topk)
|
253
|
-
) # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
|
254
|
-
topk_cs = torch.topk(
|
255
|
-
scores.flatten(start_dim=1), self.topk, dim=-1
|
256
|
-
) # (b, topk)
|
257
|
-
topk_cs_index, topk_cs_p = topk_cs.indices, topk_cs.values
|
258
|
-
|
259
|
-
selected_input_index = topk_cs_index.flatten() // self.topk + torch.arange(
|
260
|
-
0, batch.batch_size() * self.topk, step=self.topk, device="cuda"
|
261
|
-
).repeat_interleave(self.topk)
|
262
|
-
|
263
|
-
batch.spec_info.hidden_states = batch.spec_info.hidden_states[
|
264
|
-
selected_input_index, :
|
265
|
-
]
|
266
|
-
|
267
|
-
topk_index = topk_index.reshape(-1, self.topk**2)
|
268
|
-
batch.input_ids = torch.gather(
|
269
|
-
topk_index, index=topk_cs_index, dim=1
|
270
|
-
).flatten()
|
271
|
-
batch.out_cache_loc = batch.alloc_token_slots(len(batch.input_ids))
|
272
|
-
|
273
|
-
self.scores = topk_cs_p
|
274
|
-
self.score_list.append(scores) # (b, topk, topk)
|
275
|
-
self.token_list.append(topk_index) # (b, topk * topk)
|
276
|
-
self.origin_score_list.append(topk_p.reshape(topk_index.shape))
|
277
|
-
self.parents_list.append(
|
278
|
-
topk_cs_index + (self.topk**2 * (self.iter - 1) + self.topk)
|
279
|
-
) # shape: (b, topk)
|
280
|
-
else:
|
281
|
-
# ForwardMode.EXTEND or ForwardMode.DRAFT_EXTEND
|
282
|
-
batch.spec_info.hidden_states = (
|
283
|
-
batch.spec_info.hidden_states.repeat_interleave(self.topk, dim=0)
|
284
|
-
)
|
285
|
-
|
286
|
-
batch.input_ids = topk_index.flatten()
|
287
|
-
batch.out_cache_loc = batch.alloc_token_slots(topk_index.numel())
|
288
|
-
|
289
|
-
self.scores = topk_p # shape: (b, topk)
|
290
|
-
self.score_list.append(topk_p.unsqueeze(1)) # shape: (b, 1, topk)
|
291
|
-
self.token_list.append(topk_index) # shape: (b, topk)
|
292
|
-
self.origin_score_list.append(topk_p)
|
293
|
-
self.parents_list.append(
|
294
|
-
torch.arange(-1, self.topk, dtype=torch.long, device="cuda")
|
295
|
-
.unsqueeze(0)
|
296
|
-
.repeat(self.scores.shape[0], 1)
|
297
|
-
) # shape: (b, topk + 1)
|
298
|
-
self.cache_list.append(batch.out_cache_loc)
|
299
|
-
self.positions = (
|
300
|
-
batch.seq_lens[:, None]
|
301
|
-
+ torch.full(
|
302
|
-
[1, self.topk], fill_value=self.iter, device="cuda", dtype=torch.long
|
303
|
-
)
|
304
|
-
).flatten()
|
305
|
-
|
306
|
-
bs = len(batch.seq_lens)
|
307
|
-
assign_req_to_token_pool[(bs,)](
|
308
|
-
batch.req_pool_indices,
|
309
|
-
batch.req_to_token_pool.req_to_token,
|
310
|
-
batch.seq_lens + self.topk * self.iter,
|
311
|
-
batch.seq_lens + self.topk * (self.iter + 1),
|
312
|
-
batch.out_cache_loc,
|
313
|
-
batch.req_to_token_pool.req_to_token.shape[1],
|
314
|
-
triton.next_power_of_2(bs),
|
315
|
-
)
|
316
|
-
self.iter += 1
|
317
|
-
|
318
|
-
def prepare_extend_after_decode(self, batch: ScheduleBatch):
|
67
|
+
def prepare_extend_after_decode(self, batch: ScheduleBatch, speculative_num_steps):
|
319
68
|
batch.out_cache_loc = batch.alloc_token_slots(self.verified_id.numel())
|
320
69
|
accept_length_cpu = batch.spec_info.accept_length_cpu
|
321
70
|
batch.extend_lens = [x + 1 for x in accept_length_cpu]
|
322
71
|
batch.seq_lens = batch.spec_info.seq_lens_for_draft_extend
|
72
|
+
