sglang 0.4.10.post2__py3-none-any.whl → 0.5.0rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sglang/__init__.py +8 -3
- sglang/bench_one_batch.py +119 -17
- sglang/lang/chat_template.py +18 -0
- sglang/srt/bench_utils.py +137 -0
- sglang/srt/configs/model_config.py +42 -7
- sglang/srt/conversation.py +9 -5
- sglang/srt/disaggregation/base/conn.py +5 -2
- sglang/srt/disaggregation/decode.py +14 -4
- sglang/srt/disaggregation/decode_schedule_batch_mixin.py +3 -0
- sglang/srt/disaggregation/mooncake/conn.py +286 -160
- sglang/srt/disaggregation/mooncake/transfer_engine.py +29 -0
- sglang/srt/disaggregation/prefill.py +2 -0
- sglang/srt/distributed/parallel_state.py +15 -11
- sglang/srt/entrypoints/context.py +227 -0
- sglang/srt/entrypoints/engine.py +15 -9
- sglang/srt/entrypoints/harmony_utils.py +372 -0
- sglang/srt/entrypoints/http_server.py +74 -4
- sglang/srt/entrypoints/openai/protocol.py +218 -1
- sglang/srt/entrypoints/openai/serving_chat.py +41 -11
- sglang/srt/entrypoints/openai/serving_responses.py +1273 -0
- sglang/srt/entrypoints/openai/tool_server.py +175 -0
- sglang/srt/entrypoints/tool.py +87 -0
- sglang/srt/eplb/expert_location.py +5 -1
- sglang/srt/function_call/ebnf_composer.py +1 -0
- sglang/srt/function_call/function_call_parser.py +2 -0
- sglang/srt/function_call/glm4_moe_detector.py +1 -1
- sglang/srt/function_call/gpt_oss_detector.py +331 -0
- sglang/srt/function_call/kimik2_detector.py +3 -3
- sglang/srt/function_call/qwen3_coder_detector.py +219 -9
- sglang/srt/hf_transformers_utils.py +30 -3
- sglang/srt/jinja_template_utils.py +14 -1
- sglang/srt/layers/attention/aiter_backend.py +375 -115
- sglang/srt/layers/attention/ascend_backend.py +3 -0
- sglang/srt/layers/attention/dual_chunk_flashattention_backend.py +1700 -0
- sglang/srt/layers/attention/flashattention_backend.py +18 -0
- sglang/srt/layers/attention/flashinfer_backend.py +52 -13
- sglang/srt/layers/attention/hybrid_attn_backend.py +1 -1
- sglang/srt/layers/attention/triton_backend.py +85 -14
- sglang/srt/layers/attention/triton_ops/decode_attention.py +17 -0
- sglang/srt/layers/attention/triton_ops/extend_attention.py +143 -98
- sglang/srt/layers/attention/trtllm_mha_backend.py +332 -0
- sglang/srt/layers/attention/trtllm_mla_backend.py +119 -22
- sglang/srt/layers/attention/vision.py +22 -6
- sglang/srt/layers/attention/wave_backend.py +627 -0
- sglang/srt/layers/attention/wave_ops/decode_attention.py +186 -0
- sglang/srt/layers/attention/wave_ops/extend_attention.py +149 -0
- sglang/srt/layers/attention/wave_ops/prefill_attention.py +79 -0
- sglang/srt/layers/communicator.py +29 -14
- sglang/srt/layers/dp_attention.py +12 -0
- sglang/srt/layers/flashinfer_comm_fusion.py +4 -4
- sglang/srt/layers/linear.py +3 -7
- sglang/srt/layers/moe/cutlass_moe.py +12 -3
- sglang/srt/layers/moe/cutlass_w4a8_moe.py +4 -5
- sglang/srt/layers/moe/ep_moe/kernels.py +43 -0
- sglang/srt/layers/moe/ep_moe/layer.py +135 -73
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/configs/triton_3_4_0/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128, 128].json +146 -0
- sglang/srt/layers/moe/fused_moe_triton/fused_moe.py +101 -12
- sglang/srt/layers/moe/fused_moe_triton/layer.py +412 -33
- sglang/srt/layers/moe/fused_moe_triton/triton_kernels_moe.py +188 -3
- sglang/srt/layers/moe/token_dispatcher/deepep.py +61 -24
- sglang/srt/layers/moe/topk.py +16 -4
- sglang/srt/layers/moe/utils.py +16 -0
