sequenzo 0.1.24__cp311-cp311-macosx_10_9_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sequenzo might be problematic. Click here for more details.
- _sequenzo_fastcluster.cpython-311-darwin.so +0 -0
- sequenzo/__init__.py +240 -0
- sequenzo/big_data/__init__.py +12 -0
- sequenzo/big_data/clara/__init__.py +26 -0
- sequenzo/big_data/clara/clara.py +474 -0
- sequenzo/big_data/clara/utils/__init__.py +27 -0
- sequenzo/big_data/clara/utils/aggregatecases.py +92 -0
- sequenzo/big_data/clara/utils/davies_bouldin.py +91 -0
- sequenzo/big_data/clara/utils/get_weighted_diss.cpython-311-darwin.so +0 -0
- sequenzo/big_data/clara/utils/wfcmdd.py +205 -0
- sequenzo/big_data/clara/visualization.py +88 -0
- sequenzo/clustering/KMedoids.py +178 -0
- sequenzo/clustering/__init__.py +30 -0
- sequenzo/clustering/clustering_c_code.cpython-311-darwin.so +0 -0
- sequenzo/clustering/hierarchical_clustering.py +1256 -0
- sequenzo/clustering/sequenzo_fastcluster/fastcluster.py +495 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster.cpp +1877 -0
- sequenzo/clustering/sequenzo_fastcluster/src/fastcluster_python.cpp +1264 -0
- sequenzo/clustering/src/KMedoid.cpp +263 -0
- sequenzo/clustering/src/PAM.cpp +237 -0
- sequenzo/clustering/src/PAMonce.cpp +265 -0
- sequenzo/clustering/src/cluster_quality.cpp +496 -0
- sequenzo/clustering/src/cluster_quality.h +128 -0
- sequenzo/clustering/src/cluster_quality_backup.cpp +570 -0
- sequenzo/clustering/src/module.cpp +228 -0
- sequenzo/clustering/src/weightedinertia.cpp +111 -0
- sequenzo/clustering/utils/__init__.py +27 -0
- sequenzo/clustering/utils/disscenter.py +122 -0
- sequenzo/data_preprocessing/__init__.py +20 -0
- sequenzo/data_preprocessing/helpers.py +256 -0
- sequenzo/datasets/__init__.py +41 -0
- sequenzo/datasets/biofam.csv +2001 -0
- sequenzo/datasets/biofam_child_domain.csv +2001 -0
- sequenzo/datasets/biofam_left_domain.csv +2001 -0
- sequenzo/datasets/biofam_married_domain.csv +2001 -0
- sequenzo/datasets/chinese_colonial_territories.csv +12 -0
- sequenzo/datasets/country_co2_emissions.csv +194 -0
- sequenzo/datasets/country_co2_emissions_global_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_global_quintiles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_deciles.csv +195 -0
- sequenzo/datasets/country_co2_emissions_local_quintiles.csv +195 -0
- sequenzo/datasets/country_gdp_per_capita.csv +194 -0
- sequenzo/datasets/mvad.csv +713 -0
- sequenzo/datasets/pairfam_family.csv +1867 -0
- sequenzo/datasets/polyadic_samplec1.csv +61 -0
- sequenzo/datasets/polyadic_samplep1.csv +61 -0
- sequenzo/datasets/polyadic_seqc1.csv +61 -0
- sequenzo/datasets/polyadic_seqp1.csv +61 -0
- sequenzo/define_sequence_data.py +609 -0
- sequenzo/dissimilarity_measures/__init__.py +31 -0
- sequenzo/dissimilarity_measures/c_code.cpython-311-darwin.so +0 -0
- sequenzo/dissimilarity_measures/get_distance_matrix.py +702 -0
- sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +241 -0
- sequenzo/dissimilarity_measures/src/DHDdistance.cpp +148 -0
- sequenzo/dissimilarity_measures/src/LCPdistance.cpp +114 -0
- sequenzo/dissimilarity_measures/src/OMdistance.cpp +247 -0
- sequenzo/dissimilarity_measures/src/OMspellDistance.cpp +281 -0
- sequenzo/dissimilarity_measures/src/__init__.py +0 -0
- sequenzo/dissimilarity_measures/src/dist2matrix.cpp +63 -0
- sequenzo/dissimilarity_measures/src/dp_utils.h +160 -0
- sequenzo/dissimilarity_measures/src/module.cpp +34 -0
- sequenzo/dissimilarity_measures/src/setup.py +30 -0
- sequenzo/dissimilarity_measures/src/utils.h +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/.github/cmake-test/main.cpp +6 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/main.cpp +159 -0
- sequenzo/dissimilarity_measures/src/xsimd/benchmark/xsimd_benchmark.hpp +565 -0
- sequenzo/dissimilarity_measures/src/xsimd/docs/source/conf.py +37 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/mandelbrot.cpp +330 -0
- sequenzo/dissimilarity_measures/src/xsimd/examples/pico_bench.hpp +246 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_arithmetic.hpp +266 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_complex.hpp +112 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_details.hpp +323 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_logical.hpp +218 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_math.hpp +2583 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_memory.hpp +880 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_rounding.hpp +72 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_swizzle.hpp +174 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/common/xsimd_common_trigo.hpp +978 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx.hpp +1924 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx2.hpp +1144 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512bw.hpp +656 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512cd.hpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512dq.hpp +244 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512er.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512f.hpp +2650 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512ifma.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512pf.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vbmi2.hpp +131 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512bw.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avx512vnni_avx512vbmi2.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_avxvnni.hpp +20 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common.hpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_common_fwd.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_constants.hpp +393 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_emulated.hpp +788 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx.hpp +93 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_avx2.hpp +46 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma3_sse.hpp +97 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_fma4.hpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_i8mm_neon64.hpp +17 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_isa.hpp +142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon.hpp +3142 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_neon64.hpp +1543 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_rvv.hpp +1513 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_scalar.hpp +1260 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse2.hpp +2024 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse3.hpp +67 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_1.hpp +339 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sse4_2.