scitex 2.16.1__py3-none-any.whl → 2.16.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. scitex/scholar/url_finder/.tmp/open_url/KNOWN_RESOLVERS.py +462 -0
  2. scitex/scholar/url_finder/.tmp/open_url/README.md +223 -0
  3. scitex/scholar/url_finder/.tmp/open_url/_DOIToURLResolver.py +694 -0
  4. scitex/scholar/url_finder/.tmp/open_url/_OpenURLResolver.py +1160 -0
  5. scitex/scholar/url_finder/.tmp/open_url/_ResolverLinkFinder.py +344 -0
  6. scitex/scholar/url_finder/.tmp/open_url/__init__.py +24 -0
  7. {scitex-2.16.1.dist-info → scitex-2.16.2.dist-info}/METADATA +1 -1
  8. {scitex-2.16.1.dist-info → scitex-2.16.2.dist-info}/RECORD +11 -36
  9. scitex/dev/plt/data/mpl/PLOTTING_FUNCTIONS.yaml +0 -90
  10. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES.yaml +0 -1571
  11. scitex/dev/plt/data/mpl/PLOTTING_SIGNATURES_DETAILED.yaml +0 -6262
  12. scitex/dev/plt/data/mpl/SIGNATURES_FLATTENED.yaml +0 -1274
  13. scitex/dev/plt/data/mpl/dir_ax.txt +0 -459
  14. scitex/scholar/data/.gitkeep +0 -0
  15. scitex/scholar/data/README.md +0 -44
  16. scitex/scholar/data/bib_files/bibliography.bib +0 -1952
  17. scitex/scholar/data/bib_files/neurovista.bib +0 -277
  18. scitex/scholar/data/bib_files/neurovista_enriched.bib +0 -441
  19. scitex/scholar/data/bib_files/neurovista_enriched_enriched.bib +0 -441
  20. scitex/scholar/data/bib_files/neurovista_processed.bib +0 -338
  21. scitex/scholar/data/bib_files/openaccess.bib +0 -89
  22. scitex/scholar/data/bib_files/pac-seizure_prediction_enriched.bib +0 -2178
  23. scitex/scholar/data/bib_files/pac.bib +0 -698
  24. scitex/scholar/data/bib_files/pac_enriched.bib +0 -1061
  25. scitex/scholar/data/bib_files/pac_processed.bib +0 -0
  26. scitex/scholar/data/bib_files/pac_titles.txt +0 -75
  27. scitex/scholar/data/bib_files/paywalled.bib +0 -98
  28. scitex/scholar/data/bib_files/related-papers-by-coauthors.bib +0 -58
  29. scitex/scholar/data/bib_files/related-papers-by-coauthors_enriched.bib +0 -87
  30. scitex/scholar/data/bib_files/seizure_prediction.bib +0 -694
  31. scitex/scholar/data/bib_files/seizure_prediction_processed.bib +0 -0
  32. scitex/scholar/data/bib_files/test_complete_enriched.bib +0 -437
  33. scitex/scholar/data/bib_files/test_final_enriched.bib +0 -437
  34. scitex/scholar/data/bib_files/test_seizure.bib +0 -46
  35. scitex/scholar/data/impact_factor/JCR_IF_2022.xlsx +0 -0
  36. scitex/scholar/data/impact_factor/JCR_IF_2024.db +0 -0
  37. scitex/scholar/data/impact_factor/JCR_IF_2024.xlsx +0 -0
  38. scitex/scholar/data/impact_factor/JCR_IF_2024_v01.db +0 -0
  39. scitex/scholar/data/impact_factor.db +0 -0
  40. {scitex-2.16.1.dist-info → scitex-2.16.2.dist-info}/WHEEL +0 -0
  41. {scitex-2.16.1.dist-info → scitex-2.16.2.dist-info}/entry_points.txt +0 -0
  42. {scitex-2.16.1.dist-info → scitex-2.16.2.dist-info}/licenses/LICENSE +0 -0
@@ -1,2178 +0,0 @@
1
- % ============================================================
2
- % SciTeX Scholar - Merged BibTeX File
3
- % Generated: 2025-09-30 20:51:25
4
- % Author: Yusuke Watanabe (ywatanabe@scitex.ai)
5
- % ============================================================
6
- %
7
- % Source Files:
8
- % 1. pac.bib
9
- % 2. seizure_prediction.bib
10
- %
11
- % Merge Statistics:
12
- % Total entries loaded: 150
13
- % Unique entries: 149
14
- % Duplicates found: 1
15
- % Duplicates merged: 1
16
- % ============================================================
17
-
18
-
19
- % ============================================================
20
- % Source: pac.bib
21
- % Entries: 75
22
- % ============================================================
23
-
24
- @article{Hlsemann2019QuantificationOPA,
25
- title = {Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling},
26
- author = {Mareike J. H\{\"u\}lsemann and E. Naumann and B. Rasch},
27
- year = {2019},
28
- abstract = {Phase-amplitude coupling is a promising construct to study cognitive processes in electroencephalography (EEG) and magnetencephalography (MEG). Due to the novelty of the concept, various measures are used in the literature to calculate phase-amplitude coupling. Here, performance of the three most widely used phase-amplitude coupling measures – phase-locking value (PLV), mean vector length (MVL), and modulation index (MI) – and of the generalized linear modeling cross-frequency coupling (GLM-CFC) method is thoroughly compared with the help of simulated data. We combine advantages of previous reviews and use a realistic data simulation, examine moderators and provide inferential statistics for the comparison of all four indices of phase-amplitude coupling. Our analyses show that all four indices successfully differentiate coupling strength and coupling width when monophasic coupling is present. While the MVL was most sensitive to modulations in coupling strengths and width, only the MI and GLM-CFC can detect biphasic coupling. Coupling values of all four indices were influenced by moderators including data length, signal-to-noise-ratio, and sampling rate when approaching Nyquist frequencies. The MI was most robust against confounding influences of these moderators. Based on our analyses, we recommend the MI for noisy and short data epochs with unknown forms of coupling. For high quality and long data epochs with monophasic coupling and a high signal-to-noise ratio, the use of the MVL is recommended. Ideally, both indices are reported simultaneously for one data set.},
