sglang 0.4.2.post1__py3-none-any.whl → 0.4.2.post3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/srt/constrained/outlines_backend.py +9 -1
- sglang/srt/custom_op.py +40 -0
- sglang/srt/entrypoints/engine.py +2 -2
- sglang/srt/function_call_parser.py +96 -69
- sglang/srt/layers/activation.py +10 -5
- sglang/srt/layers/attention/double_sparsity_backend.py +1 -3
- sglang/srt/layers/attention/flashinfer_backend.py +284 -39
- sglang/srt/layers/attention/triton_backend.py +124 -12
- sglang/srt/layers/attention/triton_ops/decode_attention.py +53 -59
- sglang/srt/layers/attention/triton_ops/double_sparsity_attention.py +337 -3
- sglang/srt/layers/attention/triton_ops/extend_attention.py +70 -42
- sglang/srt/layers/layernorm.py +1 -5
- sglang/srt/layers/moe/ep_moe/layer.py +1 -3
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=14336,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=1792,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=3584,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=4096,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json +178 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=7168,device_name=AMD_Radeon_Graphics.json +200 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/E=8,N=8192,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8.json +175 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +5 -13
- sglang/srt/layers/moe/fused_moe_triton/layer.py +1 -3
- sglang/srt/layers/moe/topk.py +4 -0
- sglang/srt/layers/quantization/configs/N=1536,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=AMD_Radeon_Graphics,dtype=fp8_w8a8,block_shape=[128, 128].json +164 -0
- sglang/srt/layers/quantization/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/quantization/fp8_kernel.py +173 -2
- sglang/srt/layers/rotary_embedding.py +1 -3
- sglang/srt/layers/sampler.py +4 -4
- sglang/srt/lora/backend/__init__.py +8 -0
- sglang/srt/lora/backend/base_backend.py +95 -0
- sglang/srt/lora/backend/flashinfer_backend.py +91 -0
- sglang/srt/lora/backend/triton_backend.py +61 -0
- sglang/srt/lora/lora.py +127 -112
- sglang/srt/lora/lora_manager.py +50 -18
- sglang/srt/lora/triton_ops/__init__.py +5 -0
- sglang/srt/lora/triton_ops/qkv_lora_b.py +182 -0
- sglang/srt/lora/triton_ops/sgemm_lora_a.py +143 -0
- sglang/srt/lora/triton_ops/sgemm_lora_b.py +159 -0
- sglang/srt/model_executor/cuda_graph_runner.py +77 -80
- sglang/srt/model_executor/forward_batch_info.py +58 -59
- sglang/srt/model_executor/model_runner.py +2 -2
- sglang/srt/models/llama.py +8 -3
- sglang/srt/models/qwen2_vl.py +1 -1
- sglang/srt/server_args.py +13 -2
- sglang/srt/speculative/build_eagle_tree.py +486 -104
- sglang/srt/speculative/eagle_draft_cuda_graph_runner.py +213 -0
- sglang/srt/speculative/eagle_utils.py +420 -401
- sglang/srt/speculative/eagle_worker.py +177 -45
- sglang/srt/utils.py +7 -0
- sglang/test/runners.py +2 -0
- sglang/version.py +1 -1
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/METADATA +15 -6
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/RECORD +77 -38
- sglang/srt/layers/custom_op_util.py +0 -25
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/LICENSE +0 -0
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/WHEEL +0 -0
- {sglang-0.4.2.post1.dist-info → sglang-0.4.2.post3.dist-info}/top_level.txt +0 -0
@@ -1,122 +1,175 @@
|
|
1
|
-
|
1
|
+
# NOTE: Please run this file to make sure the test cases are correct.
|
2
|
+
|
3
|
+
from typing import List
|
4
|
+
|
2
5
|
import torch
|
3
6
|
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
for(int i=1;i<draft_token_num;i++){
|
60
|
-
if(tree_mask[seq_tree_idx + i * (draft_token_num+seq_len) + seq_len + tid])
|
61
|
-
{
|
62
|
-
is_leaf ++;
|
63
|
-
}
|
64
|
-
}
|
65
|
-
if(is_leaf==1){
|
66
|
-
for(int i=0; i<position; i++){
|
67
|
-
retrive_index[bid][tid][position-i] = depends_order[i] + bid * draft_token_num;
|
68
|
-
}
|
69
|
-
retrive_index[bid][tid][0] = bid*draft_token_num;
|
70
|
-
}
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
}
|
75
|
-
//!cuda
|
76
|
-
""",
|
77
|
-
float_bits=16, # change to 16 to use half precision as `float` type in the above source code.
