sequenzo 0.1.18__cp39-cp39-win_amd64.whl → 0.1.20__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (399) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +156 -156
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cp39-win_amd64.pyd +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/clustering_c_code.cp39-win_amd64.pyd +0 -0
  6. sequenzo/clustering/hierarchical_clustering.py +108 -6
  7. sequenzo/define_sequence_data.py +10 -1
  8. sequenzo/dissimilarity_measures/c_code.cp39-win_amd64.pyd +0 -0
  9. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  10. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  11. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +156 -156
  12. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cp39-win_amd64.pyd +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqconc.c +156 -156
  14. sequenzo/dissimilarity_measures/utils/seqconc.cp39-win_amd64.pyd +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdss.c +156 -156
  16. sequenzo/dissimilarity_measures/utils/seqdss.cp39-win_amd64.pyd +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqdur.c +156 -156
  18. sequenzo/dissimilarity_measures/utils/seqdur.cp39-win_amd64.pyd +0 -0
  19. sequenzo/dissimilarity_measures/utils/seqlength.c +156 -156
  20. sequenzo/dissimilarity_measures/utils/seqlength.cp39-win_amd64.pyd +0 -0
  21. sequenzo/multidomain/cat.py +0 -53
  22. sequenzo/multidomain/dat.py +11 -3
  23. sequenzo/multidomain/idcd.py +0 -3
  24. sequenzo/multidomain/linked_polyad.py +0 -1
  25. sequenzo/openmp_setup.py +233 -0
  26. sequenzo/visualization/plot_transition_matrix.py +21 -22
  27. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  28. sequenzo-0.1.20.dist-info/RECORD +272 -0
  29. sequenzo/dissimilarity_measures/setup.py +0 -35
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  170. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  171. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  172. sequenzo/dissimilarity_measures/src/eigen/bench/BenchSparseUtil.h +0 -149
  173. sequenzo/dissimilarity_measures/src/eigen/bench/BenchTimer.h +0 -199
  174. sequenzo/dissimilarity_measures/src/eigen/bench/BenchUtil.h +0 -92
  175. sequenzo/dissimilarity_measures/src/eigen/bench/basicbenchmark.h +0 -63
  176. sequenzo/dissimilarity_measures/src/eigen/bench/btl/generic_bench/utils/utilities.h +0 -90
  177. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/blas.h +0 -675
  178. sequenzo/dissimilarity_measures/src/eigen/bench/btl/libs/BLAS/c_interface_base.h +0 -73
  179. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemm_common.h +0 -67
  180. sequenzo/dissimilarity_measures/src/eigen/bench/perf_monitoring/gemv_common.h +0 -69
  181. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchsolver.h +0 -573
  182. sequenzo/dissimilarity_measures/src/eigen/bench/spbench/spbenchstyle.h +0 -95
  183. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/benchmark.h +0 -49
  184. sequenzo/dissimilarity_measures/src/eigen/bench/tensors/tensor_benchmarks.h +0 -597
  185. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  186. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  187. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  188. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  189. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  190. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  191. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  192. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  193. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  194. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  195. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  196. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  197. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  198. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  199. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  200. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  201. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  202. sequenzo/dissimilarity_measures/src/eigen/demos/mandelbrot/mandelbrot.h +0 -71
  203. sequenzo/dissimilarity_measures/src/eigen/demos/mix_eigen_and_c/binary_library.h +0 -71
  204. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/camera.h +0 -118
  205. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/gpuhelper.h +0 -207
  206. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/icosphere.h +0 -30
  207. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/quaternion_demo.h +0 -114
  208. sequenzo/dissimilarity_measures/src/eigen/demos/opengl/trackball.h +0 -42
  209. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  210. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  211. sequenzo/dissimilarity_measures/src/eigen/test/AnnoyingScalar.h +0 -165
  212. sequenzo/dissimilarity_measures/src/eigen/test/MovableScalar.h +0 -35
  213. sequenzo/dissimilarity_measures/src/eigen/test/SafeScalar.h +0 -30
  214. sequenzo/dissimilarity_measures/src/eigen/test/bug1213.h +0 -8
  215. sequenzo/dissimilarity_measures/src/eigen/test/evaluator_common.h +0 -0
  216. sequenzo/dissimilarity_measures/src/eigen/test/gpu_common.h +0 -176
  217. sequenzo/dissimilarity_measures/src/eigen/test/main.h +0 -857
  218. sequenzo/dissimilarity_measures/src/eigen/test/packetmath_test_shared.h +0 -275
  219. sequenzo/dissimilarity_measures/src/eigen/test/product.h +0 -259
  220. sequenzo/dissimilarity_measures/src/eigen/test/random_without_cast_overflow.h +0 -152
  221. sequenzo/dissimilarity_measures/src/eigen/test/solverbase.h +0 -36
  222. sequenzo/dissimilarity_measures/src/eigen/test/sparse.h +0 -204
  223. sequenzo/dissimilarity_measures/src/eigen/test/sparse_solver.h +0 -699
  224. sequenzo/dissimilarity_measures/src/eigen/test/split_test_helper.h +0 -5994
  225. sequenzo/dissimilarity_measures/src/eigen/test/svd_common.h +0 -521
  226. sequenzo/dissimilarity_measures/src/eigen/test/svd_fill.h +0 -118