- sglang/srt/layers/quantization/__init__.py +27 -3
- sglang/srt/layers/quantization/fp4.py +557 -0
- sglang/srt/layers/quantization/fp8.py +3 -6
- sglang/srt/layers/quantization/fp8_kernel.py +277 -0
- sglang/srt/layers/quantization/fp8_utils.py +51 -10
- sglang/srt/layers/quantization/modelopt_quant.py +258 -68
- sglang/srt/layers/quantization/mxfp4.py +654 -0
- sglang/srt/layers/quantization/mxfp4_tensor.py +133 -0
- sglang/srt/layers/quantization/quark/schemes/__init__.py +6 -0
- sglang/srt/layers/quantization/quark/schemes/quark_scheme.py +55 -0
- sglang/srt/layers/quantization/quark/schemes/quark_w4a4_mxfp4.py +118 -0
- sglang/srt/layers/quantization/quark/utils.py +107 -0
- sglang/srt/layers/quantization/unquant.py +60 -6
- sglang/srt/layers/quantization/w4afp8.py +21 -12
- sglang/srt/layers/quantization/w8a8_int8.py +48 -34
- sglang/srt/layers/rotary_embedding.py +506 -3
- sglang/srt/layers/utils.py +9 -0
- sglang/srt/layers/vocab_parallel_embedding.py +8 -3
- sglang/srt/lora/backend/base_backend.py +3 -23
- sglang/srt/lora/layers.py +60 -114
- sglang/srt/lora/lora.py +17 -62
- sglang/srt/lora/lora_manager.py +82 -62
- sglang/srt/lora/lora_registry.py +23 -11
- sglang/srt/lora/mem_pool.py +63 -68
- sglang/srt/lora/triton_ops/qkv_lora_b.py +1 -1
- sglang/srt/lora/utils.py +25 -58
- sglang/srt/managers/cache_controller.py +75 -58
- sglang/srt/managers/detokenizer_manager.py +1 -1
- sglang/srt/managers/io_struct.py +20 -8
- sglang/srt/managers/mm_utils.py +6 -13
- sglang/srt/managers/multimodal_processor.py +1 -1
- sglang/srt/managers/schedule_batch.py +61 -25
- sglang/srt/managers/schedule_policy.py +6 -6
- sglang/srt/managers/scheduler.py +41 -19
- sglang/srt/managers/scheduler_output_processor_mixin.py +1 -2
- sglang/srt/managers/scheduler_profiler_mixin.py +28 -8
- sglang/srt/managers/scheduler_recv_skipper.py +37 -0
- sglang/srt/managers/scheduler_update_weights_mixin.py +6 -0
- sglang/srt/managers/template_manager.py +35 -1
- sglang/srt/managers/tokenizer_manager.py +47 -30
- sglang/srt/managers/tp_worker.py +3 -0
- sglang/srt/managers/tp_worker_overlap_thread.py +3 -0
- sglang/srt/mem_cache/allocator.py +61 -87
- sglang/srt/mem_cache/hicache_storage.py +1 -1
- sglang/srt/mem_cache/hiradix_cache.py +80 -22
- sglang/srt/mem_cache/lora_radix_cache.py +421 -0
- sglang/srt/mem_cache/memory_pool_host.py +34 -36
- sglang/srt/mem_cache/multimodal_cache.py +33 -13
- sglang/srt/mem_cache/radix_cache.py +2 -5
- sglang/srt/mem_cache/storage/hf3fs/client_hf3fs.py +2 -2
- sglang/srt/mem_cache/storage/hf3fs/mini_3fs_metadata_server.py +443 -0
- sglang/srt/mem_cache/storage/hf3fs/storage_hf3fs.py +139 -67
- sglang/srt/mem_cache/storage/mooncake_store/mooncake_store.py +6 -9
- sglang/srt/model_executor/cuda_graph_runner.py +29 -9
- sglang/srt/model_executor/forward_batch_info.py +61 -19
- sglang/srt/model_executor/model_runner.py +148 -37
- sglang/srt/model_loader/loader.py +18 -6
- sglang/srt/model_loader/weight_utils.py +10 -0
- sglang/srt/models/bailing_moe.py +425 -0
- sglang/srt/models/deepseek_v2.py +137 -59
- sglang/srt/models/ernie4.py +426 -0
- sglang/srt/models/ernie4_eagle.py +203 -0
- sglang/srt/models/gemma2.py +0 -34
- sglang/srt/models/gemma3n_mm.py +38 -0
- sglang/srt/models/glm4.py +6 -0
- sglang/srt/models/glm4_moe.py +28 -16
- sglang/srt/models/glm4v.py +589 -0
- sglang/srt/models/glm4v_moe.py +400 -0
- sglang/srt/models/gpt_oss.py +1251 -0
- sglang/srt/models/granite.py +0 -25