|
78
|
-
boundscheck=True, # turning on for debug and off for performance (to use full threads of a block), default is on.
|
79
|
-
)
|
80
|
-
|
81
|
-
|
82
|
-
def build_tree_kernel(parent_list, top_score_index, seq_lens, topk, depth, draft_token):
|
7
|
+
from sglang.srt.utils import is_cuda_available
|
8
|
+
|
9
|
+
if is_cuda_available():
|
10
|
+
from sgl_kernel import build_tree_kernel as sgl_build_tree_kernel
|
11
|
+
from sgl_kernel import (
|
12
|
+
build_tree_kernel_efficient as sgl_build_tree_kernel_efficient,
|
13
|
+
)
|
14
|
+
|
15
|
+
|
16
|
+
def build_tree_kernel_efficient_preprocess(
|
17
|
+
verified_id: torch.Tensor,
|
18
|
+
score_list: List[torch.Tensor],
|
19
|
+
token_list: List[torch.Tensor],
|
20
|
+
parents_list: List[torch.Tensor],
|
21
|
+
num_verify_tokens: int,
|
22
|
+
):
|
23
|
+
score_list = torch.cat(score_list, dim=1).flatten(
|
24
|
+
1
|
25
|
+
) # b, n, topk; n= 1 + (num_steps-1) * self.topk
|
26
|
+
ss_token_list = torch.cat(
|
27
|
+
token_list, dim=1
|
28
|
+
) # b, (self.topk + (num_steps-1) * self.topk)
|
29
|
+
top_scores = torch.topk(score_list, num_verify_tokens - 1, dim=-1)
|
30
|
+
top_scores_index = top_scores.indices
|
31
|
+
top_scores_index = torch.sort(top_scores_index).values
|
32
|
+
|
33
|
+
draft_tokens = torch.gather(ss_token_list, index=top_scores_index, dim=1)
|
34
|
+
draft_tokens = torch.cat((verified_id.unsqueeze(1), draft_tokens), dim=1).flatten()
|
35
|
+
parent_list = torch.cat(parents_list[:-1], dim=1)
|
36
|
+
|
37
|
+
return parent_list, top_scores_index, draft_tokens
|
38
|
+
|
39
|
+
|
40
|
+
def build_tree_kernel_efficient(
|
41
|
+
verified_id: torch.Tensor,
|
42
|
+
score_list: List[torch.Tensor],
|
43
|
+
token_list: List[torch.Tensor],
|
44
|
+
parents_list: List[torch.Tensor],
|
45
|
+
seq_lens: torch.Tensor,
|
46
|
+
seq_lens_sum: int,
|
47
|
+
topk: int,
|
48
|
+
spec_steps: int,
|
49
|
+
num_verify_tokens: int,
|
50
|
+
):
|
51
|
+
parent_list, top_scores_index, draft_tokens = (
|
52
|
+
build_tree_kernel_efficient_preprocess(
|
53
|
+
verified_id,
|
54
|
+
score_list,
|
55
|
+
token_list,
|
56
|
+
parents_list,
|
57
|
+
num_verify_tokens,
|
58
|
+
)
|
59
|
+
)
|
60
|
+
|
61
|
+
# seq_lens_sum == sum(seq_lens); seq_lens: sequence length without draft tokens
|
83
62
|
bs = seq_lens.numel()
|
84
|
-
device =
|
63
|
+
device = seq_lens.device
|
64
|
+
# e.g. for bs=1, tree_mask: num_draft_token, seq_lens_sum + num_draft_token (flattened)
|
65
|
+
# where each row indicates the attending pattern of each draft token
|
66
|
+
# TODO: make them torch.empty and fuse them into `sgl_build_tree_kernel`
|
85
67
|
tree_mask = torch.full(
|
86
|
-
(
|
68
|
+
(
|
69
|
+
seq_lens_sum * num_verify_tokens
|
70
|
+
+ num_verify_tokens * num_verify_tokens * bs,
|
71
|
+
),
|
87
72
|
True,
|
88
73
|