batch.req_pool_indices = batch.spec_info.req_pool_indices_for_draft_extend
|
323
73
|
seq_lens_cpu = batch.seq_lens.tolist()
|
324
74
|
|
325
75
|
pt = 0
|
@@ -348,86 +98,13 @@ class EAGLEDraftInput(SpecInfo):
|
|
348
98
|
torch.cumsum(self.accept_length, axis=0, dtype=torch.int),
|
349
99
|
self.positions,
|
350
100
|
new_verified_id,
|
351
|
-
triton.next_power_of_2(
|
101
|
+
triton.next_power_of_2(speculative_num_steps + 1),
|
352
102
|
)
|
353
103
|
|
354
104
|
batch.seq_lens_sum = sum(seq_lens_cpu)
|
355
105
|
batch.input_ids = self.verified_id
|
356
106
|
self.verified_id = new_verified_id
|
357
107
|
|
358
|
-
def prepare_for_verify(self, batch: ScheduleBatch):
|
359
|
-
score_list = torch.cat(self.score_list, dim=1).flatten(
|
360
|
-
1
|
361
|
-
) # b, n, topk; n= 1+(self.iter-1)*self.topk
|
362
|
-
ss_token_list = torch.cat(
|
363
|
-
self.token_list, dim=1
|
364
|
-
) # b, (self.topk+(self.iter-1)*self.topk)
|
365
|
-
origin_token_list = torch.cat(self.origin_score_list, dim=1)
|
366
|
-
top_scores = torch.topk(score_list, self.num_verify_token - 1, dim=-1)
|
367
|
-
top_scores_index = top_scores.indices
|
368
|
-
top_scores_index = torch.sort(top_scores_index).values
|
369
|
-
|
370
|
-
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
|
371
|
-
scores = torch.gather(origin_token_list, index=top_scores_index, dim=1)
|
372
|
-
draft_tokens = torch.cat((self.verified_id.unsqueeze(1), draft_tokens), dim=1)
|
373
|
-
parent_list = torch.cat(self.parents_list[:-1], dim=1)
|
374
|
-
|
375
|
-
tree_mask, position, retrive_index, retrive_cum_len = build_tree_kernel(
|
376
|
-
parent_list,
|
377
|
-
top_scores_index,
|
378
|
-
batch.seq_lens,
|
379
|
-
self.topk,
|
380
|
-
self.iter - 1,
|
381
|
-
self.num_verify_token,
|
382
|
-
)
|
383
|
-
|
384
|
-
return EagleVerifyInput(
|
385
|
-
draft_tokens.flatten(),
|
386
|
-
scores.flatten(),
|
387
|
-
tree_mask,
|
388
|
-
position,
|
389
|
-
retrive_index,
|
390
|
-
retrive_cum_len,
|
391
|
-
self.num_verify_token,
|
392
|
-
)
|
393
|
-
|
394
|
-
def generate_attn_arg_decode(
|
395
|
-
self,
|
396
|
-
req_pool_indices: torch.Tensor,
|
397
|
-
paged_kernel_lens: torch.Tensor,
|
398
|
-
req_to_token: torch.Tensor,
|
399
|
-
):
|
400
|
-
seq_num = req_pool_indices.numel()
|
401
|
-
bs = self.topk * req_pool_indices.numel()
|
402
|
-
seq_len = self.positions.reshape(-1).contiguous()
|
403
|
-
|
404
|
-
cum_kv_seq_len = torch.zeros((bs + 1,), dtype=torch.int32, device="cuda")
|
405
|
-
cum_kv_seq_len[1:] = torch.cumsum(seq_len + 1, dim=0)
|
406
|
-
total_len = torch.sum(paged_kernel_lens).item()
|
407
|
-
|
408
|
-
kv_indices = torch.empty(
|
409
|
-
(total_len * self.topk + seq_num * self.iter * self.topk,),
|
410
|
-
dtype=torch.int32,
|
411
|
-
device="cuda",
|
412
|
-
)
|
413
|
-
|
414
|
-
generate_draft_decode_kv_indices[(req_pool_indices.numel(), self.topk)](
|
415
|
-
req_pool_indices,
|
416
|
-
req_to_token,
|
417
|
-
paged_kernel_lens,
|
418
|
-
kv_indices,
|
419
|
-
self.iter,
|
420
|
-
self.topk,
|
421
|
-
req_to_token.shape[1],
|
422
|
-
triton.next_power_of_2(seq_num),
|
423
|
-
triton.next_power_of_2(self.spec_steps),
|
424
|
-
)
|
425
|
-
return bs, kv_indices, cum_kv_seq_len
|
426
|
-
|
427
|
-
def clear_draft_cache(self, batch):