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  357. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  358. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  359. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  360. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  361. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  362. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  363. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  364. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  365. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  366. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  367. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  368. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  369. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  370. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  371. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  372. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  373. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  374. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  375. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  376. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  377. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  378. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  379. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  380. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  381. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  382. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  383. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  384. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  385. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  386. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  387. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  388. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  389. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  390. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  391. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  392. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  393. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  394. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  395. sequenzo/dissimilarity_measures/src/eigen/unsupported/test/matrix_functions.h +0 -67
  396. sequenzo-0.1.18.dist-info/RECORD +0 -638
  397. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  398. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  399. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,904 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5
- // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
- #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12
- #define EIGEN_SELFADJOINTEIGENSOLVER_H
13
-
14
- #include "./Tridiagonalization.h"
15
-
16
- namespace Eigen {
17
-
18
- template<typename _MatrixType>
19
- class GeneralizedSelfAdjointEigenSolver;
20
-
21
- namespace internal {
22
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues;
23
-
24
- template<typename MatrixType, typename DiagType, typename SubDiagType>
25
- EIGEN_DEVICE_FUNC
26
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec);
27
- }
28
-
29
- /** \eigenvalues_module \ingroup Eigenvalues_Module
30
- *
31
- *
32
- * \class SelfAdjointEigenSolver
33
- *
34
- * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices
35
- *
36
- * \tparam _MatrixType the type of the matrix of which we are computing the
37
- * eigendecomposition; this is expected to be an instantiation of the Matrix
38
- * class template.
39
- *
40
- * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
41
- * matrices, this means that the matrix is symmetric: it equals its
42
- * transpose. This class computes the eigenvalues and eigenvectors of a
43
- * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors
44
- * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a
45
- * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with
46
- * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the
47
- * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the
48
- * eigendecomposition.
49
- *
50
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
51
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
52
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
53
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
54
- *
55
- * The algorithm exploits the fact that the matrix is selfadjoint, making it
56
- * faster and more accurate than the general purpose eigenvalue algorithms
57
- * implemented in EigenSolver and ComplexEigenSolver.
58
- *
59
- * Only the \b lower \b triangular \b part of the input matrix is referenced.
60
- *
61
- * Call the function compute() to compute the eigenvalues and eigenvectors of
62
- * a given matrix. Alternatively, you can use the
63
- * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes
64
- * the eigenvalues and eigenvectors at construction time. Once the eigenvalue
65
- * and eigenvectors are computed, they can be retrieved with the eigenvalues()
66
- * and eigenvectors() functions.
67
- *
68
- * The documentation for SelfAdjointEigenSolver(const MatrixType&, int)
69
- * contains an example of the typical use of this class.
70
- *
71
- * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and
72
- * the likes, see the class GeneralizedSelfAdjointEigenSolver.
73
- *
74
- * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver
75
- */
76
- template<typename _MatrixType> class SelfAdjointEigenSolver
77
- {
78
- public:
79
-
80
- typedef _MatrixType MatrixType;
81
- enum {
82
- Size = MatrixType::RowsAtCompileTime,
83
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
84
- Options = MatrixType::Options,
85
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
86
- };
87
-
88
- /** \brief Scalar type for matrices of type \p _MatrixType. */
89
- typedef typename MatrixType::Scalar Scalar;
90
- typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
91
-
92
- typedef Matrix<Scalar,Size,Size,ColMajor,MaxColsAtCompileTime,MaxColsAtCompileTime> EigenvectorsType;
93
-
94
- /** \brief Real scalar type for \p _MatrixType.
95
- *
96
- * This is just \c Scalar if #Scalar is real (e.g., \c float or
97
- * \c double), and the type of the real part of \c Scalar if #Scalar is
98
- * complex.
99
- */
100
- typedef typename NumTraits<Scalar>::Real RealScalar;
101
-
102
- friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>;
103
-
104
- /** \brief Type for vector of eigenvalues as returned by eigenvalues().
105
- *
106
- * This is a column vector with entries of type #RealScalar.
107
- * The length of the vector is the size of \p _MatrixType.
108
- */
109
- typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
110
- typedef Tridiagonalization<MatrixType> TridiagonalizationType;
111
- typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType;
112
-
113
- /** \brief Default constructor for fixed-size matrices.