- sglang/srt/models/llama.py +0 -25
- sglang/srt/models/llama4.py +1 -1
- sglang/srt/models/qwen2.py +6 -0
- sglang/srt/models/qwen2_5_vl.py +7 -3
- sglang/srt/models/qwen2_audio.py +10 -9
- sglang/srt/models/qwen2_moe.py +6 -0
- sglang/srt/models/qwen3.py +0 -24
- sglang/srt/models/qwen3_moe.py +32 -6
- sglang/srt/models/registry.py +1 -1
- sglang/srt/models/step3_vl.py +9 -0
- sglang/srt/models/torch_native_llama.py +0 -24
- sglang/srt/models/transformers.py +2 -5
- sglang/srt/multimodal/processors/base_processor.py +23 -13
- sglang/srt/multimodal/processors/glm4v.py +132 -0
- sglang/srt/multimodal/processors/qwen_audio.py +4 -2
- sglang/srt/multimodal/processors/step3_vl.py +3 -1
- sglang/srt/reasoning_parser.py +332 -37
- sglang/srt/server_args.py +186 -75
- sglang/srt/speculative/eagle_worker.py +16 -0
- sglang/srt/two_batch_overlap.py +169 -9
- sglang/srt/utils.py +41 -5
- sglang/srt/weight_sync/tensor_bucket.py +106 -0
- sglang/test/attention/test_trtllm_mla_backend.py +186 -36
- sglang/test/doc_patch.py +59 -0
- sglang/test/few_shot_gsm8k.py +1 -1
- sglang/test/few_shot_gsm8k_engine.py +1 -1
- sglang/test/run_eval.py +4 -1
- sglang/test/runners.py +2 -2
- sglang/test/simple_eval_common.py +6 -0
- sglang/test/simple_eval_gpqa.py +2 -0
- sglang/test/test_fp4_moe.py +118 -36
- sglang/test/test_utils.py +1 -1
- sglang/utils.py +1 -1
- sglang/version.py +1 -1
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc1.dist-info}/METADATA +36 -38
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc1.dist-info}/RECORD +174 -141
- sglang/srt/lora/backend/flashinfer_backend.py +0 -131
- /sglang/{api.py → lang/api.py} +0 -0
- /sglang/{lang/backend → srt/layers/quantization/quark}/__init__.py +0 -0
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc1.dist-info}/WHEEL +0 -0
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc1.dist-info}/licenses/LICENSE +0 -0
- {sglang-0.4.10.post2.dist-info → sglang-0.5.0rc1.dist-info}/top_level.txt +0 -0
@@ -581,6 +581,49 @@ def post_reorder_triton_kernel(
|
|
581
581
|
)
|
582
582
|
|
583
583
|
|
584
|
+
@triton.jit
|
585
|
+
def post_reorder_triton_kernel_for_cutlass_moe(
|
586
|
+
down_output_ptr,
|
587
|
+
output_ptr,
|
588
|
+
src2dst_ptr,
|
589
|
+
topk_ids_ptr,
|
590
|
+
topk_weights_ptr,
|
591
|
+
num_experts,
|
592
|
+
topk,
|
593
|
+
hidden_size,
|
594
|
+
dst_start,
|
595
|
+
BLOCK_SIZE: tl.constexpr,
|
596
|
+
):
|
597
|
+
InDtype = down_output_ptr.dtype.element_ty
|
598
|
+
|
599
|
+
src_idx_int32 = tl.program_id(0)
|
600
|
+
src_idx = src_idx_int32.to(tl.int64)
|
601
|
+
src2dst_ptr = src2dst_ptr + src_idx * topk
|
602
|
+
topk_ids_ptr = topk_ids_ptr + src_idx * topk
|
603
|
+
topk_weights_ptr = topk_weights_ptr + src_idx * topk
|
604
|
+
|
605
|
+
store_ptr = output_ptr + src_idx * hidden_size
|
606
|
+
|
607
|
+
vec = tl.arange(0, BLOCK_SIZE)
|
608
|
+
|
609
|
+
for start_offset in tl.range(0, hidden_size, BLOCK_SIZE):
|
610
|
+
offset = start_offset + vec
|
611
|
+
mask = offset < hidden_size
|
612
|
+
|
613
|
+
sum_vec = tl.zeros([BLOCK_SIZE], dtype=InDtype)
|
614
|
+
for idx in range(topk):
|
615
|
+
expert_id = tl.load(topk_ids_ptr + idx)
|
616
|
+
if expert_id != num_experts:
|
617
|
+
dst_idx_int32 = tl.load(src2dst_ptr + idx)
|
618
|
+
dst_idx = dst_idx_int32.to(tl.int64)
|
619
|
+
dst_idx = dst_idx - dst_start
|
620
|
+
weigh_scale = tl.load(topk_weights_ptr + idx).to(InDtype)
|
621
|
+
load_ptr = down_output_ptr + dst_idx * hidden_size