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_ssse3.hpp +186 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_sve.hpp +1155 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_vsx.hpp +892 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/arch/xsimd_wasm.hpp +1780 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_arch.hpp +240 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_config.hpp +484 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_cpuid.hpp +269 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/config/xsimd_inline.hpp +27 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/math/xsimd_rem_pio2.hpp +719 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_aligned_allocator.hpp +349 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/memory/xsimd_alignment.hpp +91 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_all_registers.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_api.hpp +2765 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx2_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512bw_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512cd_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512dq_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512er_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512f_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512ifma_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512pf_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi2_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vbmi_register.hpp +51 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512bw_register.hpp +54 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx512vnni_avx512vbmi2_register.hpp +53 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avx_register.hpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_avxvnni_register.hpp +44 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch.hpp +1524 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_batch_constant.hpp +300 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_common_arch.hpp +47 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_emulated_register.hpp +80 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx2_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_avx_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma3_sse_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_fma4_register.hpp +50 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_i8mm_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon64_register.hpp +55 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_neon_register.hpp +154 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_register.hpp +94 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_rvv_register.hpp +506 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse2_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse3_register.hpp +49 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_1_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sse4_2_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_ssse3_register.hpp +48 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_sve_register.hpp +156 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_traits.hpp +337 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_utils.hpp +536 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_vsx_register.hpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/types/xsimd_wasm_register.hpp +59 -0
- sequenzo/dissimilarity_measures/src/xsimd/include/xsimd/xsimd.hpp +75 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/architectures/dummy.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set.cpp +13 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean.cpp +24 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_aligned.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_arch_independent.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/explicit_use_of_an_instruction_set_mean_tag_dispatch.cpp +25 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_abstract_batches.cpp +7 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/manipulating_parametric_batches.cpp +8 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum.hpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_avx2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/sum_sse2.cpp +3 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/doc/writing_vectorized_code.cpp +11 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/main.cpp +31 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_api.cpp +230 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_arch.cpp +217 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_basic_math.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch.cpp +1049 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_bool.cpp +508 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_cast.cpp +409 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_complex.cpp +712 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_constant.cpp +286 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_float.cpp +141 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_int.cpp +365 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_batch_manip.cpp +308 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_bitwise_cast.cpp +222 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_exponential.cpp +226 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_hyperbolic.cpp +183 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_power.cpp +265 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_complex_trigonometric.cpp +236 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_conversion.cpp +248 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_custom_default_arch.cpp +28 