114
- *
115
- * The default constructor is useful in cases in which the user intends to
116
- * perform decompositions via compute(). This constructor
117
- * can only be used if \p _MatrixType is a fixed-size matrix; use
118
- * SelfAdjointEigenSolver(Index) for dynamic-size matrices.
119
- *
120
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp
121
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out
122
- */
123
- EIGEN_DEVICE_FUNC
124
- SelfAdjointEigenSolver()
125
- : m_eivec(),
126
- m_eivalues(),
127
- m_subdiag(),
128
- m_hcoeffs(),
129
- m_info(InvalidInput),
130
- m_isInitialized(false),
131
- m_eigenvectorsOk(false)
132
- { }
133
-
134
- /** \brief Constructor, pre-allocates memory for dynamic-size matrices.
135
- *
136
- * \param [in] size Positive integer, size of the matrix whose
137
- * eigenvalues and eigenvectors will be computed.
138
- *
139
- * This constructor is useful for dynamic-size matrices, when the user
140
- * intends to perform decompositions via compute(). The \p size
141
- * parameter is only used as a hint. It is not an error to give a wrong
142
- * \p size, but it may impair performance.
143
- *
144
- * \sa compute() for an example
145
- */
146
- EIGEN_DEVICE_FUNC
147
- explicit SelfAdjointEigenSolver(Index size)
148
- : m_eivec(size, size),
149
- m_eivalues(size),
150
- m_subdiag(size > 1 ? size - 1 : 1),
151
- m_hcoeffs(size > 1 ? size - 1 : 1),
152
- m_isInitialized(false),
153
- m_eigenvectorsOk(false)
154
- {}
155
-
156
- /** \brief Constructor; computes eigendecomposition of given matrix.
157
- *
158
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
159
- * be computed. Only the lower triangular part of the matrix is referenced.
160
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
161
- *
162
- * This constructor calls compute(const MatrixType&, int) to compute the
163
- * eigenvalues of the matrix \p matrix. The eigenvectors are computed if
164
- * \p options equals #ComputeEigenvectors.
165
- *
166
- * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp
167
- * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out
168
- *
169
- * \sa compute(const MatrixType&, int)
170
- */
171
- template<typename InputType>
172
- EIGEN_DEVICE_FUNC
173
- explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors)
174
- : m_eivec(matrix.rows(), matrix.cols()),
175
- m_eivalues(matrix.cols()),
176
- m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
177
- m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
178
- m_isInitialized(false),
179
- m_eigenvectorsOk(false)
180
- {
181
- compute(matrix.derived(), options);
182
- }
183
-
184
- /** \brief Computes eigendecomposition of given matrix.
185
- *
186
- * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
187
- * be computed. Only the lower triangular part of the matrix is referenced.
188
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
189
- * \returns Reference to \c *this
190
- *
191
- * This function computes the eigenvalues of \p matrix. The eigenvalues()
192
- * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
193
- * then the eigenvectors are also computed and can be retrieved by
194
- * calling eigenvectors().
195
- *
196
- * This implementation uses a symmetric QR algorithm. The matrix is first
197
- * reduced to tridiagonal form using the Tridiagonalization class. The
198
- * tridiagonal matrix is then brought to diagonal form with implicit
199
- * symmetric QR steps with Wilkinson shift. Details can be found in
200
- * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>.
201
- *
202
- * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors
203
- * are required and \f$ 4n^3/3 \f$ if they are not required.
204
- *
205
- * This method reuses the memory in the SelfAdjointEigenSolver object that
206
- * was allocated when the object was constructed, if the size of the
207
- * matrix does not change.
208
- *
209
- * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp
210
- * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out
211
- *
212
- * \sa SelfAdjointEigenSolver(const MatrixType&, int)
213
- */
214
- template<typename InputType>
215
- EIGEN_DEVICE_FUNC
216
- SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, int options = ComputeEigenvectors);
217
-
218
- /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm
219
- *
220
- * This is a variant of compute(const MatrixType&, int options) which
221
- * directly solves the underlying polynomial equation.
222
- *
223
- * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d).
224
- *
225
- * This method is usually significantly faster than the QR iterative algorithm
226
- * but it might also be less accurate. It is also worth noting that
227
- * for 3x3 matrices it involves trigonometric operations which are
228
- * not necessarily available for all scalar types.
229
- *
230
- * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues:
231
- * - double: 1e-8
232
- * - float: 1e-3
233
- *
234
- * \sa compute(const MatrixType&, int options)
235
- */
236
- EIGEN_DEVICE_FUNC
237
- SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
238
-
239
- /**
240
- *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix
241
- *
242
- * \param[in] diag The vector containing the diagonal of the matrix.