29
- doi = {10.3389/fnins.2019.00573},
30
- pmid = {31275096},
31
- journal = {Frontiers in Neuroscience},
32
- volume = {13},
33
- url = {https://www.ncbi.nlm.nih.gov/pubmed/31275096},
34
- citation_count = {161},
35
- journal_impact_factor = {3.2},
36
- }
37
-
38
- @article{Friston2020GenerativeMLB,
39
- title = {Generative models, linguistic communication and active inference},
40
- author = {Karl J. Friston and Thomas Parr and Y. Yufik and Noor Sajid and E. Holmes},
41
- year = {2020},
42
- abstract = {This paper presents a biologically plausible generative model and inference scheme that is capable of simulating communication between synthetic subjects who talk to each other. Building on active inference formulations of dyadic interactions, we simulate linguistic exchange to explore generative models that support dialogues. These models employ high-order interactions among abstract (discrete) states in deep (hierarchical) models. The sequential nature of language processing mandates generative models with a particular factorial structure-necessary to accommodate the rich combinatorics of language. We illustrate linguistic communication by simulating a synthetic subject who can play the 'Twenty Questions' game. In this game, synthetic subjects take the role of the questioner or answerer, using the same generative model. This simulation setup is used to illustrate some key architectural points and demonstrate that many behavioural and neurophysiological correlates of linguistic communication emerge under variational (marginal) message passing, given the right kind of generative model. For example, we show that theta-gamma coupling is an emergent property of belief updating, when listening to another.},
43
- keywords = {Generative model},
44
- doi = {10.1016/j.neubiorev.2020.07.005},
45
- pmid = {32687883},
46
- journal = {Neuroscience and Biobehavioral Reviews},
47
- volume = {118},
48
- url = {https://api.semanticscholar.org/CorpusId:220603864},
49
- citation_count = {89},
50
- journal_impact_factor = {7.5},
51
- pages = {42 - 64},
52
- }
53
-
54
- @article{Canolty2010TheFRC,
55
- title = {The functional role of cross-frequency coupling},
56
- author = {R. Canolty and R. Knight},
57
- year = {2010},
58
- abstract = {Recent studies suggest that cross-frequency coupling (CFC) might play a functional role in neuronal computation, communication and learning. In particular, the strength of phase-amplitude CFC differs across brain areas in a task-relevant manner, changes quickly in response to sensory, motor and cognitive events, and correlates with performance in learning tasks. Importantly, whereas high-frequency brain activity reflects local domains of cortical processing, low-frequency brain rhythms are dynamically entrained across distributed brain regions by both external sensory input and internal cognitive events. CFC might thus serve as a mechanism to transfer information from large-scale brain networks operating at behavioral timescales to the fast, local cortical processing required for effective computation and synaptic modification, thus integrating functional systems across multiple spatiotemporal scales.},
59
- keywords = {Sensory Processing},
60
- doi = {10.1016/j.tics.2010.09.001},
61
- pmid = {20932795},
62
- journal = {Trends in Cognitive Sciences},
63
- volume = {14},
64
- url = {https://www.sciencedirect.com/science/article/pii/S1364661310002068?dgcid=api_sd_search-api-endpoint},
65
- citation_count = {2015},
66
- journal_impact_factor = {16.7},
67
- pages = {506-515},
68
- }
69
-
70
- @article{Aru2014UntanglingCCD,
71
- title = {Untangling cross-frequency coupling in neuroscience},
72
- author = {Juhan Aru and Jaan Aru and V. Priesemann and M. Wibral and Raul Vicente},
73
- year = {2014},
74