device=device,
|
89
74
|
)
|
90
75
|
retrive_index = torch.full(
|
91
|
-
(bs,
|
76
|
+
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
|
77
|
+
)
|
78
|
+
retrive_next_token = torch.full(
|
79
|
+
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
|
92
80
|
)
|
93
|
-
|
81
|
+
retrive_next_sibling = torch.full(
|
82
|
+
(bs, num_verify_tokens), -1, device=device, dtype=torch.long
|
83
|
+
)
|
84
|
+
# position: where each token belongs to
|
85
|
+
# e.g. if depth of each draft token is [0, 1, 1, 2] and the prompt length is 7
|
86
|
+
# then, positions = [7, 8, 8, 9]
|
87
|
+
positions = torch.empty((bs * num_verify_tokens,), device=device, dtype=torch.long)
|
94
88
|
|
95
|
-
|
89
|
+
sgl_build_tree_kernel_efficient(
|
96
90
|
parent_list,
|
97
|
-
|
91
|
+
top_scores_index,
|
98
92
|
seq_lens.to(torch.int32),
|
99
93
|
tree_mask,
|
100
94
|
positions,
|
101
95
|
retrive_index,
|
96
|
+
retrive_next_token,
|
97
|
+
retrive_next_sibling,
|
102
98
|
topk,
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
99
|
+
spec_steps,
|
100
|
+
num_verify_tokens,
|
101
|
+
)
|
102
|
+
return (
|
103
|
+
tree_mask,
|
104
|
+
positions,
|
105
|
+
retrive_index,
|
106
|
+
retrive_next_token,
|
107
|
+
retrive_next_sibling,
|
108
|
+
draft_tokens,
|
109
|
+
)
|
110
|
+
|
111
|
+
|
112
|
+
def build_tree_kernel(
|
113
|
+
verified_id: torch.Tensor,
|
114
|
+
score_list: List[torch.Tensor],
|
115
|
+
token_list: List[torch.Tensor],
|
116
|
+
parents_list: List[torch.Tensor],
|
117
|
+
seq_lens: torch.Tensor,
|
118
|
+
seq_lens_sum: int,
|
119
|
+
topk: int,
|
120
|
+
spec_steps: int,
|
121
|
+
num_verify_tokens: int,
|
122
|
+
):
|
123
|
+
parent_list, top_scores_index, draft_tokens = (
|
124
|
+
build_tree_kernel_efficient_preprocess(
|
125
|
+
verified_id,
|
126
|
+
score_list,
|
127
|
+
token_list,
|
128
|
+
parents_list,
|
129
|
+
num_verify_tokens,
|
130
|
+
)
|
131
|
+
)
|
132
|
+
|
133
|
+
bs = seq_lens.numel()
|
134
|
+
device = seq_lens.device
|
135
|
+
|
136
|
+
tree_mask = torch.full(
|
137
|
+
(
|
138
|
+
seq_lens_sum * num_verify_tokens
|
139
|
+
+ num_verify_tokens * num_verify_tokens * bs,
|
140
|
+
),
|
141
|
+
True,
|
142
|
+
device=device,
|
143
|
+
)
|
144
|
+
retrive_index = torch.full(
|
145
|
+
(bs, num_verify_tokens, spec_steps + 2), -1, device=device, dtype=torch.long
|
146
|
+
)
|
147
|
+
positions = torch.empty((bs * num_verify_tokens,), device=device, dtype=torch.long)
|
148
|
+
|
149
|
+
sgl_build_tree_kernel(
|
150
|
+
parent_list,
|
151
|
+
top_scores_index,
|
152
|
+
seq_lens.to(torch.int32),
|
153
|
+
tree_mask,
|
154
|
+
positions,
|
155
|
+
retrive_index,
|
156
|
+
topk,
|
157
|
+
spec_steps,
|
158
|
+
num_verify_tokens,
|
107
159
|
)
|
108
|
-
|
160
|
+
|
161
|
+
index = retrive_index.sum(dim=-1) != -spec_steps - 2
|
109
162
|