|
428
|
-
draft_cache = torch.cat(self.cache_list, dim=0)
|
429
|
-
batch.token_to_kv_pool.free(draft_cache)
|
430
|
-
|
431
108
|
def generate_attn_arg_prefill(
|
432
109
|
self,
|
433
110
|
req_pool_indices: torch.Tensor,
|
@@ -454,12 +131,18 @@ class EAGLEDraftInput(SpecInfo):
|
|
454
131
|
|
455
132
|
return kv_indices, cum_kv_seq_len, qo_indptr, None
|
456
133
|
|
457
|
-
def
|
134
|
+
def filter_batch(self, new_indices: torch.Tensor):
|
135
|
+
self.topk_p = self.topk_p[: len(new_indices)]
|
136
|
+
self.topk_index = self.topk_index[: len(new_indices)]
|
137
|
+
self.hidden_states = self.hidden_states[: len(new_indices)]
|
138
|
+
self.verified_id = self.verified_id[: len(new_indices)]
|
139
|
+
|
140
|
+
def merge_batch(self, spec_info: EagleDraftInput):
|
458
141
|
if self.hidden_states is None:
|
459
142
|
self.hidden_states = spec_info.hidden_states
|
460
143
|
self.verified_id = spec_info.verified_id
|
461
|
-
self.
|
462
|
-
self.
|
144
|
+
self.topk_p = spec_info.topk_p
|
145
|
+
self.topk_index = spec_info.topk_index
|
463
146
|
return
|
464
147
|
if spec_info.hidden_states is None:
|
465
148
|
return
|
@@ -467,32 +150,60 @@ class EAGLEDraftInput(SpecInfo):
|
|
467
150
|
[self.hidden_states, spec_info.hidden_states], axis=0
|
468
151
|
)
|
469
152
|
self.verified_id = torch.cat([self.verified_id, spec_info.verified_id], axis=0)
|
470
|
-
self.
|
471
|
-
|
472
|
-
|
473
|
-
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
481
|
-
|
482
|
-
|
153
|
+
self.topk_p = torch.cat([self.topk_p, spec_info.topk_p])
|
154
|
+
self.topk_index = torch.cat([self.topk_index, spec_info.topk_index])
|
155
|
+
|
156
|
+
|
157
|
+
@dataclasses.dataclass
|
158
|
+
class EagleVerifyInput:
|
159
|
+
draft_token: torch.Tensor
|
160
|
+
custom_mask: torch.Tensor
|
161
|
+
positions: torch.Tensor
|
162
|
+
retrive_index: torch.Tensor
|
163
|
+
retrive_cum_len: torch.Tensor
|
164
|
+
draft_token_num: int
|
165
|
+
capture_hidden_mode: CaptureHiddenMode
|
166
|
+
|
167
|
+
@classmethod
|
168
|
+
def create(
|
169
|
+
cls,
|
170
|
+
verified_id: torch.Tensor,
|
171
|
+
score_list: List[torch.Tensor],
|
172
|
+
token_list: List[torch.Tensor],
|
173
|
+
parents_list: List[torch.Tensor],
|
174
|
+
seq_lens: torch.Tensor,
|
175
|
+
seq_lens_sum: int,
|
176
|
+
topk: int,
|
177
|
+
spec_steps: int,
|
178
|
+
num_verify_token: int,
|
483
179
|
):
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
489
|
-
|
490
|
-
|
180
|
+
tree_mask, position, retrive_index, retrive_cum_len, draft_tokens = (
|
181
|
+
build_tree_kernel(
|
182
|
+
verified_id,
|
183
|
+
score_list,
|
184
|
+
token_list,
|
185
|
+
parents_list,
|
186
|
+
seq_lens,
|
187
|
+
seq_lens_sum,
|
188
|
+
topk,
|
189
|
+
spec_steps,
|
190
|
+
num_verify_token,
|
191
|
+
)
|
192
|
+
)
|
193
|
+
return cls(
|
194
|
+
draft_tokens,
|
195
|
+
tree_mask,
|
196
|
+
position,
|
197
|
+
retrive_index,
|
198
|
+
retrive_cum_len,
|
199
|
+
num_verify_token,
|
200
|
+
CaptureHiddenMode.FULL,
|
201
|
+
)
|
491
202
|
|
492
203
|
def prepare_for_verify(self, batch: ScheduleBatch):
|
493
204
|
batch.input_ids = self.draft_token
|
494
205
|
batch.out_cache_loc = batch.alloc_token_slots(batch.input_ids.numel())
|
495
|
-
bs = batch.