|
622
|
+
in_data = tl.load(load_ptr + offset, mask=mask)
|
623
|
+
sum_vec += in_data * weigh_scale
|
624
|
+
tl.store(store_ptr + offset, sum_vec, mask=mask)
|
625
|
+
|
626
|
+
|
584
627
|
@triton.jit
|
585
628
|
def compute_m_range(
|
586
629
|
pid,
|
@@ -14,13 +14,9 @@ from sglang.srt.layers.moe.ep_moe.kernels import (
|
|
14
14
|
silu_and_mul_masked_post_quant_fwd,
|
15
15
|
tma_align_input_scale,
|
16
16
|
)
|
17
|
-
from sglang.srt.layers.moe.fused_moe_triton.layer import
|
18
|
-
FlashInferFusedMoE,
|
19
|
-
FusedMoE,
|
20
|
-
should_use_flashinfer_trtllm_moe,
|
21
|
-
)
|
17
|
+
from sglang.srt.layers.moe.fused_moe_triton.layer import FlashInferFusedMoE, FusedMoE
|
22
18
|
from sglang.srt.layers.moe.topk import TopKOutput
|
23
|
-
from sglang.srt.layers.moe.utils import DeepEPMode
|
19
|
+
from sglang.srt.layers.moe.utils import DeepEPMode, should_use_flashinfer_trtllm_moe
|
24
20
|
from sglang.srt.layers.quantization import deep_gemm_wrapper
|
25
21
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
26
22
|
from sglang.srt.layers.quantization.fp8 import (
|
@@ -38,6 +34,7 @@ from sglang.srt.utils import ceil_div, dispose_tensor, get_bool_env_var, is_hip,
|
|
38
34
|
|
39
35
|
if TYPE_CHECKING:
|
40
36
|
from sglang.srt.layers.moe.token_dispatcher import (
|
37
|
+
AscendDeepEPLLOutput,
|
41
38
|
DeepEPLLOutput,
|
42
39
|
DeepEPNormalOutput,
|
43
40
|
DispatchOutput,
|
@@ -48,7 +45,6 @@ _is_npu = is_npu()
|
|
48
45
|
_is_fp8_fnuz = is_fp8_fnuz()
|
49
46
|
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
|
50
47
|
|
51
|
-
|
52
48
|
if not (_is_npu or _is_hip):
|
53
49
|
from sgl_kernel import silu_and_mul
|
54
50
|
|
@@ -60,6 +56,22 @@ if _use_aiter:
|
|
60
56
|
logger = logging.getLogger(__name__)
|
61
57
|
|
62
58
|
|
59
|
+
# TODO(kaixih@nvidia): ideally we should merge this logic into
|
60
|
+
# `fill_gateup_input_triton_kernel` to directly generate e8m0 scale.
|
61
|
+
@torch.compile
|
62
|
+
def _cast_to_e8m0_with_rounding_up(x: torch.Tensor) -> torch.Tensor:
|
63
|
+
temp = x.to(torch.float32).view(torch.int32)
|
64
|
+
exp = torch.bitwise_right_shift(temp, 23)
|
65
|
+
mant = torch.bitwise_and(temp, 0x7FFFFF)
|
66
|
+
is_ru = torch.logical_and(
|
67
|
+
torch.logical_and((mant > 0), (exp != 0xFE)),
|
68
|
+
~torch.logical_and((exp == 0), (mant <= 0x400000)),
|
69
|
+
)
|
70
|
+
exp = torch.where(is_ru, exp + 1, exp)
|
71
|
+
new_x = exp.to(torch.uint8).view(torch.int)
|
72
|
+
return new_x.transpose(1, 2).contiguous().transpose(1, 2)
|
73
|
+
|
74
|
+
|
63
75
|
class EPMoE(FusedMoE):
|
64
76
|
"""
|
65
77
|
MoE Expert Parallel Impl
|
@@ -81,6 +93,9 @@ class EPMoE(FusedMoE):
|
|
81
93
|
prefix: str = "",
|
82
94
|
activation: str = "silu",
|
83
95
|
routed_scaling_factor: Optional[float] = None,
|
96
|
+
activation_alpha: Optional[float] = None,
|
97
|
+
swiglu_limit: Optional[float] = None,
|
98
|
+
with_bias: bool = False,
|
84
99
|
):
|
85
100
|
super().__init__(
|
86
101
|
num_experts=num_experts,
|
@@ -96,6 +111,9 @@ class EPMoE(FusedMoE):
|
|
96
111
|
activation=activation,
|
97
112
|
# apply_router_weight_on_input=apply_router_weight_on_input,
|
98
113
|
routed_scaling_factor=routed_scaling_factor,
|
114
|
+
activation_alpha=activation_alpha,
|
115
|
+
swiglu_limit=swiglu_limit,
|
116
|
+
with_bias=with_bias,
|
99
117
|
)
|
100
118
|
|
101
119
|
self.start_expert_id = self.moe_ep_rank * self.num_local_experts
|
@@ -203,10 +221,22 @@ class EPMoE(FusedMoE):