cum_len = torch.cumsum(torch.sum(index, dim=-1), dim=-1)
|
110
163
|
retrive_cum_len = torch.zeros(
|
111
164
|
(cum_len.numel() + 1,), dtype=torch.int32, device="cuda"
|
112
165
|
)
|
113
166
|
retrive_cum_len[1:] = cum_len
|
167
|
+
# TODO: this indexing cause a synchronization, optimize this
|
114
168
|
retrive_index = retrive_index[index]
|
115
|
-
return tree_mask, positions, retrive_index, retrive_cum_len
|
169
|
+
return tree_mask, positions, retrive_index, retrive_cum_len, draft_tokens
|
116
170
|
|
117
171
|
|
118
|
-
|
119
|
-
|
172
|
+
def test_build_tree_kernel():
|
120
173
|
def findp(p_i, index, parent_list):
|
121
174
|
pos = index // 10
|
122
175
|
index_list = index.tolist()
|
@@ -309,21 +362,21 @@ if __name__ == "__main__":
|
|
309
362
|
bs = verified_seq_len.shape[0]
|
310
363
|
topk = 10
|
311
364
|
depth = 5 # depth <= 10
|
312
|
-
|
365
|
+
num_draft_token = 64
|
313
366
|
|
314
367
|
tree_mask = torch.full(
|
315
368
|
(
|
316
|
-
torch.sum(verified_seq_len).item() *
|
317
|
-
+
|
369
|
+
torch.sum(verified_seq_len).item() * num_draft_token
|
370
|
+
+ num_draft_token * num_draft_token * bs,
|
318
371
|
),
|
319
372
|
True,
|
320
373
|
).cuda()
|
321
374
|
retrive_index = torch.full(
|
322
|
-
(bs,
|
375
|
+
(bs, num_draft_token, depth + 2), -1, device="cuda", dtype=torch.long
|
323
376
|
)
|
324
|
-
positions = torch.empty((bs *
|
377
|
+
positions = torch.empty((bs * num_draft_token,), device="cuda", dtype=torch.long)
|
325
378
|
|
326
|
-
|
379
|
+
sgl_build_tree_kernel(
|
327
380
|
parent_list.unsqueeze(0),
|
328
381
|
index.unsqueeze(0),
|
329
382
|
verified_seq_len,
|
@@ -332,16 +385,345 @@ if __name__ == "__main__":
|
|
332
385
|
retrive_index,
|
333
386
|
topk,
|
334
387
|
depth,
|
335
|
-
|
336
|
-
grid=(bs, 1, 1),
|
337
|
-
block=(64, 1, 1),
|
388
|
+
num_draft_token,
|
338
389
|
)
|
390
|
+
|
339
391
|
retrive_index = retrive_index[retrive_index.sum(dim=-1) != -depth - 2]
|
340
392
|
|
341
393
|
c_mask, c_positions, c_retive_index = create_mask(
|
342
|
-
verified_seq_len,
|
394
|
+
verified_seq_len, num_draft_token, index, parent_list, depth
|
343
395
|
)
|
344
396
|
|
345
397
|
assert torch.allclose(tree_mask, c_mask), "tree mask has error."
|
346
398
|
assert torch.allclose(positions, c_positions), "positions has error."
|
347
399
|
assert torch.allclose(retrive_index, c_retive_index), "retrive_index has error."
|
400
|
+
|
401
|
+
|
402
|
+
def test_build_tree_kernel_efficient():
|
403
|
+
verified_id = torch.tensor([29974, 13], device="cuda", dtype=torch.int32)
|
404
|
+
score_list = [
|
405
|
+
torch.tensor(
|
406
|
+
[
|
407
|
+
[[7.1127e-01, 2.8292e-01, 2.2995e-03, 1.7357e-03]],
|
408
|
+
[[9.7476e-01, 2.2219e-02, 6.5031e-04, 1.3212e-04]],
|
409
|
+
],
|
410
|
+
dtype=torch.float32,
|
411
|
+
device="cuda",
|
412
|
+
),
|
413
|