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_error_gamma.cpp +170 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_explicit_batch_instantiation.cpp +32 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_exponential.cpp +202 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_extract_pair.cpp +92 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_fp_manipulation.cpp +77 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_gnu_source.cpp +30 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_hyperbolic.cpp +167 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_load_store.cpp +304 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_memory.cpp +61 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_poly_evaluation.cpp +64 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_power.cpp +184 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_rounding.cpp +199 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_select.cpp +101 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_shuffle.cpp +760 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.cpp +4 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_sum.hpp +34 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_traits.cpp +172 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_trigonometric.cpp +208 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_utils.hpp +611 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_wasm/test_wasm_playwright.py +123 -0
- sequenzo/dissimilarity_measures/src/xsimd/test/test_xsimd_api.cpp +1460 -0
- sequenzo/dissimilarity_measures/utils/__init__.py +16 -0
- sequenzo/dissimilarity_measures/utils/get_LCP_length_for_2_seq.py +44 -0
- sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-311-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqconc.cpython-311-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdss.cpython-311-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqdur.cpython-311-darwin.so +0 -0
- sequenzo/dissimilarity_measures/utils/seqlength.cpython-311-darwin.so +0 -0
- sequenzo/multidomain/__init__.py +23 -0
- sequenzo/multidomain/association_between_domains.py +311 -0
- sequenzo/multidomain/cat.py +431 -0
- sequenzo/multidomain/combt.py +519 -0
- sequenzo/multidomain/dat.py +89 -0
- sequenzo/multidomain/idcd.py +139 -0
- sequenzo/multidomain/linked_polyad.py +292 -0
- sequenzo/openmp_setup.py +233 -0
- sequenzo/prefix_tree/__init__.py +43 -0
- sequenzo/prefix_tree/individual_level_indicators.py +1274 -0
- sequenzo/prefix_tree/system_level_indicators.py +465 -0
- sequenzo/prefix_tree/utils.py +54 -0
- sequenzo/sequence_characteristics/__init__.py +40 -0
- sequenzo/sequence_characteristics/complexity_index.py +49 -0
- sequenzo/sequence_characteristics/overall_cross_sectional_entropy.py +220 -0
- sequenzo/sequence_characteristics/plot_characteristics.py +593 -0
- sequenzo/sequence_characteristics/simple_characteristics.py +311 -0
- sequenzo/sequence_characteristics/state_frequencies_and_entropy_per_sequence.py +39 -0
- sequenzo/sequence_characteristics/turbulence.py +155 -0
- sequenzo/sequence_characteristics/variance_of_spell_durations.py +86 -0
- sequenzo/sequence_characteristics/within_sequence_entropy.py +43 -0
- sequenzo/suffix_tree/__init__.py +48 -0
- sequenzo/suffix_tree/individual_level_indicators.py +1638 -0
- sequenzo/suffix_tree/system_level_indicators.py +456 -0
- sequenzo/suffix_tree/utils.py +56 -0
- sequenzo/visualization/__init__.py +29 -0
- sequenzo/visualization/plot_mean_time.py +194 -0
- sequenzo/visualization/plot_modal_state.py +276 -0
- sequenzo/visualization/plot_most_frequent_sequences.py +147 -0
- sequenzo/visualization/plot_relative_frequency.py +404 -0
- sequenzo/visualization/plot_sequence_index.py +951 -0
- sequenzo/visualization/plot_single_medoid.py +153 -0
- sequenzo/visualization/plot_state_distribution.py +627 -0
- sequenzo/visualization/plot_transition_matrix.py +190 -0
- sequenzo/visualization/utils/__init__.py +23 -0
- sequenzo/visualization/utils/utils.py +310 -0
- sequenzo/with_event_history_analysis/__init__.py +35 -0
- sequenzo/with_event_history_analysis/sequence_analysis_multi_state_model.py +850 -0
- sequenzo/with_event_history_analysis/sequence_history_analysis.py +283 -0
- sequenzo-0.1.24.dist-info/METADATA +255 -0
- sequenzo-0.1.24.dist-info/RECORD +264 -0
- sequenzo-0.1.24.dist-info/WHEEL +5 -0
- sequenzo-0.1.24.dist-info/licenses/LICENSE +28 -0
- sequenzo-0.1.24.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,241 @@
|
|
|
1
|
+
"""
|
|
2
|
+
@Author : 李欣怡
|
|
3
|
+
@File : get_substitution_cost_matrix.py
|
|
4
|
+
@Time : 2024/11/11 12:00
|
|
5
|
+
@Desc : Compute substitution costs and substitution-cost/proximity matrix
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import pandas as pd
|
|
9
|
+
import numpy as np
|
|
10
|
+
|
|
11
|
+
from .utils.get_sm_trate_substitution_cost_matrix import get_sm_trate_substitution_cost_matrix
|
|
12
|
+
from sequenzo.define_sequence_data import SequenceData
|
|
13
|
+
from sequenzo.sequence_characteristics.overall_cross_sectional_entropy import get_cross_sectional_entropy
|
|
14
|
+
from .get_distance_matrix import with_missing_warned
|
|
15
|
+
|
|
16
|
+
def get_substitution_cost_matrix(seqdata, method, cval=None, miss_cost=None, time_varying=False,
|
|
17
|
+
weighted=True, transition="both", lag=1, miss_cost_fixed=None,
|
|
18
|
+
**kwargs):
|
|
19
|
+
if 'with_missing' in kwargs and not with_missing_warned:
|
|
20
|
+
print("[!] 'with_missing' has been removed and is ignored.")
|
|
21
|
+
print(" Missing values are always included by default, consistent with TraMineR.")
|
|
22
|
+
|
|
23
|
+
# ================
|
|
24
|
+
# Check Parameters
|
|
25
|
+
# ================
|
|
26
|
+
if not isinstance(seqdata, SequenceData):
|
|
27
|
+
raise ValueError(" [!] data is NOT a sequence object, see SequenceData function to create one.")
|
|
28
|
+
|
|
29
|
+
metlist = ["CONSTANT", "TRATE", "INDELS", "INDELSLOG"]
|
|
30
|
+
if method not in metlist:
|
|
31
|
+
raise ValueError(f" [!] method must be one of: {', '.join(metlist)}.")
|
|
32
|
+
|
|
33
|
+
transitionlist = ["previous", "next", "both"]
|
|
34
|
+
if transition not in transitionlist:
|
|
35
|
+
raise ValueError(f" [!] transition must be one of: {', '.join(transitionlist)}.")