243
- * \param[in] subdiag The subdiagonal of the matrix.
244
- * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
245
- * \returns Reference to \c *this
246
- *
247
- * This function assumes that the matrix has been reduced to tridiagonal form.
248
- *
249
- * \sa compute(const MatrixType&, int) for more information
250
- */
251
- SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors);
252
-
253
- /** \brief Returns the eigenvectors of given matrix.
254
- *
255
- * \returns A const reference to the matrix whose columns are the eigenvectors.
256
- *
257
- * \pre The eigenvectors have been computed before.
258
- *
259
- * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
260
- * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
261
- * eigenvectors are normalized to have (Euclidean) norm equal to one. If
262
- * this object was used to solve the eigenproblem for the selfadjoint
263
- * matrix \f$ A \f$, then the matrix returned by this function is the
264
- * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$.
265
- *
266
- * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal
267
- * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then
268
- * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is
269
- * equal to its transpose, \f$ V^{-1} = V^T \f$.
270
- *
271
- * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
272
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
273
- *
274
- * \sa eigenvalues()
275
- */
276
- EIGEN_DEVICE_FUNC
277
- const EigenvectorsType& eigenvectors() const
278
- {
279
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
280
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
281
- return m_eivec;
282
- }
283
-
284
- /** \brief Returns the eigenvalues of given matrix.
285
- *
286
- * \returns A const reference to the column vector containing the eigenvalues.
287
- *
288
- * \pre The eigenvalues have been computed before.
289
- *
290
- * The eigenvalues are repeated according to their algebraic multiplicity,
291
- * so there are as many eigenvalues as rows in the matrix. The eigenvalues
292
- * are sorted in increasing order.
293
- *
294
- * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
295
- * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
296
- *
297
- * \sa eigenvectors(), MatrixBase::eigenvalues()
298
- */
299
- EIGEN_DEVICE_FUNC
300
- const RealVectorType& eigenvalues() const
301
- {
302
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
303
- return m_eivalues;
304
- }
305
-
306
- /** \brief Computes the positive-definite square root of the matrix.
307
- *
308
- * \returns the positive-definite square root of the matrix
309
- *
310
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
311
- * have been computed before.
312
- *
313
- * The square root of a positive-definite matrix \f$ A \f$ is the
314
- * positive-definite matrix whose square equals \f$ A \f$. This function
315
- * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
316
- * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
317
- *
318
- * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
319
- * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
320
- *
321
- * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
322
- */
323
- EIGEN_DEVICE_FUNC
324
- MatrixType operatorSqrt() const
325
- {
326
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
327
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
328
- return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
329
- }
330
-
331
- /** \brief Computes the inverse square root of the matrix.
332
- *
333
- * \returns the inverse positive-definite square root of the matrix
334
- *
335
- * \pre The eigenvalues and eigenvectors of a positive-definite matrix
336
- * have been computed before.
337
- *
338
- * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
339
- * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
340
- * cheaper than first computing the square root with operatorSqrt() and
341
- * then its inverse with MatrixBase::inverse().
342
- *
343
- * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
344
- * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
345
- *
346
- * \sa operatorSqrt(), MatrixBase::inverse(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a>
347
- */
348
- EIGEN_DEVICE_FUNC
349
- MatrixType operatorInverseSqrt() const
350
- {
351
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
352
- eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
353
- return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
354
- }
355
-
356
- /** \brief Reports whether previous computation was successful.
357
- *
358
- * \returns \c Success if computation was successful, \c NoConvergence otherwise.
359
- */
360
- EIGEN_DEVICE_FUNC
361
- ComputationInfo info() const
362
- {
363
- eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
364
- return m_info;
365
- }
366
-
367
- /** \brief Maximum number of iterations.
368
- *
369
- * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n
370
- * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK).
371
- */
372
- static const int m_maxIterations = 30;
373
-
374
- protected:
375
- static EIGEN_DEVICE_FUNC
376
- void check_template_parameters()
377
- {
378
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
379
- }
380
-
381
- EigenvectorsType m_eivec;
382
- RealVectorType m_eivalues;
383
- typename TridiagonalizationType::SubDiagonalType m_subdiag;
384
- typename TridiagonalizationType::CoeffVectorType m_hcoeffs;
385
- ComputationInfo m_info;
386
- bool m_isInitialized;
387
- bool m_eigenvectorsOk;
388
- };
389
-
390
- namespace internal {
391
- /** \internal
392
- *
393
- * \eigenvalues_module \ingroup Eigenvalues_Module
394
- *
395
- * Performs a QR step on a tridiagonal symmetric matrix represented as a
396
- * pair of two vectors \a diag and \a subdiag.