- abstract = {<jats:title>Abstract</jats:title><jats:p>Cross-frequency coupling (CFC) has been proposed to coordinate neural dynamics across spatial and temporal scales. Despite its potential relevance for understanding healthy and pathological brain function, the standard CFC analysis and physiological interpretation come with fundamental problems. For example, apparent CFC can appear because of spectral correlations due to common non-stationarities that may arise in the total absence of interactions between neural frequency components. To provide a road map towards an improved mechanistic understanding of CFC, we organize the available and potential novel statistical/modeling approaches according to their biophysical interpretability. While we do not provide solutions for all the problems described, we provide a list of practical recommendations to avoid common errors and to enhance the interpretability of CFC analysis.</jats:p><jats:sec><jats:title>Highlights</jats:title><jats:p>Fundamental caveats and confounds in the methodology of assessing CFC are discussed.</jats:p><jats:p>Significant CFC can be observed without any underlying physiological coupling.</jats:p><jats:p>Non-stationarity of a time-series leads to spectral correlations interpreted as CFC.</jats:p><jats:p>We offer practical recommendations, which can relieve some of the current confounds.</jats:p><jats:p>Further theoretical and experimental work is needed to ground the CFC analysis.</jats:p></jats:sec>},
75
- keywords = {Interpretability, Relevance, Brain Function},
76
- doi = {10.1016/j.conb.2014.08.002},
77
- pmid = {25212583},
78
- journal = {Current Opinion in Neurobiology},
79
- volume = {31},
80
- url = {https://www.sciencedirect.com/science/article/pii/S0959438814001640?dgcid=api_sd_search-api-endpoint},
81
- citation_count = {575},
82
- journal_impact_factor = {4.8},
83
- pages = {51-61},
84
- }
85
-
86
- @article{Tort2010MeasuringPCE,
87
- title = {Measuring phase-amplitude coupling between neuronal oscillations of different frequencies.},
88
- author = {A. Tort and Robert W. Komorowski and H. Eichenbaum and N. Kopell},
89
- year = {2010},
90
- abstract = {<jats:p> Neuronal oscillations of different frequencies can interact in several ways. There has been particular interest in the modulation of the amplitude of high-frequency oscillations by the phase of low-frequency oscillations, since recent evidence suggests a functional role for this type of cross-frequency coupling (CFC). Phase-amplitude coupling has been reported in continuous electrophysiological signals obtained from the brain at both local and macroscopic levels. In the present work, we present a new measure for assessing phase-amplitude CFC. This measure is defined as an adaptation of the Kullback–Leibler distance—a function that is used to infer the distance between two distributions—and calculates how much an empirical amplitude distribution-like function over phase bins deviates from the uniform distribution. We show that a CFC measure defined this way is well suited for assessing the intensity of phase-amplitude coupling. We also review seven other CFC measures; we show that, by some performance benchmarks, our measure is especially attractive for this task. We also discuss some technical aspects related to the measure, such as the length of the epochs used for these analyses and the utility of surrogate control analyses. Finally, we apply the measure and a related CFC tool to actual hippocampal recordings obtained from freely moving rats and show, for the first time, that the CA3 and CA1 regions present different CFC characteristics. </jats:p>},
91
- keywords = {Instantaneous phase},
92
- doi = {10.1152/jn.00106.2010},
93
- pmid = {20463205},
94
- journal = {Journal of neurophysiology},
95
- volume = {104},
96
- citation_count = {1262},
97
- journal_impact_factor = {2.1},
98
- }
99
-
100
- @inproceedings{PintoOrellana2023StatisticalIFF,
101
- title = {Statistical Inference for Modulation Index in Phase-Amplitude Coupling},
102
- author = {Marco Pinto-Orellana and H. Ombao and Beth A. Lopour},
103
- year = {2023},
104
- abstract = {Phase-amplitude coupling is a phenomenon observed in several neurological processes, where the phase of one signal modulates the amplitude of another signal with a distinct frequency. The modulation index (MI) is a common technique used to quantify this interaction by assessing the Kullback-Leibler divergence between a uniform distribution and the empirical conditional distribution of amplitudes with respect to the phases of the observed signals. The uniform distribution is an ideal representation that is expected to appear under the absence of coupling. However, it does not reflect the statistical properties of coupling values caused by random chance. In this paper, we propose a statistical framework for evaluating the significance of an observed MI value based on a null hypothesis that a MI value can be entirely explained by chance. Significance is obtained by comparing the value with a reference distribution derived under the null hypothesis of independence (i.e., no coupling) between signals. We derived a closed-form distribution of this null model, resulting in a scaled beta distribution. To validate the efficacy of our proposed framework, we conducted comprehensive Monte Carlo simulations, assessing the significance of MI values under various experimental scenarios, including amplitude modulation, trains of spikes, and sequences of high-frequency oscillations. Furthermore, we corroborated the reliability of our model by comparing its statistical significance thresholds with reported values from other research studies conducted under different experimental settings. Our method offers several advantages such as meta-analysis reliability, simplicity and computational efficiency, as it provides p-values and significance levels without resorting to generating surrogate data through sampling procedures.},