|
|
36
|
+
|
|
37
|
+
return_result = {"indel": 1}
|
|
38
|
+
|
|
39
|
+
cval4cond = time_varying and method == "TRATE" and transition == "both"
|
|
40
|
+
if cval is None:
|
|
41
|
+
cval = 4 if cval4cond else 2
|
|
42
|
+
if miss_cost is None:
|
|
43
|
+
miss_cost = cval
|
|
44
|
+
if miss_cost_fixed is None:
|
|
45
|
+
miss_cost_fixed = False if method in ["INDELS", "INDELSLOG"] else True
|
|
46
|
+
|
|
47
|
+
states = seqdata.states.copy()
|
|
48
|
+
alphsize = len(states) + 1
|
|
49
|
+
|
|
50
|
+
# ==================
|
|
51
|
+
# Process "CONSTANT"
|
|
52
|
+
# ==================
|
|
53
|
+
if method == "CONSTANT":
|
|
54
|
+
if cval is None:
|
|
55
|
+
raise ValueError("[!] No value for the constant substitution-cost.")
|
|
56
|
+
|
|
57
|
+
if time_varying:
|
|
58
|
+
time = seqdata.seqdata.shape[1]
|
|
59
|
+
|
|
60
|
+
print(
|
|
61
|
+
f" - Creating {alphsize}x{alphsize}x{time} time varying substitution-cost matrix using {cval} as constant value.")
|
|
62
|
+
costs = np.full((time, alphsize, alphsize), cval)
|
|
63
|
+
|
|
64
|
+
for i in range(time):
|
|
65
|
+
np.fill_diagonal(costs[i, :, :], 0) # Set diagonal to 0 in each time slice
|
|
66
|
+
else:
|
|
67
|
+
print(f" - Creating {alphsize}x{alphsize} substitution-cost matrix using {cval} as constant value")
|
|
68
|
+
costs = np.full((alphsize, alphsize), cval)
|
|
69
|
+
np.fill_diagonal(costs, 0) # Set diagonal to 0
|
|
70
|
+
|
|
71
|
+
# ===============
|
|
72
|
+
# Process "TRATE"
|
|
73
|
+
# ===============
|
|
74
|
+
if method == "TRATE":
|
|
75
|
+
print("[>] Transition-based substitution-cost matrix (TRATE) initiated...")
|
|
76
|
+
print(f" - Computing transition probabilities for: [{', '.join(map(str, seqdata.states))}]") # Because the matrix CLARA is passing in is a number
|
|
77
|
+
|
|
78
|
+
if time_varying:
|
|
79
|
+
tr = get_sm_trate_substitution_cost_matrix(seqdata, time_varying=True, weighted=weighted, lag=lag)
|
|
80
|
+
|
|
81
|
+
tmat = tr.shape[1] # Number of states (since tr is three dimensions np.ndarray, the first dimension is time)
|
|
82
|
+
time = seqdata.seqdata.shape[1] # Total number of time points
|
|
83
|
+
costs = np.zeros((time, alphsize, alphsize))
|
|
84
|
+
|
|
85
|
+
# Function to compute the cost according to transition rates
|
|
86
|
+
def tratecostBoth(trate, t, state1, state2, debut, fin):
|
|
87
|
+
cost = 0
|
|
88
|
+
if not debut:
|
|
89
|
+
# the first state
|
|
90
|
+
cost -= trate[t - 1, state1, state2] + trate[t - 1, state2, state1]
|
|
91
|
+
if not fin:
|
|
92
|
+
# the last state
|
|
93
|
+
cost -= trate[t, state1, state2] + trate[t, state2, state1]
|
|
94
|
+
return cost + cval if not debut and not fin else cval + 2 * cost
|
|
95
|
+
|
|
96
|
+
def tratecostPrevious(trate, t, state1, state2, debut, fin):
|
|
97
|
+
cost = 0
|
|
98
|
+
if not debut:
|
|
99
|
+
# the first state
|
|
100
|
+
cost -= trate[t - 1, state1, state2] + trate[t - 1, state2, state1]
|
|
101
|
+
return cval + cost
|
|
102
|
+
|
|
103
|
+
def tratecostNext(trate, t, state1, state2, debut, fin):
|
|
104
|
+
cost = 0
|
|
105
|
+
if not fin:
|
|
106
|
+
# the last state
|
|
107
|
+
cost -= trate[t, state1, state2] + trate[t, state2, state1]
|
|
108
|
+
return cval + cost
|
|
109
|
+
|
|
110
|
+
if transition == "previous":
|
|
111
|
+
tratecost = tratecostPrevious
|
|
112
|
+
elif transition == "next":
|
|
113
|
+
tratecost = tratecostNext
|
|
114
|
+
else:
|
|
115
|
+