+
torch.tensor(
|
414
|
+
[
|
415
|
+
[
|
416
|
+
[6.9142e-01, 1.2863e-02, 1.6873e-03, 1.1871e-03],
|
417
|
+
[2.4787e-01, 1.8818e-02, 1.4204e-02, 9.2235e-04],
|
418
|
+
[2.2971e-03, 1.6700e-06, 1.8737e-07, 8.3146e-08],
|
419
|
+
[1.2771e-03, 2.4374e-04, 1.7832e-04, 1.1947e-05],
|
420
|
+
],
|
421
|
+
[
|
422
|
+
[8.4832e-02, 6.6068e-02, 5.8304e-02, 5.7851e-02],
|
423
|
+
[2.3616e-03, 1.1243e-03, 5.4368e-04, 2.7768e-04],
|
424
|
+
[2.5286e-04, 1.5578e-04, 2.8817e-05, 1.2888e-05],
|
425
|
+
[1.2834e-04, 2.5417e-06, 1.1279e-06, 1.6088e-08],
|
426
|
+
],
|
427
|
+
],
|
428
|
+
dtype=torch.float32,
|
429
|
+
device="cuda",
|
430
|
+
),
|
431
|
+
torch.tensor(
|
432
|
+
[
|
433
|
+
[
|
434
|
+
[6.6438e-01, 2.6997e-02, 2.4236e-05, 4.0821e-06],
|
435
|
+
[2.4402e-01, 2.8409e-03, 5.0935e-04, 2.9022e-04],
|
436
|
+
[1.6178e-02, 2.0567e-03, 4.5892e-04, 3.0034e-05],
|
437
|
+
[1.3023e-02, 5.0497e-04, 3.6371e-04, 8.7750e-05],
|
438
|
+
],
|
439
|
+
[
|
440
|
+
[2.3263e-02, 2.0054e-02, 9.3990e-03, 2.7783e-03],
|
441
|
+
[6.4156e-02, 5.5506e-04, 1.0429e-04, 9.7211e-05],
|
442
|
+
[4.9950e-02, 5.0630e-03, 9.0068e-04, 3.3656e-04],
|
443
|
+
[7.5817e-03, 8.5731e-04, 6.9972e-04, 6.0793e-04],
|
444
|
+
],
|
445
|
+
],
|
446
|
+
dtype=torch.float32,
|
447
|
+
device="cuda",
|
448
|
+
),
|
449
|
+
torch.tensor(
|
450
|
+
[
|
451
|
+
[
|
452
|
+
[6.6420e-01, 1.0525e-04, 6.5864e-05, 1.2253e-06],
|
453
|
+
[1.3019e-01, 1.0461e-01, 5.2083e-03, 1.6777e-03],
|
454
|
+
[2.0103e-02, 6.7335e-03, 1.2625e-04, 1.0364e-05],
|
455
|
+
[1.5142e-02, 7.0819e-04, 9.6595e-05, 8.7951e-05],
|
456
|
+
],
|
457
|
+
[
|
458
|
+
[5.8608e-02, 1.8840e-03, 7.8535e-04, 4.4400e-04],
|
459
|
+
[1.2185e-02, 2.0684e-03, 1.7418e-03, 1.4327e-03],
|
460
|
+
[6.2455e-03, 6.1487e-03, 2.6862e-03, 1.8034e-03],
|
461
|
+
[1.8590e-03, 1.6151e-03, 1.2481e-03, 3.6038e-04],
|
462
|
+
],
|
463
|
+
],
|
464
|
+
dtype=torch.float32,
|
465
|
+
device="cuda",
|
466
|
+
),
|
467
|
+
]
|
468
|
+
token_list = [
|
469
|
+
torch.tensor(
|
470
|
+
[[29896, 29906, 29900, 29945], [13, 2, 29871, 28956]],
|
471
|
+
dtype=torch.int64,
|
472
|
+
device="cuda",
|
473
|
+
),
|
474
|
+
torch.tensor(
|
475
|
+
[
|
476
|
+
[
|
477
|
+
29889,
|
478
|
+
29974,
|
479
|
+
29945,
|
480
|
+
29900,
|
481
|
+
29974,
|
482
|
+
29922,
|
483
|
+
29930,
|
484
|
+
29958,
|
485
|
+
29889,
|
486
|
+
29974,
|
487
|
+
29930,
|
488
|
+
29945,
|
489
|
+
29974,
|
490
|
+
29922,
|
491
|
+
29930,
|
492
|
+
29958,
|
493
|
+
],
|
494
|
+
[
|
495
|
+
22550,
|
496
|
+
4136,
|
497
|
+
16492,
|
498
|
+
8439,
|
499
|
+
29871,
|
500
|
+
2,
|
501
|
+
3001,
|
502
|
+
13,
|
503
|
+
2,
|
504
|
+
13,
|
505
|
+
29906,
|
506
|
+
29946,
|
507
|
+
2,
|
508
|
+
13,
|
509
|
+
29871,
|
510
|
+
259,
|
511
|
+
],
|
512
|
+
],
|
513
|
+
device="cuda",
|
514
|
+
),
|
515
|
+
torch.tensor(
|