|
|
203
221
|
|
204
222
|
dispose_tensor(hidden_states)
|
205
223
|
|
224
|
+
if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0:
|
225
|
+
b, s_mn, s_k = gateup_input_scale.shape
|
226
|
+
assert (
|
227
|
+
s_mn % 4 == 0 and s_k % 4 == 0
|
228
|
+
), f"scales must be aligned to 4, but got ({b}, {s_mn}, {s_k})"
|
229
|
+
|
206
230
|
# GroupGemm-0
|
207
231
|
gateup_input_fp8 = (
|
208
232
|
gateup_input,
|
209
|
-
|
233
|
+
(
|
234
|
+
_cast_to_e8m0_with_rounding_up(gateup_input_scale)
|
235
|
+
if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
|
236
|
+
else deep_gemm_wrapper.get_col_major_tma_aligned_tensor(
|
237
|
+
gateup_input_scale
|
238
|
+
)
|
239
|
+
),
|
210
240
|
)
|
211
241
|
num_groups, m, k = gateup_input_fp8[0].size()
|
212
242
|
n = self.w13_weight.size(1)
|
@@ -214,7 +244,12 @@ class EPMoE(FusedMoE):
|
|
214
244
|
(num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
|
215
245
|
)
|
216
246
|
deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
|
217
|
-
gateup_input_fp8,
|
247
|
+
gateup_input_fp8,
|
248
|
+
self.w13_weight_fp8,
|
249
|
+
gateup_output,
|
250
|
+
masked_m,
|
251
|
+
expected_m,
|
252
|
+
recipe=(1, 128, 128) if deep_gemm_wrapper.DEEPGEMM_BLACKWELL else None,
|
218
253
|
)
|
219
254
|
del gateup_input
|
220
255
|
del gateup_input_fp8
|
@@ -245,6 +280,7 @@ class EPMoE(FusedMoE):
|
|
245
280
|
down_input_scale,
|
246
281
|
scale_block_size,
|
247
282
|
masked_m,
|
283
|
+
scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
|
248
284
|
)
|
249
285
|
del gateup_output
|
250
286
|
|
@@ -252,13 +288,24 @@ class EPMoE(FusedMoE):
|
|
252
288
|
n = self.w2_weight.size(1)
|
253
289
|
down_input_fp8 = (
|
254
290
|
down_input,
|
255
|
-
|
291
|
+
(
|
292
|
+
down_input_scale
|
293
|
+
if deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0
|
294
|
+
else deep_gemm_wrapper.get_col_major_tma_aligned_tensor(
|
295
|
+
down_input_scale
|
296
|
+
)
|
297
|
+
),
|
256
298
|
)
|
257
299
|
down_output = torch.empty(
|
258
300
|
(num_groups, m, n), device=hidden_states_device, dtype=torch.bfloat16
|
259
301
|
)
|
260
302
|
deep_gemm_wrapper.grouped_gemm_nt_f8f8bf16_masked(
|
261
|
-
down_input_fp8,
|
303
|
+
down_input_fp8,
|
304
|
+
self.w2_weight_fp8,
|
305
|
+
down_output,
|
306
|
+
masked_m,
|
307
|
+
expected_m,
|
308
|
+
recipe=(1, 128, 128) if deep_gemm_wrapper.DEEPGEMM_BLACKWELL else None,
|
262
309
|
)
|
263
310
|
del down_input
|
264
311
|
del down_input_fp8
|
@@ -341,7 +388,8 @@ class DeepEPMoE(EPMoE):
|
|
341
388
|
return_recv_hook=True,
|
342
389
|
)
|
343
390
|
|
344
|
-
if self.deepep_mode.enable_low_latency():
|
391
|
+
if self.deepep_mode.enable_low_latency() and not _is_npu:
|
392
|
+
# NPU supports low_latency deepep without deepgemm
|
345
393
|
assert (
|
346
394
|
deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM
|
347
395
|
), f"DeepEP {self.deepep_mode} mode requires deep_gemm"
|
@@ -358,7 +406,7 @@ class DeepEPMoE(EPMoE):
|
|
358
406
|
)
|
359
407
|
# the last one is invalid rank_id
|
360
408
|
self.expert_mask[:-1] = 1
|
361
|
-
|
409
|
+
elif not _is_npu:
|
362
410
|
self.w13_weight_fp8 = (
|
363
411
|
self.w13_weight,
|
364
412
|
(
|
@@ -413,6 +461,8 @@ class DeepEPMoE(EPMoE):
|
|
413
461
|
if _use_aiter:
|
414
462
|
# in forward_aiter, we skip token permutation and unpermutation, which have been fused inside aiter kernel
|
415
463
|
return self.forward_aiter(dispatch_output)
|
464
|
+
if _is_npu:
|
465
|
+
return self.forward_npu(dispatch_output)
|
416
466
|
if dispatch_output.format.is_deepep_normal():
|
417
467
|
assert deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM and self.use_fp8_w8a8
|
418
468
|
return self.forward_deepgemm_contiguous(dispatch_output)
|
@@ -677,72 +727,84 @@ class DeepEPMoE(EPMoE):
|
|
677
727
|
|
678
728
|
return down_output
|
679
729
|
|
730
|
+
def forward_npu(
|
731
|
+
self,
|
732
|
+
dispatch_output: DeepEPLLOutput,
|
733
|
+
):
|
734
|
+
if TYPE_CHECKING:
|
735
|
+
assert isinstance(dispatch_output, AscendDeepEPLLOutput)
|
736
|
+
hidden_states, topk_idx, topk_weights, _, seg_indptr, _ = dispatch_output
|
737
|
+
assert self.quant_method is not None
|
738
|
+
assert self.activation == "silu"
|
680
739
|
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
694
|
-
|
695
|
-
|
696
|
-
|
697
|
-
|
698
|
-
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
|
709
|
-
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
724
|
-
gemm2_weights_scale=self.w2_weight_scale_inv,
|
725
|
-
num_experts=self.num_experts,
|
726
|
-
top_k=self.top_k,
|
727
|
-
n_group=self.num_expert_group,
|
728
|
-
topk_group=self.topk_group,
|
729
|
-
intermediate_size=self.w2_weight.shape[2],
|
730
|
-
local_expert_offset=self.start_expert_id,
|
731
|
-
local_num_experts=self.num_local_experts,
|
732
|
-
routed_scaling_factor=self.routed_scaling_factor,
|
733
|
-
tile_tokens_dim=get_tile_tokens_dim(
|
734
|
-
hidden_states.shape[0], self.top_k, self.num_experts
|
735
|
-
),
|
736
|
-
routing_method_type=2, # DeepSeek-styled routing method
|
737
|
-
use_shuffled_weight=False,
|
738
|
-
)
|
740
|
+
# NOTE: Ascend's Dispatch & Combine does not support FP16
|
741
|
+
output_dtype = torch.bfloat16
|
742
|
+
|
743
|
+
pertoken_scale = hidden_states[1]
|
744
|
+
hidden_states = hidden_states[0]
|
745
|
+
|
746
|
+
group_list_type = 1
|
747
|
+
seg_indptr = seg_indptr.to(torch.int64)
|
748
|
+
|
749
|
+
import torch_npu
|
750
|
+
|
751
|
+
# gmm1: gate_up_proj
|
752
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
753
|
+
x=[hidden_states],
|
754
|
+
weight=[self.w13_weight],
|
755
|
+
scale=[self.w13_weight_scale.to(output_dtype)],
|
756
|
+
per_token_scale=[pertoken_scale],
|
757
|
+
split_item=2,
|
758
|
+
group_list_type=group_list_type,
|
759
|
+
group_type=0,
|
760
|
+
group_list=seg_indptr,
|
761
|
+
output_dtype=output_dtype,
|
762
|
+
)[0]
|
763
|
+
|
764
|
+
# act_fn: swiglu
|
765
|
+
hidden_states = torch_npu.npu_swiglu(hidden_states)
|
766
|
+
|
767
|
+
hidden_states, swiglu_out_scale = torch_npu.npu_dynamic_quant(hidden_states)
|
768
|
+
|
769
|
+
# gmm2: down_proj
|
770
|
+
hidden_states = torch_npu.npu_grouped_matmul(
|
771
|
+
x=[hidden_states],
|
772
|
+
weight=[self.w2_weight],
|
773
|
+
scale=[self.w2_weight_scale.to(output_dtype)],
|
774
|
+
per_token_scale=[swiglu_out_scale],
|
775
|
+
split_item=2,
|
776
|
+
group_list_type=group_list_type,
|
777
|
+
group_type=0,
|
778
|
+
group_list=seg_indptr,
|
779
|
+
output_dtype=output_dtype,
|
780
|
+
)[0]
|
781
|
+
|
782
|
+
return hidden_states
|
739
783
|
|
740
784
|
|
741
785
|
def get_moe_impl_class():
|
742
786
|
if global_server_args_dict["moe_a2a_backend"].is_deepep():
|
743
787
|
return DeepEPMoE
|
788
|
+
|
789
|
+
# NEW: Direct FP4 detection (bypasses EP requirements)
|
790
|
+
# Check for FP4 quantization with TRTLLM flag, regardless of EP
|
791
|
+