tratecost = tratecostBoth
|
|
116
|
+
|
|
117
|
+
for t in range(time):
|
|
118
|
+
for i in range(tmat - 1):
|
|
119
|
+
for j in range(i + 1, tmat):
|
|
120
|
+
cost = max(0, tratecost(tr, t, i, j, debut=(t == 0), fin=(t == time - 1)))
|
|
121
|
+
costs[t, i, j] = cost
|
|
122
|
+
costs[t, j, i] = cost
|
|
123
|
+
|
|
124
|
+
else:
|
|
125
|
+
tr = get_sm_trate_substitution_cost_matrix(seqdata, time_varying=False, weighted=weighted, lag=lag)
|
|
126
|
+
|
|
127
|
+
tmat = tr.shape[0]
|
|
128
|
+
costs = np.zeros((alphsize, alphsize))
|
|
129
|
+
|
|
130
|
+
for i in range(1, tmat - 1):
|
|
131
|
+
for j in range(i + 1, tmat):
|
|
132
|
+
cost = cval - tr[i, j] - tr[j, i]
|
|
133
|
+
costs[i, j] = cost
|
|
134
|
+
costs[j, i] = cost
|
|
135
|
+
|
|
136
|
+
indel = 0.5 * np.max(costs)
|
|
137
|
+
|
|
138
|
+
return_result['indel'] = indel
|
|
139
|
+
|
|
140
|
+
# ================================
|
|
141
|
+
# Process "INDELS" and "INDELSLOG"
|
|
142
|
+
# ================================
|
|
143
|
+
if method in ["INDELS", "INDELSLOG"]:
|
|
144
|
+
if time_varying:
|
|
145
|
+
indels = get_cross_sectional_entropy(seqdata, return_format="dict")['Frequencies']
|
|
146
|
+
else:
|
|
147
|
+
ww = seqdata.weights
|
|
148
|
+
if ww is None:
|
|
149
|
+
ww = np.ones(seqdata.seqdata.shape[0])
|
|
150
|
+
|
|
151
|
+
flat_seq = seqdata.values.flatten(order='F')
|
|
152
|
+
weights_rep = np.repeat(ww, seqdata.seqdata.shape[1])
|
|
153
|
+
df = pd.DataFrame({'state': flat_seq, 'weight': weights_rep})
|
|
154
|
+
weighted_counts = df.groupby('state')['weight'].sum()
|
|
155
|
+
|
|
156
|
+
weighted_prob = weighted_counts / weighted_counts.sum()
|
|
157
|
+
states_num = range(1, len(seqdata.states) + 1)
|
|
158
|
+
indels = np.array([weighted_prob.get(s, 0) for s in states_num])
|
|
159
|
+
|
|
160
|
+
indels[np.isnan(indels)] = 1
|
|
161
|
+
if method == "INDELSLOG":
|
|
162
|
+
indels = np.log(2 / (1 + indels))
|
|
163
|
+
else:
|
|
164
|
+
indels = 1 / indels
|
|
165
|
+
indels[np.isinf(indels)] = 1e15 # 避免cast警告
|
|
166
|
+
|
|
167
|
+
if time_varying:
|
|
168
|
+
return_result['indel'] = indels
|
|
169
|
+
else:
|
|
170
|
+
return_result['indel'] = np.insert(indels, 0, 0) # cause C++ is 1-indexed
|
|
171
|
+
|
|
172
|
+
if time_varying:
|
|
173
|
+
time = seqdata.seqdata.shape[1]
|
|
174
|
+
|
|
175
|
+
print(
|
|
176
|
+
f" - Creating {alphsize}x{alphsize}x{time} time varying substitution-cost matrix using {cval} as constant value.")
|
|
177
|
+
costs = np.full((time, alphsize, alphsize), 0.0)
|
|
178
|
+
|
|
179
|
+
for t in range(time):
|
|
180
|
+
for i in range(1, alphsize):
|
|
181
|
+
for j in range(1, alphsize):
|
|
182
|
+
if i != j:
|
|
183
|
+
val = indels.iloc[i - 1, t] + indels.iloc[j - 1, t]
|
|
184
|
+
costs[t, i, j] = np.clip(val, -1e15, 1e15) # 避免cast警告
|
|
185
|
+
|
|
186
|
+
else:
|
|
187
|
+
costs = np.full((alphsize, alphsize), 0.0)
|
|
188
|
+
for i in range(1, alphsize):
|
|
189
|
+
for j in range(1, alphsize):
|
|
190
|
+
if i != j:
|
|
191
|
+
costs[i, j] = indels[i - 1] + indels[j - 1]
|
|
192
|
+
costs[np.isinf(costs)] = 1e15 # 避免cast警告
|
|
193
|
+
|
|
194
|
+
# =================================
|
|
195
|
+
# Process the Cost of Missing Value
|
|
196
|
+
# =================================
|
|
197
|
+
if seqdata.ismissing and miss_cost_fixed:
|
|
198
|
+
if time_varying:
|
|
199
|
+
costs[:, alphsize - 1, :alphsize - 1] = miss_cost
|
|
200
|
+