516
|
+
[
|
517
|
+
[
|
518
|
+
29946,
|
519
|
+
29945,
|
520
|
+
29953,
|
521
|
+
29906,
|
522
|
+
29896,
|
523
|
+
29945,
|
524
|
+
29900,
|
525
|
+
29906,
|
526
|
+
29896,
|
527
|
+
29945,
|
528
|
+
29906,
|
529
|
+
29953,
|
530
|
+
29896,
|
531
|
+
29945,
|
532
|
+
29906,
|
533
|
+
29946,
|
534
|
+
],
|
535
|
+
[
|
536
|
+
29871,
|
537
|
+
2,
|
538
|
+
29901,
|
539
|
+
29889,
|
540
|
+
29871,
|
541
|
+
2,
|
542
|
+
395,
|
543
|
+
259,
|
544
|
+
29901,
|
545
|
+
29871,
|
546
|
+
2,
|
547
|
+
29889,
|
548
|
+
3001,
|
549
|
+
1234,
|
550
|
+
7146,
|
551
|
+
2186,
|
552
|
+
],
|
553
|
+
],
|
554
|
+
device="cuda",
|
555
|
+
),
|
556
|
+
torch.tensor(
|
557
|
+
[
|
558
|
+
[
|
559
|
+
29946,
|
560
|
+
29974,
|
561
|
+
29945,
|
562
|
+
29930,
|
563
|
+
29889,
|
564
|
+
29922,
|
565
|
+
29974,
|
566
|
+
29930,
|
567
|
+
29974,
|
568
|
+
29946,
|
569
|
+
29930,
|
570
|
+
29922,
|
571
|
+
29889,
|
572
|
+
29974,
|
573
|
+
29945,
|
574
|
+
29922,
|
575
|
+
],
|
576
|
+
[
|
577
|
+
29941,
|
578
|
+
29906,
|
579
|
+
2,
|
580
|
+
29946,
|
581
|
+
29871,
|
582
|
+
450,
|
583
|
+
319,
|
584
|
+
14990,
|
585
|
+
29946,
|
586
|
+
29941,
|
587
|
+
2,
|
588
|
+
29906,
|
589
|
+
29871,
|
590
|
+
2,
|
591
|
+
3001,
|
592
|
+
13,
|
593
|
+
],
|
594
|
+
],
|
595
|
+
device="cuda",
|
596
|
+
),
|
597
|
+
]
|
598
|
+
parents_list = [
|
599
|
+
torch.tensor(
|
600
|
+
[[-1, 0, 1, 2, 3], [-1, 0, 1, 2, 3]], dtype=torch.int64, device="cuda"
|
601
|
+
),
|
602
|
+
torch.tensor([[4, 8, 9, 10], [4, 5, 6, 7]], dtype=torch.int64, device="cuda"),
|
603
|
+
torch.tensor(
|
604
|
+
[[20, 24, 21, 28], [24, 28, 20, 21]], dtype=torch.int64, device="cuda"
|
605
|
+
),
|
606
|
+
torch.tensor(
|
607
|
+
[[36, 40, 41, 44], [36, 40, 44, 45]], dtype=torch.int64, device="cuda"
|
608
|
+
),
|
609
|
+
]
|
610
|
+
seq_lens = torch.tensor([5, 10], dtype=torch.int64, device="cuda")
|
611
|
+
topk = 4
|
612
|
+
depth = 4
|
613
|
+
num_draft_token = 8
|
614
|
+
|
615
|
+
tree_mask, position, retrive_index, retrive_cum_len, draft_tokens = (
|
616
|
+
build_tree_kernel(
|
617
|
+
verified_id=verified_id,
|
618
|
+
score_list=score_list,
|
619
|
+
token_list=token_list,
|
620
|
+
parents_list=parents_list,
|
621
|
+
seq_lens=seq_lens,
|
622
|
+
seq_lens_sum=torch.sum(seq_lens).item(),
|
623
|
+
topk=topk,
|
624
|
+
spec_steps=depth,
|
625
|
+
num_verify_tokens=num_draft_token,
|
626
|
+
)
|
627
|
+
)
|
628
|
+
|
629
|
+
from sglang.srt.utils import first_rank_print
|
630
|
+
|
631
|
+
first_rank_print("=========== build tree kernel ==========")
|
632
|
+
# first_rank_print(f"{tree_mask=}", flush=True)
|
633
|
+
first_rank_print(f"{position=}", flush=True)
|
634
|
+
first_rank_print(f"{retrive_index=}", flush=True)
|
635
|
+
first_rank_print(f"{retrive_cum_len=}", flush=True)
|
636
|
+
first_rank_print(f"{draft_tokens=}", flush=True)