|
206
|
+
bs = batch.batch_size()
|
496
207
|
assign_req_to_token_pool[(bs,)](
|
497
208
|
batch.req_pool_indices,
|
498
209
|
batch.req_to_token_pool.req_to_token,
|
@@ -539,41 +250,78 @@ class EagleVerifyInput(SpecInfo):
|
|
539
250
|
return kv_indices, cum_kv_seq_len, qo_indptr, self.custom_mask
|
540
251
|
|
541
252
|
def verify(self, batch: ScheduleBatch, logits_output: torch.Tensor) -> torch.Tensor:
|
542
|
-
predict = torch.argmax(logits_output.next_token_logits, dim=-1)
|
543
|
-
predict = torch.cat(
|
544
|
-
[predict, torch.full([1], -1, dtype=torch.long, device="cuda")], dim=-1
|
545
|
-
)
|
546
253
|
draft_token = torch.cat(
|
547
|
-
[self.draft_token, torch.full([1], -1, dtype=torch.
|
254
|
+
[self.draft_token, torch.full([1], -1, dtype=torch.int32, device="cuda")],
|
548
255
|
dim=-1,
|
549
256
|
)
|
550
|
-
target_predict = predict[self.retrive_index]
|
551
257
|
candidates = draft_token[self.retrive_index]
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
561
|
-
|
562
|
-
|
563
|
-
|
564
|
-
|
565
|
-
self.retrive_index.
|
566
|
-
|
567
|
-
|
568
|
-
|
569
|
-
accept_length,
|
570
|
-
extract_index,
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
|
258
|
+
if batch.sampling_info.is_all_greedy:
|
259
|
+
# temp == 0
|
260
|
+
bs = self.retrive_cum_len.numel() - 1
|
261
|
+
predict = torch.argmax(logits_output.next_token_logits, dim=-1)
|
262
|
+
predict = torch.cat(
|
263
|
+
[predict, torch.full([1], -1, dtype=torch.int32, device="cuda")], dim=-1
|
264
|
+
)
|
265
|
+
target_predict = predict[self.retrive_index]
|
266
|
+
# logits = logits_output.next_token_logits[self.retrive_index]
|
267
|
+
# target_predict = torch.argmax(logits[:, :-1], dim=-1)
|
268
|
+
accept_mask = candidates[:, 1:] == target_predict[:, :-1]
|
269
|
+
|
270
|
+
accept_mask = (torch.cumprod(accept_mask, dim=1)).sum(dim=1)
|
271
|
+
max_draft_len = self.retrive_index.shape[-1]
|
272
|
+
accept_index = torch.full(
|
273
|
+
(bs, max_draft_len), -1, dtype=torch.int32, device="cuda"
|
274
|
+
)
|
275
|
+
accept_length = torch.empty((bs,), dtype=torch.int, device="cuda")
|
276
|
+
extract_index = torch.full((bs * 2,), 0, dtype=torch.int, device="cuda")
|
277
|
+
eagle_verify_retrive[(bs,)](
|
278
|
+
self.retrive_index.contiguous(),
|
279
|
+
accept_mask.contiguous(),
|
280
|
+
self.retrive_cum_len,
|
281
|
+
accept_index,
|
282
|
+
accept_length,
|
283
|
+
extract_index,
|
284
|
+
max_draft_len,
|
285
|
+
self.draft_token_num,
|
286
|
+
triton.next_power_of_2(max_draft_len),
|
287
|
+
)
|
288
|
+
else:
|
289
|
+
# temp > 0
|
290
|
+
bs = self.retrive_index.shape[0]
|
291
|
+
predict_shape = list(logits_output.next_token_logits.shape)[:-1]
|
292
|
+
predict_shape[-1] += 1
|
293
|
+
target_logits = logits_output.next_token_logits[self.retrive_index]
|
294
|
+
predict = torch.full(predict_shape, -1, dtype=torch.int32, device="cuda")
|
295
|
+
accept_index = torch.full(
|
296
|
+
(bs, self.spec_steps + 1), -1, dtype=torch.int32, device="cuda"
|
297
|
+
)
|
298
|
+
accept_length = torch.empty((bs,), dtype=torch.int32, device="cuda")
|
299
|
+
expanded_temperature = batch.sampling_info.temperatures.unsqueeze(1)
|
300
|
+
target_probs = F.softmax(target_logits / expanded_temperature, dim=-1)