397
- *
398
- * \param diag the diagonal part of the input selfadjoint tridiagonal matrix
399
- * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix
400
- * \param start starting index of the submatrix to work on
401
- * \param end last+1 index of the submatrix to work on
402
- * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0
403
- * \param n size of the input matrix
404
- *
405
- * For compilation efficiency reasons, this procedure does not use eigen expression
406
- * for its arguments.
407
- *
408
- * Implemented from Golub's "Matrix Computations", algorithm 8.3.2:
409
- * "implicit symmetric QR step with Wilkinson shift"
410
- */
411
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
412
- EIGEN_DEVICE_FUNC
413
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n);
414
- }
415
-
416
- template<typename MatrixType>
417
- template<typename InputType>
418
- EIGEN_DEVICE_FUNC
419
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
420
- ::compute(const EigenBase<InputType>& a_matrix, int options)
421
- {
422
- check_template_parameters();
423
-
424
- const InputType &matrix(a_matrix.derived());
425
-
426
- EIGEN_USING_STD(abs);
427
- eigen_assert(matrix.cols() == matrix.rows());
428
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
429
- && (options&EigVecMask)!=EigVecMask
430
- && "invalid option parameter");
431
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
432
- Index n = matrix.cols();
433
- m_eivalues.resize(n,1);
434
-
435
- if(n==1)
436
- {
437
- m_eivec = matrix;
438
- m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0));
439
- if(computeEigenvectors)
440
- m_eivec.setOnes(n,n);
441
- m_info = Success;
442
- m_isInitialized = true;
443
- m_eigenvectorsOk = computeEigenvectors;
444
- return *this;
445
- }
446
-
447
- // declare some aliases
448
- RealVectorType& diag = m_eivalues;
449
- EigenvectorsType& mat = m_eivec;
450
-
451
- // map the matrix coefficients to [-1:1] to avoid over- and underflow.
452
- mat = matrix.template triangularView<Lower>();
453
- RealScalar scale = mat.cwiseAbs().maxCoeff();
454
- if(scale==RealScalar(0)) scale = RealScalar(1);
455
- mat.template triangularView<Lower>() /= scale;
456
- m_subdiag.resize(n-1);
457
- m_hcoeffs.resize(n-1);
458
- internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, computeEigenvectors);
459
-
460
- m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
461
-
462
- // scale back the eigen values
463
- m_eivalues *= scale;
464
-
465
- m_isInitialized = true;
466
- m_eigenvectorsOk = computeEigenvectors;
467
- return *this;
468
- }
469
-
470
- template<typename MatrixType>
471
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
472
- ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options)
473
- {
474
- //TODO : Add an option to scale the values beforehand
475
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
476
-
477
- m_eivalues = diag;
478
- m_subdiag = subdiag;
479
- if (computeEigenvectors)
480
- {
481
- m_eivec.setIdentity(diag.size(), diag.size());
482
- }
483
- m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
484
-
485
- m_isInitialized = true;
486
- m_eigenvectorsOk = computeEigenvectors;
487
- return *this;
488
- }
489
-
490
- namespace internal {
491
- /**
492
- * \internal
493
- * \brief Compute the eigendecomposition from a tridiagonal matrix
494
- *
495
- * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues
496
- * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition)
497
- * \param[in] maxIterations : the maximum number of iterations
498
- * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not
499
- * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input.
500
- * \returns \c Success or \c NoConvergence
501
- */
502
- template<typename MatrixType, typename DiagType, typename SubDiagType>
503
- EIGEN_DEVICE_FUNC
504
- ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec)
505
- {
506
- ComputationInfo info;
507
- typedef typename MatrixType::Scalar Scalar;
508
-
509
- Index n = diag.size();
510
- Index end = n-1;
511
- Index start = 0;
512
- Index iter = 0; // total number of iterations
513
-
514
- typedef typename DiagType::RealScalar RealScalar;
515
- const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
516
- const RealScalar precision_inv = RealScalar(1)/NumTraits<RealScalar>::epsilon();
517
- while (end>0)
518
- {
519
- for (Index i = start; i<end; ++i) {
520
- if (numext::abs(subdiag[i]) < considerAsZero) {
521
- subdiag[i] = RealScalar(0);
522
- } else {
523
- // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
524
- // Scaled to prevent underflows.
525
- const RealScalar scaled_subdiag = precision_inv * subdiag[i];
526
- if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i])+numext::abs(diag[i+1]))) {
527
- subdiag[i] = RealScalar(0);
528
- }
529
- }
530
- }
531
-
532
- // find the largest unreduced block at the end of the matrix.