105
- url = {https://api.semanticscholar.org/CorpusId:263829747},
106
- }
107
-
108
- @article{Yin2021EstimatingPAI,
109
- title = {Estimating Phase Amplitude Coupling between Neural Oscillations Based on Permutation and Entropy},
110
- author = {Liyong Yin and Fan Tian and R. Hu and Zhaohui Li and F. Yin},
111
- year = {2021},
112
- abstract = {<jats:p>Cross-frequency phase–amplitude coupling (PAC) plays an important role in neuronal oscillations network, reflecting the interaction between the phase of low-frequency oscillation (LFO) and amplitude of the high-frequency oscillations (HFO). Thus, we applied four methods based on permutation analysis to measure PAC, including multiscale permutation mutual information (MPMI), permutation conditional mutual information (PCMI), symbolic joint entropy (SJE), and weighted-permutation mutual information (WPMI). To verify the ability of these four algorithms, a performance test including the effects of coupling strength, signal-to-noise ratios (SNRs), and data length was evaluated by using simulation data. It was shown that the performance of SJE was similar to that of other approaches when measuring PAC strength, but the computational efficiency of SJE was the highest among all these four methods. Moreover, SJE can also accurately identify the PAC frequency range under the interference of spike noise. All in all, the results demonstrate that SJE is better for evaluating PAC between neural oscillations.</jats:p>},
113
- keywords = {Oscillation (cell signaling), Coupling strength, Resampling},
114
- doi = {10.3390/e23081070},
115
- pmid = {34441210},
116
- journal = {Entropy},
117
- volume = {23},
118
- url = {https://api.semanticscholar.org/CorpusId:237322109},
119
- citation_count = {2},
120
- journal_impact_factor = {2.1},
121
- }
122
-
123
- @article{Dvok2014TowardAPJ,
124
- title = {Toward a proper estimation of phase–amplitude coupling in neural oscillations},
125
- author = {Dino Dvoř\{\'a\}k and A. Fenton},
126
- year = {2014},
127
- keywords = {Oscillation (cell signaling)},
128
- doi = {10.1016/j.jneumeth.2014.01.002},
129
- pmid = {24447842},
130
- journal = {Journal of Neuroscience Methods},
131
- volume = {225},
132
- url = {https://www.sciencedirect.com/science/article/pii/S0165027014000132?dgcid=api_sd_search-api-endpoint},
133
- citation_count = {153},
134
- journal_impact_factor = {2.7},
135
- pages = {42-56},
136
- }
137
-
138
- @article{Munia2019TimeFrequencyBPK,
139
- title = {Time-Frequency Based Phase-Amplitude Coupling Measure For Neuronal Oscillations},
140
- author = {T. T. Munia and Selin Aviyente},
141
- year = {2019},
142
- abstract = {<jats:title>Abstract</jats:title><jats:p>Oscillatory activity in the brain has been associated with a wide variety of cognitive processes including decision making, feedback processing, and working memory. The high temporal resolution provided by electroencephalography (EEG) enables the study of variation of oscillatory power and coupling across time. Various forms of neural synchrony across frequency bands have been suggested as the mechanism underlying neural binding. Recently, a considerable amount of work has focused on phase-amplitude coupling (PAC)– a form of cross-frequency coupling where the amplitude of a high frequency signal is modulated by the phase of low frequency oscillations. The existing methods for assessing PAC have some limitations including limited frequency resolution and sensitivity to noise, data length and sampling rate due to the inherent dependence on bandpass filtering. In this paper, we propose a new time-frequency based PAC (t-f PAC) measure that can address these issues. The proposed method relies on a complex time-frequency distribution, known as the Reduced Interference Distribution (RID)-Rihaczek distribution, to estimate both the phase and the envelope of low and high frequency oscillations, respectively. As such, it does not rely on bandpass filtering and possesses some of the desirable properties of time-frequency distributions such as high frequency resolution. The proposed technique is first evaluated for simulated data and then applied to an EEG speeded reaction task dataset. The results illustrate that the proposed time-frequency based PAC is more robust to varying signal parameters and provides a more accurate measure of coupling strength.</jats:p>},
143