costs[:, :alphsize - 1, alphsize - 1] = miss_cost
|
|
201
|
+
else:
|
|
202
|
+
costs[alphsize - 1, :alphsize - 1] = miss_cost
|
|
203
|
+
costs[:alphsize - 1, alphsize - 1] = miss_cost
|
|
204
|
+
|
|
205
|
+
# ===============================
|
|
206
|
+
# Setting Rows and Columns Labels
|
|
207
|
+
# ===============================
|
|
208
|
+
if time_varying: # 3D
|
|
209
|
+
costs = costs
|
|
210
|
+
else: # 2D
|
|
211
|
+
states.insert(0, "null")
|
|
212
|
+
costs = pd.DataFrame(costs, index=states, columns=states, dtype=float)
|
|
213
|
+
|
|
214
|
+
# ===============================
|
|
215
|
+
# Calculate the Similarity Matrix
|
|
216
|
+
# ===============================
|
|
217
|
+
return_result['sm'] = costs
|
|
218
|
+
|
|
219
|
+
return return_result
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
# Define seqsubm as an alias for backward compatibility
|
|
223
|
+
def seqsubm(*args, **kwargs):
|
|
224
|
+
return get_substitution_cost_matrix(*args, **kwargs)['sm']
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
if __name__ == "__main__":
|
|
228
|
+
df = pd.read_csv('D:/country_co2_emissions_missing.csv')
|
|
229
|
+
|
|
230
|
+
time = list(df.columns)[1:]
|
|
231
|
+
|
|
232
|
+
states = ['Very Low', 'Low', 'Middle', 'High', 'Very High']
|
|
233
|
+
|
|
234
|
+
sequence_data = SequenceData(df, time=time, id_col="country", states=states)
|
|
235
|
+
|
|
236
|
+
sm = get_substitution_cost_matrix(sequence_data,
|
|
237
|
+
method="CONSTANT",
|
|
238
|
+
cval=2,
|
|
239
|
+
time_varying=False)
|
|
240
|
+
|
|
241
|
+
print("===============")
|
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
#include <pybind11/pybind11.h>
|
|
2
|
+
#include <pybind11/numpy.h>
|
|
3
|
+
#include <vector>
|
|
4
|
+
#include <cmath>
|
|
5
|
+
#include <iostream>
|
|
6
|
+
#include "utils.h"
|
|
7
|
+
#include "dp_utils.h"
|
|
8
|
+
#ifdef _OPENMP
|
|
9
|
+
#include <omp.h>
|
|
10
|
+
#endif
|
|
11
|
+
#include <xsimd/xsimd.hpp>
|
|
12
|
+
|
|
13
|
+
namespace py = pybind11;
|
|
14
|
+
|
|
15
|
+
class DHDdistance{
|
|
16
|
+
public:
|
|
17
|
+
DHDdistance(py::array_t<int> sequences, py::array_t<double> sm, int norm, double maxdist, py::array_t<int> refseqS)
|
|
18
|
+
: norm(norm), maxdist(maxdist){
|
|
19
|
+
py::print("[>] Starting (Dynamic) Hamming Distance(DHD/HAM)...");
|
|
20
|
+
std::cout << std::flush;
|
|
21
|
+
|
|
22
|
+
try{
|
|
23
|
+
this->sequences = sequences;
|
|
24
|
+
this->sm = sm;
|
|
25
|
+
|
|
26
|
+
auto seq_shape = sequences.shape();
|
|
27
|
+
nseq = seq_shape[0];
|
|
28
|
+
len = seq_shape[1];
|
|
29
|
+
|
|
30
|
+
dist_matrix = py::array_t<double>({nseq, nseq});
|
|
31
|
+
|
|
32
|
+
// about reference sequences :
|
|
33
|
+
nans = nseq;
|
|
34
|
+
|
|
35
|
+
rseq1 = refseqS.at(0);
|
|
36
|
+
rseq2 = refseqS.at(1);
|
|
37
|
+
if(rseq1 < rseq2){
|
|
38
|
+
nseq = rseq1;
|
|
39
|
+
nans = nseq * (rseq2 - rseq1);
|
|
40
|
+
}else{
|
|
41
|
+
rseq1 = rseq1 - 1;
|
|
42
|
+
}
|
|
43
|
+
refdist_matrix = py::array_t<double>({nseq, (rseq2-rseq1)});
|
|
44
|
+
} catch (const std::exception& e){
|
|
45
|
+
py::print("Error in constructor: ", e.what());
|
|
46
|
+
throw ;
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
double compute_distance(int is, int js) {
|
|
51
|
+
try {
|
|
52
|
+
int m = len;
|
|
53
|
+
int n = len;
|
|
54
|
+
int minimum = m;
|
|
55
|
+
if(n < m) minimum = n;
|
|
56
|
+
double cost = 0;
|
|
57
|
+
|
|
58
|
+
auto ptr_sm = sm.unchecked<3>();