533
- while (end>0 && subdiag[end-1]==RealScalar(0))
534
- {
535
- end--;
536
- }
537
- if (end<=0)
538
- break;
539
-
540
- // if we spent too many iterations, we give up
541
- iter++;
542
- if(iter > maxIterations * n) break;
543
-
544
- start = end - 1;
545
- while (start>0 && subdiag[start-1]!=0)
546
- start--;
547
-
548
- internal::tridiagonal_qr_step<MatrixType::Flags&RowMajorBit ? RowMajor : ColMajor>(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
549
- }
550
- if (iter <= maxIterations * n)
551
- info = Success;
552
- else
553
- info = NoConvergence;
554
-
555
- // Sort eigenvalues and corresponding vectors.
556
- // TODO make the sort optional ?
557
- // TODO use a better sort algorithm !!
558
- if (info == Success)
559
- {
560
- for (Index i = 0; i < n-1; ++i)
561
- {
562
- Index k;
563
- diag.segment(i,n-i).minCoeff(&k);
564
- if (k > 0)
565
- {
566
- numext::swap(diag[i], diag[k+i]);
567
- if(computeEigenvectors)
568
- eivec.col(i).swap(eivec.col(k+i));
569
- }
570
- }
571
- }
572
- return info;
573
- }
574
-
575
- template<typename SolverType,int Size,bool IsComplex> struct direct_selfadjoint_eigenvalues
576
- {
577
- EIGEN_DEVICE_FUNC
578
- static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options)
579
- { eig.compute(A,options); }
580
- };
581
-
582
- template<typename SolverType> struct direct_selfadjoint_eigenvalues<SolverType,3,false>
583
- {
584
- typedef typename SolverType::MatrixType MatrixType;
585
- typedef typename SolverType::RealVectorType VectorType;
586
- typedef typename SolverType::Scalar Scalar;
587
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
588
-
589
-
590
- /** \internal
591
- * Computes the roots of the characteristic polynomial of \a m.
592
- * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized.
593
- */
594
- EIGEN_DEVICE_FUNC
595
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
596
- {
597
- EIGEN_USING_STD(sqrt)
598
- EIGEN_USING_STD(atan2)
599
- EIGEN_USING_STD(cos)
600
- EIGEN_USING_STD(sin)
601
- const Scalar s_inv3 = Scalar(1)/Scalar(3);
602
- const Scalar s_sqrt3 = sqrt(Scalar(3));
603
-
604
- // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
605
- // eigenvalues are the roots to this equation, all guaranteed to be
606
- // real-valued, because the matrix is symmetric.
607
- Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(1,0)*m(2,0)*m(2,1) - m(0,0)*m(2,1)*m(2,1) - m(1,1)*m(2,0)*m(2,0) - m(2,2)*m(1,0)*m(1,0);
608
- Scalar c1 = m(0,0)*m(1,1) - m(1,0)*m(1,0) + m(0,0)*m(2,2) - m(2,0)*m(2,0) + m(1,1)*m(2,2) - m(2,1)*m(2,1);
609
- Scalar c2 = m(0,0) + m(1,1) + m(2,2);
610
-
611
- // Construct the parameters used in classifying the roots of the equation
612
- // and in solving the equation for the roots in closed form.
613
- Scalar c2_over_3 = c2*s_inv3;
614
- Scalar a_over_3 = (c2*c2_over_3 - c1)*s_inv3;
615
- a_over_3 = numext::maxi(a_over_3, Scalar(0));
616
-
617
- Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
618
-
619
- Scalar q = a_over_3*a_over_3*a_over_3 - half_b*half_b;
620
- q = numext::maxi(q, Scalar(0));
621
-
622
- // Compute the eigenvalues by solving for the roots of the polynomial.