- keywords = {SIGNAL (programming language), Envelope (radar), Instantaneous phase},
144
- doi = {10.1038/s41598-019-48870-2},
145
- pmid = {31455811},
146
- journal = {Scientific Reports},
147
- volume = {9},
148
- url = {https://api.semanticscholar.org/CorpusId:201651743},
149
- citation_count = {100},
150
- journal_impact_factor = {3.8},
151
- }
152
-
153
- @article{Sheng2024EffectOPL,
154
- title = {Effect of Phase Clustering Bias on Phase-Amplitude Coupling for Emotional EEG.},
155
- author = {Tingyu Sheng and Qiansheng Feng and Zhiguo Luo and Shaokai Zhao and Minpeng Xu and Dong Ming and Ye Yan and Erwei Yin},
156
- year = {2024},
157
- abstract = {<jats:p>Background: Emotions are thought to be related to distinct patterns of neural oscillations, but the interactions among multi-frequency neural oscillations during different emotional states lack full exploration. Phase-amplitude coupling is a promising tool for understanding the complexity of the neurophysiological system, thereby playing a crucial role in revealing the physiological mechanisms underlying emotional electroencephalogram (EEG). However, the non-sinusoidal characteristics of EEG lead to the non-uniform distribution of phase angles, which could potentially affect the analysis of phase-amplitude coupling. Removing phase clustering bias (PCB) can uniform the distribution of phase angles, but the effect of this approach is unknown on emotional EEG phase-amplitude coupling. This study aims to explore the effect of PCB on cross-frequency phase-amplitude coupling for emotional EEG. Methods: The technique of removing PCB was implemented on a publicly accessible emotional EEG dataset to calculate debiased phase-amplitude coupling. Statistical analysis and classification were conducted to compare the difference in emotional EEG phase-amplitude coupling prior to and post the removal of PCB. Results: Emotional EEG phase-amplitude coupling values are overestimated due to PCB. Removing PCB enhances the difference in coupling strength between fear and happy emotions in the frontal lobe. Comparable emotion recognition performance was achieved with fewer features after removing PCB. Conclusions: These findings suggest that removing PCB enhances the difference in emotional EEG phase-amplitude coupling patterns and generates features that contain more emotional information. Removing PCB may be advantageous for analyzing emotional EEG phase-amplitude coupling and recognizing human emotions.</jats:p>},
158
- doi = {10.31083/j.jin2302033},
159
- pmid = {38419437},
160
- journal = {Journal of integrative neuroscience},
161
- volume = {23},
162
- citation_count = {5},
163
- journal_impact_factor = {2.5},
164
- }
165
-
166
- @article{Scherer2022DirectMIM,
167
- title = {Direct modulation index: A measure of phase amplitude coupling for neurophysiology data},
168
- author = {Maximilian Scherer and Tianlu Wang and R. Guggenberger and L. Milosevic and A. Gharabaghi},
169
- year = {2022},
170
- abstract = {<jats:title>Abstract</jats:title><jats:p>Neural communication across different spatial and temporal scales is a topic of great interest in clinical and basic science. Phase-amplitude coupling (PAC) has attracted particular interest due to its functional role in a wide range of cognitive and motor functions. Here, we introduce a novel measure termed the direct modulation index (dMI). Based on the classical modulation index, dMI provides an estimate of PAC that is bound to an absolute interval between 0 and +1, resistant against noise, and reliable even for small amounts of data. To highlight the properties of this newly-proposed measure, we evaluated dMI by comparing it to the classical modulation index, mean vector length, and phase-locking value using simulated data. We ascertained that dMI provides a more accurate estimate of PAC than the existing methods and that is resilient to varying noise levels and signal lengths. As such, dMI permits a reliable investigation of PAC, which may reveal insights crucial to our understanding of functional brain architecture in key contexts such as behaviour and cognition. A Python toolbox that implements dMI and other measures of PAC is freely available at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/neurophysiological-analysis/FiNN">https://github.com/neurophysiological-analysis/FiNN</jats:ext-link>.</jats:p><jats:sec><jats:title>Highlights</jats:title><jats:list list-type="simple"><jats:list-item><jats:label>-</jats:label><jats:p>Neural coupling measures are sensitive to higher harmonics of the target oscillation.</jats:p></jats:list-item><jats:list-item><jats:label>-</jats:label><jats:p>dMI achieves frequency-specificity by sine-fitting the phase-amplitude histogram.</jats:p></jats:list-item><jats:list-item><jats:label>-</jats:label><jats:p>Increased robustness to noise and signal duration in comparison to other measures.</jats:p></jats:list-item><jats:list-item><jats:label>-</jats:label><jats:p>dMI allows for reliable estimation of phase-amplitude coupling.</jats:p></jats:list-item></jats:list></jats:sec>},