|
301
|
+
draft_probs = torch.full_like(
|
302
|
+
target_probs, 0, dtype=torch.float32, device="cuda"
|
303
|
+
)
|
304
|
+
coins = torch.rand_like(candidates, dtype=torch.float32, device="cuda")
|
305
|
+
tree_speculative_sampling_target_only(
|
306
|
+
predicts=predict, # mutable
|
307
|
+
accept_index=accept_index, # mutable
|
308
|
+
accept_token_num=accept_length, # mutable
|
309
|
+
candidates=candidates.to(torch.int32),
|
310
|
+
retrive_index=self.retrive_index.to(torch.int32),
|
311
|
+
retrive_next_token=self.retrive_next_token.to(torch.int32),
|
312
|
+
retrive_next_sibling=self.retrive_next_sibling.to(torch.int32),
|
313
|
+
uniform_samples=coins,
|
314
|
+
target_probs=target_probs,
|
315
|
+
draft_probs=draft_probs,
|
316
|
+
threshold_single=global_server_args_dict[
|
317
|
+
"speculative_accept_threshold_single"
|
318
|
+
],
|
319
|
+
threshold_acc=global_server_args_dict[
|
320
|
+
"speculative_accept_threshold_acc"
|
321
|
+
],
|
322
|
+
deterministic=True,
|
323
|
+
)
|
575
324
|
|
576
|
-
draft_input = EAGLEDraftInput()
|
577
325
|
new_accept_index = []
|
578
326
|
unfinished_index = []
|
579
327
|
finished_extend_len = {} # {rid:accept_length + 1}
|
@@ -625,18 +373,23 @@ class EagleVerifyInput(SpecInfo):
|
|
625
373
|
)
|
626
374
|
batch.seq_lens.add_(accept_length + 1)
|
627
375
|
|
376
|
+
draft_input = EagleDraftInput()
|
628
377
|
if len(new_accept_index) > 0:
|
629
378
|
new_accept_index = torch.tensor(new_accept_index, device="cuda")
|
630
|
-
draft_input.verified_id = predict[new_accept_index]
|
631
379
|
draft_input.hidden_states = batch.spec_info.hidden_states[new_accept_index]
|
380
|
+
draft_input.verified_id = predict[new_accept_index]
|
632
381
|
draft_input.accept_length = accept_length[unfinished_index]
|
633
382
|
draft_input.accept_length_cpu = [
|
634
383
|
accept_length_cpu[i] for i in unfinished_index
|
635
384
|
]
|
636
385
|
if has_finished:
|
637
386
|
draft_input.seq_lens_for_draft_extend = batch.seq_lens[unfinished_index]
|
387
|
+
draft_input.req_pool_indices_for_draft_extend = batch.req_pool_indices[
|
388
|
+
unfinished_index
|
389
|
+
]
|
638
390
|
else:
|
639
391
|
draft_input.seq_lens_for_draft_extend = batch.seq_lens
|
392
|
+
draft_input.req_pool_indices_for_draft_extend = batch.req_pool_indices
|
640
393
|
|
641
394
|
logits_output.next_token_logits = logits_output.next_token_logits[accept_index]
|
642
395
|
return (
|
@@ -646,3 +399,269 @@ class EagleVerifyInput(SpecInfo):
|
|
646
399
|
finished_extend_len,
|
647
400
|
accept_length_cpu,
|
648
401
|
)
|
402
|
+
|
403
|
+
|
404
|
+
@triton.jit
|
405
|
+
def eagle_verify_retrive(
|
406
|
+
retrive_index,
|
407
|
+
accept_mask,
|
408
|
+
retrive_cum_len,
|
409
|
+
accept_index,
|
410
|
+
accept_length,
|
411
|
+
extract_index,
|
412
|
+
max_len: tl.constexpr,
|
413
|
+
draft_token_num: tl.constexpr,
|
414
|
+
max_len_upper: tl.constexpr,
|
415
|
+
):
|
416
|
+
pid = tl.program_id(axis=0)
|
417
|
+
|
418
|
+
retrive_end = tl.load(retrive_cum_len + pid + 1)
|
419
|
+
retrive_start = tl.load(retrive_cum_len + pid)
|
420
|
+
retrive_len = retrive_end - retrive_start
|
421
|
+
accept_ptr = accept_mask + retrive_start
|
422
|
+
accept_offset = tl.arange(0, draft_token_num)