|
637
|
+
assert position.tolist() == [5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14]
|
638
|
+
assert retrive_index.tolist() == [
|
639
|
+
[0, -1, -1, -1, -1, -1],
|
640
|
+
[0, 2, 4, 6, -1, -1],
|
641
|
+
[0, 1, 3, 5, 7, -1],
|
642
|
+
[8, -1, -1, -1, -1, -1],
|
643
|
+
[8, 9, 10, -1, -1, -1],
|
644
|
+
[8, 9, 12, -1, -1, -1],
|
645
|
+
[8, 9, 13, -1, -1, -1],
|
646
|
+
[8, 9, 11, 14, 15, -1],
|
647
|
+
]
|
648
|
+
assert retrive_cum_len.tolist() == [0, 3, 8]
|
649
|
+
assert draft_tokens.tolist() == [
|
650
|
+
29974,
|
651
|
+
29896,
|
652
|
+
29906,
|
653
|
+
29889,
|
654
|
+
29974,
|
655
|
+
29946,
|
656
|
+
29896,
|
657
|
+
29946,
|
658
|
+
13,
|
659
|
+
13,
|
660
|
+
22550,
|
661
|
+
4136,
|
662
|
+
16492,
|
663
|
+
8439,
|
664
|
+
29871,
|
665
|
+
29941,
|
666
|
+
]
|
667
|
+
|
668
|
+
(
|
669
|
+
tree_mask,
|
670
|
+
position,
|
671
|
+
retrive_index,
|
672
|
+
retrive_next_token,
|
673
|
+
retrive_next_sibling,
|
674
|
+
draft_tokens,
|
675
|
+
) = build_tree_kernel_efficient(
|
676
|
+
verified_id=verified_id,
|
677
|
+
score_list=score_list,
|
678
|
+
token_list=token_list,
|
679
|
+
parents_list=parents_list,
|
680
|
+
seq_lens=seq_lens,
|
681
|
+
seq_lens_sum=torch.sum(seq_lens).item(),
|
682
|
+
topk=topk,
|
683
|
+
spec_steps=depth,
|
684
|
+
num_verify_tokens=num_draft_token,
|
685
|
+
)
|
686
|
+
|
687
|
+
first_rank_print("=========== build tree kernel efficient ==========")
|
688
|
+
# first_rank_print(f"{tree_mask=}", flush=True)
|
689
|
+
first_rank_print(f"{position=}", flush=True)
|
690
|
+
first_rank_print(f"{retrive_index=}", flush=True)
|
691
|
+
first_rank_print(f"{retrive_next_token=}", flush=True)
|
692
|
+
first_rank_print(f"{retrive_next_sibling=}", flush=True)
|
693
|
+
first_rank_print(f"{draft_tokens=}", flush=True)
|
694
|
+
assert position.tolist() == [5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 12, 12, 12, 12, 13, 14]
|
695
|
+
assert retrive_index.tolist() == [
|
696
|
+
[0, 1, 2, 3, 4, 5, 6, 7],
|
697
|
+
[8, 9, 10, 11, 12, 13, 14, 15],
|
698
|
+
]
|
699
|
+
assert retrive_next_token.tolist() == [
|
700
|
+
[1, 3, 4, 5, 6, 7, -1, -1],
|
701
|
+
[1, 2, -1, 6, -1, -1, 7, -1],
|
702
|
+
]
|
703
|
+
assert retrive_next_sibling.tolist() == [
|
704
|
+
[-1, 2, -1, -1, -1, -1, -1, -1],
|
705
|
+
[-1, -1, 3, 4, 5, -1, -1, -1],
|
706
|
+
]
|
707
|
+
assert draft_tokens.tolist() == [
|
708
|
+
29974,
|
709
|
+
29896,
|
710
|
+
29906,
|
711
|
+
29889,
|
712
|
+
29974,
|
713
|
+
29946,
|
714
|
+
29896,
|
715
|
+
29946,
|
716
|
+
13,
|
717
|
+
13,
|
718
|
+
22550,
|
719
|
+
4136,
|
720
|
+
16492,
|
721
|
+
8439,
|
722
|
+
29871,
|
723
|
+
29941,
|
724
|
+
]
|
725
|
+
|
726
|
+
|
727
|
+
if __name__ == "__main__":
|
728
|
+
test_build_tree_kernel_efficient()
|
729
|
+
test_build_tree_kernel()
|