if global_server_args_dict.get("enable_flashinfer_trtllm_moe", False):
|
792
|
+
try:
|
793
|
+
# Check the quantization argument directly
|
794
|
+
quantization = global_server_args_dict.get("quantization")
|
795
|
+
if quantization == "modelopt_fp4":
|
796
|
+
from sglang.srt.layers.moe.fused_moe_triton.layer import (
|
797
|
+
FlashInferFP4MoE,
|
798
|
+
)
|
799
|
+
|
800
|
+
return FlashInferFP4MoE
|
801
|
+
except:
|
802
|
+
pass
|
803
|
+
|
804
|
+
if should_use_flashinfer_trtllm_moe():
|
805
|
+
return FlashInferFusedMoE
|
744
806
|
if global_server_args_dict["enable_flashinfer_cutlass_moe"]:
|
745
807
|
return FusedMoE
|
746
808
|
if get_moe_expert_parallel_world_size() > 1:
|
747
|
-
return
|
748
|
-
return
|
809
|
+
return EPMoE
|
810
|
+
return FusedMoE
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 128,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 1,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 4
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 256,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 5
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 256,
|
22
|
+
"GROUP_SIZE_M": 1,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 4
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 128,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 1,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 4
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 256,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 4
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 128,
|
45
|
+
"BLOCK_SIZE_K": 256,
|
46
|
+
"GROUP_SIZE_M": 1,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 4
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 128,
|
53
|
+
"BLOCK_SIZE_K": 256,
|
54
|
+
"GROUP_SIZE_M": 1,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 4
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 1,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 4
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 256,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 4
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 256,
|
78
|
+
"GROUP_SIZE_M": 1,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 4
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 256,
|
86
|
+
"GROUP_SIZE_M": 1,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 4
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 1,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 64,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 256,
|
102
|
+
"GROUP_SIZE_M": 32,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 4
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 64,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 32,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 4
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 64,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 1,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 256,
|
126
|
+
"GROUP_SIZE_M": 32,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 4
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 32,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 4
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 256,
|
142
|
+
"GROUP_SIZE_M": 16,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 4
|
145
|
+
}
|
146
|
+
}
|
@@ -0,0 +1,146 @@
|
|
1
|
+
{
|
2
|
+
"1": {
|
3
|
+
"BLOCK_SIZE_M": 16,
|
4
|
+
"BLOCK_SIZE_N": 128,
|
5
|
+
"BLOCK_SIZE_K": 128,
|
6
|
+
"GROUP_SIZE_M": 1,
|
7
|
+