171
- keywords = {Neurophysiology, Modulation (music), Modulation index},
172
- doi = {10.1101/2022.02.07.479380},
173
- pmid = {36579658},
174
- journal = {Human Brain Mapping},
175
- volume = {44},
176
- url = {https://doi.org/10.1002/hbm.26190},
177
- citation_count = {9},
178
- journal_impact_factor = {3.5},
179
- pages = {1862 - 1867},
180
- }
181
-
182
- @article{Bergmann2018PhaseAmplitudeCAN,
183
- title = {Phase-Amplitude Coupling: A General Mechanism for Memory Processing and Synaptic Plasticity?},
184
- author = {T. Bergmann and J. Born},
185
- year = {2018},
186
- abstract = {In this issue of Neuron, Helfrich et al. (2017) demonstrate that phase-amplitude coupling (PAC) between slow oscillations and spindles is crucial for memory consolidation, and shifts in its phase relationship may explain age-related deficits in memory performance. These results also suggest a more general function of PAC in synaptic plasticity.},
187
- doi = {10.1016/j.neuron.2017.12.023},
188
- pmid = {29301097},
189
- journal = {Neuron},
190
- volume = {97},
191
- url = {https://www.sciencedirect.com/science/article/pii/S0896627317311704?dgcid=api_sd_search-api-endpoint},
192
- citation_count = {102},
193
- journal_impact_factor = {14.7},
194
- pages = {10-13},
195
- }
196
-
197
- @article{Cox2020AnalyzingHSO,
198
- title = {Analyzing human sleep EEG: A methodological primer with code implementation.},
199
- author = {Roy Cox and J. Fell},
200
- year = {2020},
201
- keywords = {Sleep},
202
- doi = {10.1016/j.smrv.2020.101353},
203
- pmid = {32736239},
204
- journal = {Sleep medicine reviews},
205
- volume = {54},
206
- citation_count = {53},
207
- journal_impact_factor = {11.2},
208
- }
209
-
210
- @article{Gwon2021AlphaAHP,
211
- title = {Alpha and high gamma phase amplitude coupling during motor imagery and weighted cross-frequency coupling to extract discriminative cross-frequency patterns},
212
- author = {Dae-Cheol Gwon and M. Ahn},
213
- year = {2021},
214
- abstract = {Motor imagery modulates specific neural oscillations like actual movement does. Representatively, suppression of the alpha power (e.g., event-related desynchronization [ERD]) is the typical pattern of motor imagery in the motor cortex. However, in addition to this amplitude-based feature, the coupling across frequencies includes important information about the brain functions and the existence of such complex information has been reported in various invasive studies. Yet, the interaction across multiple frequencies during motor imagery processing is still unclear and has not been widely studied, particularly concerning the non-invasive signals. In this study, we provide empirical evidence of the comodulation between the phase of alpha rhythm and the amplitude of high gamma rhythm during the motor imagery process. We used electroencephalography (EEG) in our investigation during the imagination of left- or right-hand movement recorded from 52 healthy subjects, and quantified the ERD of alpha and phase-amplitude coupling (PAC) which is a relative change of modulation index to the base line period (before the cue). As a result, we found that the coupling between the phase of alpha (8-12 Hz) and the amplitude of high gamma (70-120 Hz) and this PAC decreases during motor imagery and then rebounds to the baseline like alpha ERD (r = 0.29 to 0.42). This correlation between PAC and ERD was particularly stronger in the ipsilateral area. In addition, trials that demonstrated higher alpha power during the ready period (before the cue) showed a larger ERD during motor imagery and similarly, trials with higher modulation index during the ready period yielded a greater decrease in PAC during imagery. In the classification analysis, we found that the effective phase frequency that showed better decoding accuracy in left and right-hand imagery, varied across subjects. Motivated by result, we proposed a weighted cross-frequency coupling (WCFC) method that extracts the maximal discriminative feature by combining band power and CFC. In the evaluation, WCFC with only two electrodes yielded a performance comparable to the conventional algorithm with 64 electrodes in classifying left and right-hand motor imagery. These results indicate that the phase-amplitude frequency plays an important role in motor imagery, and that optimizing this frequency ranges is crucial for extracting information features to decode the motor imagery types.},
215
- keywords = {Motor Imagery, Alpha (finance), Beta Rhythm, Sensorimotor rhythm, Discriminative model},
216
- doi = {10.1016/j.neuroimage.2021.118403},
217
- pmid = {34280525},
218
- journal = {NeuroImage},
219
- volume = {240},
220
- url = {https://api.semanticscholar.org/CorpusId:235917686},
221