|
|
59
|
+
auto ptr_seq = sequences.unchecked<2>();
|
|
60
|
+
|
|
61
|
+
// 使用 SIMD 批量处理
|
|
62
|
+
const int simd_width = xsimd::batch<double>::size;
|
|
63
|
+
int i = 0;
|
|
64
|
+
|
|
65
|
+
for(; i + simd_width <= minimum; i += simd_width) {
|
|
66
|
+
alignas(32) int seq_is[simd_width];
|
|
67
|
+
alignas(32) int seq_js[simd_width];
|
|
68
|
+
alignas(32) double tmp[simd_width];
|
|
69
|
+
|
|
70
|
+
// 加载序列
|
|
71
|
+
for(int j = 0; j < simd_width; j++) {
|
|
72
|
+
seq_is[j] = ptr_seq(is, i + j);
|
|
73
|
+
seq_js[j] = ptr_seq(js, i + j);
|
|
74
|
+
}
|
|
75
|
+
xsimd::batch<int> batch_seq_is = xsimd::load_unaligned(seq_is);
|
|
76
|
+
xsimd::batch<int> batch_seq_js = xsimd::load_unaligned(seq_js);
|
|
77
|
+
|
|
78
|
+
// 比较是否相等
|
|
79
|
+
auto equal_mask = (batch_seq_is == batch_seq_js);
|
|
80
|
+
for(int j = 0; j < simd_width; j++) {
|
|
81
|
+
tmp[j] = equal_mask.get(j) ? 0.0 : ptr_sm(i + j, seq_is[j], seq_js[j]);
|
|
82
|
+
}
|
|
83
|
+
|
|
84
|
+
xsimd::batch<double> costs = xsimd::load_unaligned(tmp);
|
|
85
|
+
cost += xsimd::reduce_add(costs);
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
// 处理尾部:用 SIMD 填充无效数据
|
|
89
|
+
for(; i < minimum; i += simd_width) {
|
|
90
|
+
alignas(32) double tmp[simd_width];
|
|
91
|
+
int bound = std::min(simd_width, minimum - i);
|
|
92
|
+
for(int j = 0; j < simd_width; j++) {
|
|
93
|
+
tmp[j] = (j < bound) ? ptr_sm(i + j, ptr_seq(is, i + j), ptr_seq(js, i + j)) : 0.0;
|
|
94
|
+
}
|
|
95
|
+
xsimd::batch<double> costs = xsimd::load_unaligned(tmp);
|
|
96
|
+
cost += xsimd::reduce_add(costs);
|
|
97
|
+
}
|
|
98
|
+
|
|
99
|
+
return normalize_distance(cost, maxdist, maxdist, maxdist, norm);
|
|
100
|
+
} catch (const std::exception& e) {
|
|
101
|
+
py::print("Error in compute_distance: ", e.what());
|
|
102
|
+
throw;
|
|
103
|
+
}
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
py::array_t<double> compute_all_distances() {
|
|
107
|
+
try {
|
|
108
|
+
return dp_utils::compute_all_distances_simple(
|
|
109
|
+
nseq,
|
|
110
|
+
dist_matrix,
|
|
111
|
+
[this](int i, int j){ return this->compute_distance(i, j); }
|
|
112
|
+
);
|
|
113
|
+
} catch (const std::exception& e) {
|
|
114
|
+
py::print("Error in compute_all_distances: ", e.what());
|
|
115
|
+
throw;
|
|
116
|
+
}
|
|
117
|
+
}
|
|
118
|
+
|
|
119
|
+
py::array_t<double> compute_refseq_distances() {
|
|
120
|
+
try {
|
|
121
|
+
return dp_utils::compute_refseq_distances_simple(
|
|
122
|
+
nseq,
|
|
123
|
+
rseq1,
|
|
124
|
+
rseq2,
|
|
125
|
+
refdist_matrix,
|
|
126
|
+
[this](int is, int rseq){ return this->compute_distance(is, rseq); }
|
|
127
|
+
);
|
|
128
|
+
} catch (const std::exception& e) {
|
|
129
|
+
py::print("Error in compute_all_distances: ", e.what());
|
|
130
|
+
throw;
|
|
131
|
+
}
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
private:
|
|
135
|
+
py::array_t<int> sequences;
|
|
136
|
+
py::array_t<double> sm;
|
|
137
|
+
int norm;
|
|
138
|
+
int nseq;
|
|
139
|
+
int len;
|
|
140
|
+
py::array_t<double> dist_matrix;
|
|
141
|
+
double maxdist;
|
|
142
|
+
|
|
143
|
+
py::array_t<int> refseqS;
|
|
144
|
+
int nans = -1;
|
|
145
|
+
int rseq1 = -1;
|
|
146
|
+
int rseq2 = -1;
|
|
147
|
+
py::array_t<double> refdist_matrix;
|
|
148
|
+
};
|
|
@@ -0,0 +1,114 @@
|
|
|
1
|
+
#include <pybind11/pybind11.h>
|
|
2
|
+
#include <pybind11/numpy.h>
|
|
3
|
+
#include <vector>
|
|
4
|
+
#include <iostream>
|
|
5