"num_warps": 4,
|
8
|
+
"num_stages": 4
|
9
|
+
},
|
10
|
+
"2": {
|
11
|
+
"BLOCK_SIZE_M": 16,
|
12
|
+
"BLOCK_SIZE_N": 128,
|
13
|
+
"BLOCK_SIZE_K": 128,
|
14
|
+
"GROUP_SIZE_M": 1,
|
15
|
+
"num_warps": 4,
|
16
|
+
"num_stages": 4
|
17
|
+
},
|
18
|
+
"4": {
|
19
|
+
"BLOCK_SIZE_M": 16,
|
20
|
+
"BLOCK_SIZE_N": 128,
|
21
|
+
"BLOCK_SIZE_K": 128,
|
22
|
+
"GROUP_SIZE_M": 1,
|
23
|
+
"num_warps": 4,
|
24
|
+
"num_stages": 4
|
25
|
+
},
|
26
|
+
"8": {
|
27
|
+
"BLOCK_SIZE_M": 16,
|
28
|
+
"BLOCK_SIZE_N": 128,
|
29
|
+
"BLOCK_SIZE_K": 128,
|
30
|
+
"GROUP_SIZE_M": 1,
|
31
|
+
"num_warps": 4,
|
32
|
+
"num_stages": 3
|
33
|
+
},
|
34
|
+
"16": {
|
35
|
+
"BLOCK_SIZE_M": 16,
|
36
|
+
"BLOCK_SIZE_N": 128,
|
37
|
+
"BLOCK_SIZE_K": 128,
|
38
|
+
"GROUP_SIZE_M": 1,
|
39
|
+
"num_warps": 4,
|
40
|
+
"num_stages": 3
|
41
|
+
},
|
42
|
+
"24": {
|
43
|
+
"BLOCK_SIZE_M": 16,
|
44
|
+
"BLOCK_SIZE_N": 256,
|
45
|
+
"BLOCK_SIZE_K": 64,
|
46
|
+
"GROUP_SIZE_M": 1,
|
47
|
+
"num_warps": 4,
|
48
|
+
"num_stages": 3
|
49
|
+
},
|
50
|
+
"32": {
|
51
|
+
"BLOCK_SIZE_M": 16,
|
52
|
+
"BLOCK_SIZE_N": 256,
|
53
|
+
"BLOCK_SIZE_K": 64,
|
54
|
+
"GROUP_SIZE_M": 1,
|
55
|
+
"num_warps": 4,
|
56
|
+
"num_stages": 3
|
57
|
+
},
|
58
|
+
"48": {
|
59
|
+
"BLOCK_SIZE_M": 16,
|
60
|
+
"BLOCK_SIZE_N": 128,
|
61
|
+
"BLOCK_SIZE_K": 128,
|
62
|
+
"GROUP_SIZE_M": 1,
|
63
|
+
"num_warps": 4,
|
64
|
+
"num_stages": 3
|
65
|
+
},
|
66
|
+
"64": {
|
67
|
+
"BLOCK_SIZE_M": 16,
|
68
|
+
"BLOCK_SIZE_N": 128,
|
69
|
+
"BLOCK_SIZE_K": 128,
|
70
|
+
"GROUP_SIZE_M": 1,
|
71
|
+
"num_warps": 4,
|
72
|
+
"num_stages": 3
|
73
|
+
},
|
74
|
+
"96": {
|
75
|
+
"BLOCK_SIZE_M": 16,
|
76
|
+
"BLOCK_SIZE_N": 128,
|
77
|
+
"BLOCK_SIZE_K": 128,
|
78
|
+
"GROUP_SIZE_M": 1,
|
79
|
+
"num_warps": 4,
|
80
|
+
"num_stages": 4
|
81
|
+
},
|
82
|
+
"128": {
|
83
|
+
"BLOCK_SIZE_M": 16,
|
84
|
+
"BLOCK_SIZE_N": 128,
|
85
|
+
"BLOCK_SIZE_K": 128,
|
86
|
+
"GROUP_SIZE_M": 1,
|
87
|
+
"num_warps": 4,
|
88
|
+
"num_stages": 3
|
89
|
+
},
|
90
|
+
"256": {
|
91
|
+
"BLOCK_SIZE_M": 16,
|
92
|
+
"BLOCK_SIZE_N": 128,
|
93
|
+
"BLOCK_SIZE_K": 128,
|
94
|
+
"GROUP_SIZE_M": 1,
|
95
|
+
"num_warps": 4,
|
96
|
+
"num_stages": 3
|
97
|
+
},
|
98
|
+
"512": {
|
99
|
+
"BLOCK_SIZE_M": 16,
|
100
|
+
"BLOCK_SIZE_N": 128,
|
101
|
+
"BLOCK_SIZE_K": 128,
|
102
|
+
"GROUP_SIZE_M": 1,
|
103
|
+
"num_warps": 4,
|
104
|
+
"num_stages": 3
|
105
|
+
},
|
106
|
+
"1024": {
|
107
|
+
"BLOCK_SIZE_M": 32,
|
108
|
+
"BLOCK_SIZE_N": 128,
|
109
|
+
"BLOCK_SIZE_K": 128,
|
110
|
+
"GROUP_SIZE_M": 1,
|
111
|
+
"num_warps": 4,
|
112
|
+
"num_stages": 3
|
113
|
+
},
|
114
|
+
"1536": {
|
115
|
+
"BLOCK_SIZE_M": 32,
|
116
|
+
"BLOCK_SIZE_N": 128,
|
117
|
+
"BLOCK_SIZE_K": 128,
|
118
|
+
"GROUP_SIZE_M": 1,
|
119
|
+
"num_warps": 4,
|
120
|
+
"num_stages": 4
|
121
|
+
},
|
122
|
+
"2048": {
|
123
|
+
"BLOCK_SIZE_M": 64,
|
124
|
+
"BLOCK_SIZE_N": 128,
|
125
|
+
"BLOCK_SIZE_K": 128,
|
126
|
+
"GROUP_SIZE_M": 32,
|
127
|
+
"num_warps": 4,
|
128
|
+
"num_stages": 4
|
129
|
+
},
|
130
|
+
"3072": {
|
131
|
+
"BLOCK_SIZE_M": 64,
|
132
|
+
"BLOCK_SIZE_N": 128,
|
133
|
+
"BLOCK_SIZE_K": 128,
|
134
|
+
"GROUP_SIZE_M": 64,
|
135
|
+
"num_warps": 4,
|
136
|
+
"num_stages": 4
|
137
|
+
},
|
138
|
+
"4096": {
|
139
|
+
"BLOCK_SIZE_M": 64,
|
140
|
+
"BLOCK_SIZE_N": 128,
|
141
|
+
"BLOCK_SIZE_K": 128,
|
142
|
+
"GROUP_SIZE_M": 32,
|
143
|
+
"num_warps": 4,
|
144
|
+
"num_stages": 4
|
145
|
+
}
|
146
|
+
}
|