- citation_count = {36},
222
- journal_impact_factor = {4.7},
223
- }
224
-
225
- @article{Rakowska2021LongTEQ,
226
- title = {Long term effects of cueing procedural memory reactivation during NREM sleep},
227
- author = {Martyna Rakowska and Mahmoud E. A. Abdellahi and Paulina Bagrowska and Miguel Navarrete and P. Lewis},
228
- year = {2021},
229
- abstract = {Targeted memory reactivation (TMR) has recently emerged as a promising tool to manipulate and study the sleeping brain. Although the technique is developing rapidly, only a few studies have examined how the effects of TMR develop over time. Here, we use a bimanual serial reaction time task (SRTT) to investigate whether the difference between the cued and un-cued sequence of button presses persists long-term. We further explore the relationship between the TMR benefit and sleep spindles, as well as their coupling with slow oscillations. Our behavioural analysis shows better performance for the dominant hand. Importantly, there was a strong effect of TMR, with improved performance on the cued sequence after sleep. Closer examination revealed a significant benefit of TMR at 10 days post-encoding, but not 24 h or 6 weeks post-encoding. Time spent in stage 2, but not stage 3, of NREM sleep predicted cueing benefit. We also found a significant increase in spindle density and SO-spindle coupling during the cue period, when compared to the no-cue period. Together, our results demonstrate that TMR effects evolve over several weeks post-cueing, as well as emphasising the importance of stage 2, spindles and the SO-spindle coupling in procedural memory consolidation.},
230
- keywords = {Cued speech, Serial reaction time, Sleep, Sleep spindle, Procedural memory},
231
- doi = {10.1016/j.neuroimage.2021.118573},
232
- pmid = {34537384},
233
- journal = {Neuroimage},
234
- volume = {244},
235
- url = {https://api.semanticscholar.org/CorpusId:237541152},
236
- citation_count = {32},
237
- journal_impact_factor = {4.7},
238
- }
239
-
240
- @article{Jensen2016DiscriminatingVFR,
241
- title = {Discriminating Valid from Spurious Indices of Phase-Amplitude Coupling},
242
- author = {O. Jensen and E. Spaak and Hyojin Park},
243
- year = {2016},
244
- abstract = {<jats:title>Abstract</jats:title><jats:p>Recently there has been a strong interest in cross-frequency coupling, the interaction between neuronal oscillations in different frequency bands. In particular, measures quantifying the coupling between the phase of slow oscillations and the amplitude of fast oscillations have been applied to a wide range of data recorded from animals and humans. Some of the measures applied to detect phase-amplitude coupling have been criticized for being sensitive to nonsinusoidal properties of the oscillations and thus spuriously indicate the presence of coupling. While such instances of spurious identification of coupling have been observed, in this commentary we give concrete examples illustrating cases when the identification of cross-frequency coupling can be trusted. These examples are based on control analyses and empirical observations rather than signal-processing tools. Finally, we provide concrete advice on how to determine when measures of phase-amplitude coupling can be considered trustworthy.</jats:p>},
245
- keywords = {Spurious relationship, SIGNAL (programming language), Trustworthiness},
246
- doi = {10.1523/eneuro.0334-16.2016},
247
- pmid = {28101528},
248
- journal = {eNeuro},
249
- volume = {3},
250
- url = {https://api.semanticscholar.org/CorpusId:9897413},
251
- citation_count = {72},
252
- journal_impact_factor = {2.7},
253
- }
254
-
255
- @article{Ebrahimvand2025CrossFrequencyCRS,
256
- title = {Cross‐Frequency Couplings Reveal Mice Visual Cortex Selectivity to Grating Orientations},
257
- author = {Zahra Ebrahimvand and M. Daliri},
258
- year = {2025},
259
- abstract = {<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>Oriented grating is usually employed in visual science experiments as a prominent property of neurons in the visual cortices. Previous studies have shown that the study of mouse vision can make a significant contribution to the field of neuroscience research, and also the local field potential (LFP) analysis could contain more information and give us a better view of brain function.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>In this research, cross‐frequency coupling is employed to assess the grating orientation perception in V1 and lateromedial (LM) of 10 mice. The experimental data were collected using chronically implanted multielectrode arrays, involving area V1 recording of five mice and area LM recording of five mice separately, performing a passive visual task. Two criteria known as phase–amplitude coupling (PAC) and amplitude–amplitude coupling (AAC) were exploited to analyze the characteristics of cross‐frequency coupling of LFP signals in the experiment consisting of first‐order and second‐order drifting sinusoidal grating stimuli with different orientations.