|
+
#include "utils.h"
|
|
6
|
+
#include "dp_utils.h"
|
|
7
|
+
|
|
8
|
+
namespace py = pybind11;
|
|
9
|
+
|
|
10
|
+
class LCPdistance{
|
|
11
|
+
public:
|
|
12
|
+
LCPdistance(py::array_t<int> sequences, int norm, int sign, py::array_t<int> refseqS)
|
|
13
|
+
: norm(norm), sign(sign){
|
|
14
|
+
py::print("[>] Starting (Reverse) Longest Common Prefix(LCP/RLCP)...");
|
|
15
|
+
std::cout << std::flush;
|
|
16
|
+
|
|
17
|
+
try{
|
|
18
|
+
this->sequences = sequences;
|
|
19
|
+
|
|
20
|
+
auto seq_shape = sequences.shape();
|
|
21
|
+
nseq = seq_shape[0];
|
|
22
|
+
len = seq_shape[1];
|
|
23
|
+
|
|
24
|
+
dist_matrix = py::array_t<double>({nseq, nseq});
|
|
25
|
+
|
|
26
|
+
// about reference sequences :
|
|
27
|
+
nans = nseq;
|
|
28
|
+
|
|
29
|
+
rseq1 = refseqS.at(0);
|
|
30
|
+
rseq2 = refseqS.at(1);
|
|
31
|
+
if(rseq1 < rseq2){
|
|
32
|
+
nseq = rseq1;
|
|
33
|
+
nans = nseq * (rseq2 - rseq1);
|
|
34
|
+
}else{
|
|
35
|
+
rseq1 = rseq1 - 1;
|
|
36
|
+
}
|
|
37
|
+
refdist_matrix = py::array_t<double>({nseq, (rseq2-rseq1)});
|
|
38
|
+
} catch (const std::exception& e){
|
|
39
|
+
py::print("Error in constructor: ", e.what());
|
|
40
|
+
throw ;
|
|
41
|
+
}
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
double compute_distance(int is, int js) {
|
|
45
|
+
try {
|
|
46
|
+
int m = len;
|
|
47
|
+
int n = len;
|
|
48
|
+
int minimum = m;
|
|
49
|
+
if(n < m) minimum = n;
|
|
50
|
+
|
|
51
|
+
int length = 0;
|
|
52
|
+
auto ptr_seq = sequences.unchecked<2>();
|
|
53
|
+
|
|
54
|
+
if(sign > 0){
|
|
55
|
+
while(ptr_seq(is, length) == ptr_seq(js, length) && length < minimum){
|
|
56
|
+
length ++;
|
|
57
|
+
}
|
|
58
|
+
} else{
|
|
59
|
+
length = 1;
|
|
60
|
+
while(ptr_seq(is, (m - length)) == ptr_seq(js, (n - length)) && length <= minimum){
|
|
61
|
+
length ++;
|
|
62
|
+
}
|
|
63
|
+
length --;
|
|
64
|
+
}
|
|
65
|
+
|
|
66
|
+
return normalize_distance(n+m-2.0*length, n+m, m, n, norm);
|
|
67
|
+
} catch (const std::exception& e) {
|
|
68
|
+
py::print("Error in compute_distance: ", e.what());
|
|
69
|
+
throw;
|
|
70
|
+
}
|
|
71
|
+
}
|
|
72
|
+
|
|
73
|
+
py::array_t<double> compute_all_distances() {
|
|
74
|
+
try {
|
|
75
|
+
return dp_utils::compute_all_distances_simple(
|
|
76
|
+
nseq,
|
|
77
|
+
dist_matrix,
|
|
78
|
+
[this](int i, int j){ return this->compute_distance(i, j); }
|
|
79
|
+
);
|
|
80
|
+
} catch (const std::exception& e) {
|
|
81
|
+
py::print("Error in compute_all_distances: ", e.what());
|
|
82
|
+
throw;
|
|
83
|
+
}
|
|
84
|
+
}
|
|
85
|
+
|
|
86
|
+
py::array_t<double> compute_refseq_distances() {
|
|
87
|
+
try {
|
|
88
|
+
return dp_utils::compute_refseq_distances_simple(
|
|
89
|
+
nseq,
|
|
90
|
+
rseq1,
|
|
91
|
+
rseq2,
|
|
92
|
+
refdist_matrix,
|
|
93
|
+
[this](int is, int rseq){ return this->compute_distance(is, rseq); }
|
|
94
|
+
);
|
|
95
|
+
} catch (const std::exception& e) {
|
|
96
|
+
py::print("Error in compute_all_distances: ", e.what());
|
|
97
|
+
throw;
|
|
98
|
+
}
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
private:
|
|
102
|
+
py::array_t<int> sequences;
|
|
103
|
+
int norm;
|
|
104
|
+
int nseq;
|
|
105
|
+
int len;
|
|
106
|
+
int sign;
|
|
107
|
+
py::array_t<double> dist_matrix;
|
|
108
|
+
|
|
109
|
+
py::array_t<int> refseqS;
|
|
110
|
+
int nans = -1;
|
|
111
|
+
int rseq1 = -1;
|
|
112
|
+
int rseq2 = -1;
|
|
113
|
+
py::array_t<double> refdist_matrix;
|
|
114
|
+
};
|