|
423
|
+
accept_load_mask = accept_offset < retrive_len
|
424
|
+
accept_len_list = tl.load(
|
425
|
+
accept_ptr + accept_offset, mask=accept_load_mask, other=-1
|
426
|
+
)
|
427
|
+
|
428
|
+
accept_len = tl.max(accept_len_list)
|
429
|
+
max_index = tl.argmax(accept_len_list, axis=0, tie_break_left=True)
|
430
|
+
# triton is not support argmax with tie_break_right, so I need implement it by some way
|
431
|
+
mask_max = accept_len_list == accept_len
|
432
|
+
|
433
|
+
count_mask = tl.full(shape=[draft_token_num], value=0, dtype=tl.int32)
|
434
|
+
count = tl.sum(tl.where(mask_max, 1, count_mask))
|
435
|
+
if count > 1:
|
436
|
+
index = tl.arange(0, draft_token_num)
|
437
|
+
mask_left = index != max_index
|
438
|
+
remained_index = tl.where(mask_max and mask_left, index, 0)
|
439
|
+
max_index = tl.max(remained_index)
|
440
|
+
|
441
|
+
tl.store(accept_length + pid, accept_len)
|
442
|
+
retrive_index_ptr = retrive_index + (retrive_start + max_index) * max_len
|
443
|
+
retrive_offset = tl.arange(0, max_len_upper)
|
444
|
+
retrive_load_mask = retrive_offset < accept_len + 1
|
445
|
+
data = tl.load(retrive_index_ptr + retrive_offset, mask=retrive_load_mask)
|
446
|
+
|
447
|
+
tl.store(
|
448
|
+
accept_index + pid * max_len + retrive_offset, data, mask=retrive_load_mask
|
449
|
+
)
|
450
|
+
|
451
|
+
extract_load_ptr = accept_index + pid * max_len + accept_len
|
452
|
+
if accept_len == max_len - 1:
|
453
|
+
extract_data = tl.load(extract_load_ptr - 1)
|
454
|
+
tl.store(extract_index + pid * 2, extract_data)
|
455
|
+
extract_data = tl.load(extract_load_ptr)
|
456
|
+
tl.store(extract_index + pid * 2 + 1, extract_data)
|
457
|
+
|
458
|
+
else:
|
459
|
+
extract_data = tl.load(extract_load_ptr)
|
460
|
+
tl.store(extract_index + pid * 2, extract_data)
|
461
|
+
|
462
|
+
|
463
|
+
@triton.jit
|
464
|
+
def create_extend_spec_info(
|
465
|
+
verified_id,
|
466
|
+
seq_len,
|
467
|
+
accept_len,
|
468
|
+
accept_len_cum,
|
469
|
+
positions,
|
470
|
+
new_verified_id,
|
471
|
+
accept_len_upper: tl.constexpr,
|
472
|
+
):
|
473
|
+
pid = tl.program_id(axis=0)
|
474
|
+
offset = 0 if pid == 0 else tl.load(accept_len_cum + pid - 1)
|
475
|
+
seq_length = tl.load(seq_len + pid)
|
476
|
+
accept_length = tl.load(accept_len + pid)
|
477
|
+
positions_ptr = positions + offset
|
478
|
+
data = tl.arange(0, accept_len_upper)
|
479
|
+
mask = data < accept_length
|
480
|
+
tl.store(positions_ptr + data, seq_length - accept_length + data, mask)
|
481
|
+
|
482
|
+
offset = tl.load(accept_len_cum + pid) - 1
|
483
|
+
verified_id_data = tl.load(verified_id + offset)
|
484
|
+
tl.store(new_verified_id + pid, verified_id_data)
|
485
|
+
|
486
|
+
|
487
|
+
@triton.jit
|
488
|
+
def assign_req_to_token_pool(
|
489
|
+
req_pool_indices,
|
490
|
+
req_to_token,
|
491
|
+
start_offset,
|
492
|
+
end_offset,
|
493
|
+
out_cache_loc,
|
494
|
+
pool_len: tl.constexpr,
|
495
|
+
bs_upper: tl.constexpr,
|
496
|
+
):
|
497
|
+
BLOCK_SIZE: tl.constexpr = 32
|
498
|
+
pid = tl.program_id(axis=0)
|
499
|
+
kv_start = tl.load(start_offset + pid)
|
500
|
+
kv_end = tl.load(end_offset + pid)
|
501
|
+
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
502
|
+
|
503
|
+