623
- Scalar rho = sqrt(a_over_3);
624
- Scalar theta = atan2(sqrt(q),half_b)*s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
625
- Scalar cos_theta = cos(theta);
626
- Scalar sin_theta = sin(theta);
627
- // roots are already sorted, since cos is monotonically decreasing on [0, pi]
628
- roots(0) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta); // == 2*rho*cos(theta+2pi/3)
629
- roots(1) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta); // == 2*rho*cos(theta+ pi/3)
630
- roots(2) = c2_over_3 + Scalar(2)*rho*cos_theta;
631
- }
632
-
633
- EIGEN_DEVICE_FUNC
634
- static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, Ref<VectorType> representative)
635
- {
636
- EIGEN_USING_STD(abs);
637
- EIGEN_USING_STD(sqrt);
638
- Index i0;
639
- // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
640
- mat.diagonal().cwiseAbs().maxCoeff(&i0);
641
- // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
642
- // so let's save it:
643
- representative = mat.col(i0);
644
- Scalar n0, n1;
645
- VectorType c0, c1;
646
- n0 = (c0 = representative.cross(mat.col((i0+1)%3))).squaredNorm();
647
- n1 = (c1 = representative.cross(mat.col((i0+2)%3))).squaredNorm();
648
- if(n0>n1) res = c0/sqrt(n0);
649
- else res = c1/sqrt(n1);
650
-
651
- return true;
652
- }
653
-
654
- EIGEN_DEVICE_FUNC
655
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
656
- {
657
- eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
658
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
659
- && (options&EigVecMask)!=EigVecMask
660
- && "invalid option parameter");
661
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
662
-
663
- EigenvectorsType& eivecs = solver.m_eivec;
664
- VectorType& eivals = solver.m_eivalues;
665
-
666
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
667
- Scalar shift = mat.trace() / Scalar(3);
668
- // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for computing the eigenvectors later
669
- MatrixType scaledMat = mat.template selfadjointView<Lower>();
670
- scaledMat.diagonal().array() -= shift;
671
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
672
- if(scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
673
-
674
- // compute the eigenvalues
675
- computeRoots(scaledMat,eivals);
676
-
677
- // compute the eigenvectors
678
- if(computeEigenvectors)
679
- {
680
- if((eivals(2)-eivals(0))<=Eigen::NumTraits<Scalar>::epsilon())
681
- {
682
- // All three eigenvalues are numerically the same
683
- eivecs.setIdentity();
684
- }
685
- else
686
- {
687
- MatrixType tmp;
688
- tmp = scaledMat;
689
-
690
- // Compute the eigenvector of the most distinct eigenvalue
691
- Scalar d0 = eivals(2) - eivals(1);
692
- Scalar d1 = eivals(1) - eivals(0);
693
- Index k(0), l(2);
694
- if(d0 > d1)
695
- {
696
- numext::swap(k,l);
697
- d0 = d1;
698
- }
699
-
700
- // Compute the eigenvector of index k
701
- {
702
- tmp.diagonal().array () -= eivals(k);
703
- // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
704
- extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
705
- }
706
-
707
- // Compute eigenvector of index l
708
- if(d0<=2*Eigen::NumTraits<Scalar>::epsilon()*d1)
709
- {
710
- // If d0 is too small, then the two other eigenvalues are numerically the same,
711
- // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
712
- eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l))*eivecs.col(l);
713
- eivecs.col(l).normalize();
714
- }
715
- else
716
- {
717
- tmp = scaledMat;
718
- tmp.diagonal().array () -= eivals(l);
719
-
720
- VectorType dummy;
721
- extract_kernel(tmp, eivecs.col(l), dummy);
722
- }
723
-
724
- // Compute last eigenvector from the other two
725
- eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
726
- }
727
- }
728
-
729
- // Rescale back to the original size.
730
- eivals *= scale;
731
- eivals.array() += shift;
732
-
733
- solver.m_info = Success;
734
- solver.m_isInitialized = true;
735
- solver.m_eigenvectorsOk = computeEigenvectors;
736
- }
737
- };
738
-
739
- // 2x2 direct eigenvalues decomposition, code from Hauke Heibel
740
- template<typename SolverType>
741
- struct direct_selfadjoint_eigenvalues<SolverType,2,false>
742
- {
743
- typedef typename SolverType::MatrixType MatrixType;
744
- typedef typename SolverType::RealVectorType VectorType;
745
- typedef typename SolverType::Scalar Scalar;
746
- typedef typename SolverType::EigenvectorsType EigenvectorsType;
747
-
748
- EIGEN_DEVICE_FUNC
749
- static inline void computeRoots(const MatrixType& m, VectorType& roots)
750
- {
751
- EIGEN_USING_STD(sqrt);
752
- const Scalar t0 = Scalar(0.5) * sqrt( numext::abs2(m(0,0)-m(1,1)) + Scalar(4)*numext::abs2(m(1,0)));
753
- const Scalar t1 = Scalar(0.5) * (m(0,0) + m(1,1));
754
- roots(0) = t1 - t0;
755
- roots(1) = t1 + t0;
756
- }
757
-
758
- EIGEN_DEVICE_FUNC
759
- static inline void run(SolverType& solver, const MatrixType& mat, int options)
760
- {
761
- EIGEN_USING_STD(sqrt);
762
- EIGEN_USING_STD(abs);
763
-
764
- eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
765
- eigen_assert((options&~(EigVecMask|GenEigMask))==0
766
- && (options&EigVecMask)!=EigVecMask
767
- && "invalid option parameter");
768
- bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors;
769
-
770
- EigenvectorsType& eivecs = solver.m_eivec;
771
- VectorType& eivals = solver.m_eivalues;
772
-
773
- // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
774
- Scalar shift = mat.trace() / Scalar(2);
775
- MatrixType scaledMat = mat;
776
- scaledMat.coeffRef(0,1) = mat.coeff(1,0);
777
- scaledMat.diagonal().array() -= shift;
778
- Scalar scale = scaledMat.cwiseAbs().maxCoeff();
779
- if(scale > Scalar(0))
780
- scaledMat /= scale;
781
-
782
- // Compute the eigenvalues
783
- computeRoots(scaledMat,eivals);
784
-
785
- // compute the eigen vectors
786
- if(computeEigenvectors)
787
- {
788
- if((eivals(1)-eivals(0))<=abs(eivals(1))*Eigen::NumTraits<Scalar>::epsilon())
789
- {
790
- eivecs.setIdentity();
791
- }
792
- else
793
- {
794
- scaledMat.diagonal().array () -= eivals(1);
795
- Scalar a2 = numext::abs2(scaledMat(0,0));
796
- Scalar c2 = numext::abs2(scaledMat(1,1));
797
- Scalar b2 = numext::abs2(scaledMat(1,0));
798
- if(a2>c2)
799
- {
800
- eivecs.col(1) << -scaledMat(1,0), scaledMat(0,0);
801
- eivecs.col(1) /= sqrt(a2+b2);
802
- }
803
- else
804
- {
805
- eivecs.col(1) << -scaledMat(1,1), scaledMat(1,0);
806
- eivecs.col(1) /= sqrt(c2+b2);
807
- }
808
-
809
- eivecs.col(0) << eivecs.col(1).unitOrthogonal();
810
- }
811
- }
812
-
813
- // Rescale back to the original size.