length_offset = tl.arange(0, bs_upper)
|
504
|
+
start = tl.load(start_offset + length_offset, mask=length_offset < pid)
|
505
|
+
end = tl.load(end_offset + length_offset, mask=length_offset < pid)
|
506
|
+
out_offset = tl.sum(end - start, axis=0)
|
507
|
+
|
508
|
+
out_cache_ptr = out_cache_loc + out_offset
|
509
|
+
|
510
|
+
save_offset = tl.arange(0, BLOCK_SIZE) + kv_start
|
511
|
+
load_offset = tl.arange(0, BLOCK_SIZE)
|
512
|
+
|
513
|
+
num_loop = tl.cdiv(kv_end - kv_start, BLOCK_SIZE)
|
514
|
+
for _ in range(num_loop):
|
515
|
+
mask = save_offset < kv_end
|
516
|
+
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
517
|
+
tl.store(token_pool + save_offset, data, mask=mask)
|
518
|
+
save_offset += BLOCK_SIZE
|
519
|
+
load_offset += BLOCK_SIZE
|
520
|
+
|
521
|
+
|
522
|
+
@triton.jit
|
523
|
+
def assign_draft_cache_locs(
|
524
|
+
req_pool_indices,
|
525
|
+
req_to_token,
|
526
|
+
seq_lens,
|
527
|
+
out_cache_loc,
|
528
|
+
pool_len: tl.constexpr,
|
529
|
+
topk: tl.constexpr,
|
530
|
+
speculative_num_steps: tl.constexpr,
|
531
|
+
):
|
532
|
+
BLOCK_SIZE: tl.constexpr = 32
|
533
|
+
pid = tl.program_id(axis=0)
|
534
|
+
kv_start = tl.load(seq_lens + pid)
|
535
|
+
kv_end = tl.load(seq_lens + pid) + topk * speculative_num_steps
|
536
|
+
token_pool = req_to_token + tl.load(req_pool_indices + pid) * pool_len
|
537
|
+
out_cache_ptr = out_cache_loc + pid * topk * speculative_num_steps
|
538
|
+
|
539
|
+
num_loop = tl.cdiv(topk * speculative_num_steps, BLOCK_SIZE)
|
540
|
+
for i in range(num_loop):
|
541
|
+
save_offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE + kv_start
|
542
|
+
load_offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE
|
543
|
+
mask = save_offset < kv_end
|
544
|
+
data = tl.load(out_cache_ptr + load_offset, mask=mask)
|
545
|
+
tl.store(token_pool + save_offset, data, mask=mask)
|
546
|
+
|
547
|
+
|
548
|
+
@triton.jit
|
549
|
+
def generate_draft_decode_kv_indices(
|
550
|
+
req_pool_indices,
|
551
|
+
req_to_token,
|
552
|
+
paged_kernel_lens,
|
553
|
+
kv_indices,
|
554
|
+
kv_indptr,
|
555
|
+
positions,
|
556
|
+
num_seqs: tl.constexpr,
|
557
|
+
topk: tl.constexpr,
|
558
|
+
pool_len: tl.constexpr,
|
559
|
+
kv_indices_stride: tl.constexpr,
|
560
|
+
kv_indptr_stride: tl.constexpr,
|
561
|
+
bs_upper: tl.constexpr,
|
562
|
+
iter_upper: tl.constexpr,
|
563
|
+
num_tokens_upper: tl.constexpr,
|
564
|
+
):
|
565
|
+
BLOCK_SIZE: tl.constexpr = 128
|
566
|
+
iters = tl.program_id(axis=0)
|
567
|
+
bid = tl.program_id(axis=1)
|
568
|
+
topk_id = tl.program_id(axis=2)
|
569
|
+
|
570
|
+
kv_indices += kv_indices_stride * iters
|
571
|
+
kv_indptr += kv_indptr_stride * iters
|
572
|
+
iters += 1
|
573
|
+
|
574
|
+
load_offset = tl.arange(0, bs_upper)
|
575
|
+
seq_lens = tl.load(paged_kernel_lens + load_offset, mask=load_offset < bid)
|
576
|
+
seq_len = tl.load(paged_kernel_lens + bid)
|
577
|
+
cum_seq_len = tl.sum(seq_lens)
|
578
|
+
|
579
|
+
kv_offset = cum_seq_len * topk + bid * iters * topk + topk_id * (seq_len + iters)
|
580
|
+
kv_ptr = kv_indices + kv_offset
|
581
|
+
token_pool_ptr = req_to_token + tl.load(req_pool_indices + bid) * pool_len
|
582
|
+
|
583
|
+
kv_offset = tl.arange(0, BLOCK_SIZE)
|
584
|
+
num_loop = tl.cdiv(seq_len, BLOCK_SIZE)
|
585
|
+
for _ in range(num_loop):
|
586
|
+
mask = kv_offset < seq_len
|
587
|
+
data = tl.load(token_pool_ptr + kv_offset, mask=mask)
|
588
|
+
tl.store(kv_ptr + kv_offset, data, mask=mask)
|
589
|
+
kv_offset += BLOCK_SIZE
|
590
|
+
|
591
|
+
extend_offset = tl.arange(0, iter_upper)
|
592
|
+
extend_data = tl.load(
|
593
|
+
token_pool_ptr + seq_len + tl.arange(0, iter_upper) * topk + topk_id,
|
594
|
+
mask=extend_offset < iters,
|
595
|
+
)
|
596
|
+
tl.store(kv_ptr + seq_len + extend_offset, extend_data, mask=extend_offset < iters)
|
597
|
+
|
598
|
+
# Update kv_indptr
|
599
|
+
bs_offset = tl.arange(0, num_tokens_upper)
|
600
|
+
|
601
|
+
zid = bid * topk + topk_id
|
602
|
+
if zid == 0:
|
603
|
+
zid = num_seqs * topk
|
604
|
+
positions = tl.load(positions + bs_offset, mask=bs_offset < zid)
|
605
|
+
base = tl.sum(positions)
|
606
|
+
tl.store(kv_indptr + zid, base + zid * iters)
|
607
|
+
|
608
|
+
|
609
|
+
@torch.compile
|
610
|
+
def select_top_k_tokens(
|
611
|
+
i: int,
|
612
|
+
topk_p: torch.Tensor,
|
613
|
+
topk_index: torch.Tensor,
|
614
|
+
hidden_states: torch.Tensor,
|
615
|
+
scores: torch.Tensor,
|
616
|
+
topk: int,
|
617
|
+
):
|
618
|
+
if i == 0:
|
619
|
+
# The first step after extend
|
620
|
+
input_ids = topk_index.flatten()
|
621
|
+
hidden_states = hidden_states.repeat_interleave(topk, dim=0)
|
622
|
+
scores = topk_p # shape: (b, topk)
|
623
|
+
|
624
|
+
tree_info = (
|
625
|
+
topk_p.unsqueeze(1), # shape: (b, 1, topk)
|
626
|
+
topk_index, # shape: (b, topk)
|
627
|
+
torch.arange(-1, topk, dtype=torch.long, device="cuda")
|
628
|
+
.unsqueeze(0)
|
629
|
+
.repeat(topk_p.shape[0], 1), # shape: (b, topk + 1)
|
630
|
+
)
|
631
|
+
|
632
|
+
else:
|
633
|
+
# The later decode steps
|
634
|
+
expand_scores = torch.mul(
|
635
|
+
scores.unsqueeze(2), topk_p.reshape(-1, topk, topk)
|
636
|
+
) # (b, topk, 1) x (b, topk ,topk) -> (b, topk, topk)
|
637
|
+
|
638
|
+
topk_cs_p, topk_cs_index = fast_topk(
|
639
|
+
expand_scores.flatten(start_dim=1), topk, dim=-1
|
640
|
+
) # (b, topk)
|
641
|
+
scores = topk_cs_p # shape: (b, topk)
|
642
|
+
|
643
|
+
topk_index = topk_index.reshape(-1, topk**2)
|
644
|
+
input_ids = torch.gather(topk_index, index=topk_cs_index, dim=1).flatten()
|
645
|
+
|
646
|
+
selected_input_index = topk_cs_index.flatten() // topk + torch.arange(
|
647
|
+
0, hidden_states.shape[0], step=topk, device="cuda"
|
648
|
+
).repeat_interleave(topk)
|
649
|
+
hidden_states = hidden_states[selected_input_index, :]
|
650
|
+
|
651
|
+
tree_info = (
|
652
|
+
expand_scores, # shape: (b, topk, topk)
|
653
|
+
topk_index, # shape: (b, topk * topk)
|
654
|
+
topk_cs_index + (topk**2 * (i - 1) + topk), # shape: (b, topk)
|
655
|
+
)
|
656
|
+
|
657
|
+
return input_ids, hidden_states, scores, tree_info
|
658
|
+
|
659
|
+
|
660
|
+
def fast_topk(values, topk, dim):
|
661
|
+
if topk == 1:
|
662
|
+
# Use max along the specified dimension to get both value and index
|
663
|
+
max_value, max_index = torch.max(values, dim=dim)
|
664
|
+
return max_value.unsqueeze(1), max_index.unsqueeze(1)
|
665
|
+
else:
|
666
|
+
# Use topk for efficiency with larger k values
|
667
|
+
return torch.topk(values, topk, dim=dim)
|