814
- eivals *= scale;
815
- eivals.array() += shift;
816
-
817
- solver.m_info = Success;
818
- solver.m_isInitialized = true;
819
- solver.m_eigenvectorsOk = computeEigenvectors;
820
- }
821
- };
822
-
823
- }
824
-
825
- template<typename MatrixType>
826
- EIGEN_DEVICE_FUNC
827
- SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>
828
- ::computeDirect(const MatrixType& matrix, int options)
829
- {
830
- internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver,Size,NumTraits<Scalar>::IsComplex>::run(*this,matrix,options);
831
- return *this;
832
- }
833
-
834
- namespace internal {
835
-
836
- // Francis implicit QR step.
837
- template<int StorageOrder,typename RealScalar, typename Scalar, typename Index>
838
- EIGEN_DEVICE_FUNC
839
- static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n)
840
- {
841
- // Wilkinson Shift.
842
- RealScalar td = (diag[end-1] - diag[end])*RealScalar(0.5);
843
- RealScalar e = subdiag[end-1];
844
- // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
845
- // underflow thus leading to inf/NaN values when using the following commented code:
846
- // RealScalar e2 = numext::abs2(subdiag[end-1]);
847
- // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
848
- // This explain the following, somewhat more complicated, version:
849
- RealScalar mu = diag[end];
850
- if(td==RealScalar(0)) {
851
- mu -= numext::abs(e);
852
- } else if (e != RealScalar(0)) {
853
- const RealScalar e2 = numext::abs2(e);
854
- const RealScalar h = numext::hypot(td,e);
855
- if(e2 == RealScalar(0)) {
856
- mu -= e / ((td + (td>RealScalar(0) ? h : -h)) / e);
857
- } else {
858
- mu -= e2 / (td + (td>RealScalar(0) ? h : -h));
859
- }
860
- }
861
-
862
- RealScalar x = diag[start] - mu;
863
- RealScalar z = subdiag[start];
864
- // If z ever becomes zero, the Givens rotation will be the identity and
865
- // z will stay zero for all future iterations.
866
- for (Index k = start; k < end && z != RealScalar(0); ++k)
867
- {
868
- JacobiRotation<RealScalar> rot;
869
- rot.makeGivens(x, z);
870
-
871
- // do T = G' T G
872
- RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
873
- RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k+1];
874
-
875
- diag[k] = rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k+1]);
876
- diag[k+1] = rot.s() * sdk + rot.c() * dkp1;
877
- subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
878
-
879
- if (k > start)
880
- subdiag[k - 1] = rot.c() * subdiag[k-1] - rot.s() * z;
881
-
882
- // "Chasing the bulge" to return to triangular form.
883
- x = subdiag[k];
884
- if (k < end - 1)
885
- {
886
- z = -rot.s() * subdiag[k+1];
887
- subdiag[k + 1] = rot.c() * subdiag[k+1];
888
- }
889
-
890
- // apply the givens rotation to the unit matrix Q = Q * G
891
- if (matrixQ)
892
- {
893
- // FIXME if StorageOrder == RowMajor this operation is not very efficient
894
- Map<Matrix<Scalar,Dynamic,Dynamic,StorageOrder> > q(matrixQ,n,n);
895
- q.applyOnTheRight(k,k+1,rot);
896
- }
897
- }
898
- }
899
-
900
- } // end namespace internal
901
-
902
- } // end namespace Eigen
903
-
904
- #endif // EIGEN_SELFADJOINTEIGENSOLVER_H