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>It was found that in area LM the correlation between phase of lower than 8 Hz band signal and amplitude of above 100 Hz band signal can be significantly different for orientations and stimulus conditions simultaneously. In area V1, this difference was observed in amplitude correlation between 12 and 30 Hz and more than 70 Hz subbands.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>In conclusion, PAC and AAC can be proper features in orientation perception detection. Our results suggest that in both areas, the significant role of high‐band and low‐band oscillations of LFPs discloses the reliability of these bands and generally LFP signals in mice visual perception.</jats:p></jats:sec>},
260
- doi = {10.1002/brb3.70360},
261
- journal = {Brain and Behavior},
262
- volume = {15},
263
- url = {https://api.semanticscholar.org/CorpusId:276988304},
264
- journal_impact_factor = {2.6},
265
- }
266
-
267
- @article{Ahn2022TheFIT,
268
- title = {The Functional Interactions between Cortical Regions through Theta-Gamma Coupling during Resting-State and a Visual Working Memory Task},
269
- author = {Ji-Seon Ahn and Jaeseok Heo and Jooyoung Oh and Deokjong Lee and K. Jhung and Jae-Jin Kim and Jin Young Park},
270
- year = {2022},
271
- abstract = {<jats:p>Theta phase-gamma amplitude coupling (TGC) plays an important role in several different cognitive processes. Although spontaneous brain activity at the resting state is crucial in preparing for cognitive performance, the functional role of resting-state TGC remains unclear. To investigate the role of resting-state TGC, electroencephalogram recordings were obtained for 56 healthy volunteers while they were in the resting state, with their eyes closed, and then when they were engaged in a retention interval period in the visual memory task. The TGCs of the two different conditions were calculated and compared. The results indicated that the modulation index of TGC during the retention interval of the visual working memory (VWM) task was not higher than that during the resting state; however, the topographical distribution of TGC during the resting state was negatively correlated with TGC during VWM task at the local level. The topographical distribution of TGC during the resting state was negatively correlated with TGC coordinates’ engagement of brain areas in local and large-scale networks and during task performance at the local level. These findings support the view that TGC reflects information-processing and signal interaction across distant brain areas. These results demonstrate that TGC could explain the efficiency of competing brain networks.</jats:p>},
272
- doi = {10.3390/brainsci12020274},
273
- pmid = {35204038},
274
- journal = {Brain Sciences},
275
- volume = {12},
276
- url = {https://api.semanticscholar.org/CorpusId:246968436},
277
- citation_count = {9},
278
- journal_impact_factor = {2.7},
279
- }
280
-
281
- @article{Voytek2010ShiftsIGV,
282
- title = {Shifts in Gamma Phase–Amplitude Coupling Frequency from Theta to Alpha Over Posterior Cortex During Visual Tasks},
283
- author = {Bradley Voytek and R. Canolty and A. Shestyuk and N. Crone and J. Parvizi and R. Knight},
284
- year = {2010},
285
- abstract = {The phase of ongoing theta (4–8 Hz) and alpha (8–12 Hz) electrophysiological oscillations is coupled to high gamma (80–150 Hz) amplitude, which suggests that low-frequency oscillations modulate local cortical activity. While this phase–amplitude coupling (PAC) has been demonstrated in a variety of tasks and cortical regions, it has not been shown whether task demands differentially affect the regional distribution of the preferred low-frequency coupling to high gamma. To address this issue we investigated multiple-rhythm theta/alpha to high gamma PAC in two subjects with implanted subdural electrocorticographic grids. We show that high gamma amplitude couples to the theta and alpha troughs and demonstrate that, during visual tasks, alpha/high gamma coupling preferentially increases in visual cortical regions. These results suggest that low-frequency phase to high-frequency amplitude coupling is modulated by behavioral task and may reflect a mechanism for selection between communicating neuronal networks.},
286
- keywords = {Alpha (finance), BETA (programming language)},
287
- doi = {10.3389/fnhum.2010.00191},
288
- pmid = {21060716},
289
- journal = {Frontiers in Human Neuroscience},
290
- volume = {4},
291
- url = {https://api.semanticscholar.org/CorpusId:7724159},
292
- citation_count = {417},
293
- journal_impact_factor = {2.4},
294
- }
295
-
296
- @article{Kovach2017TheBAW,
297
- title = {The bispectrum and its relationship to phase-amplitude coupling},
298
- author = {Christopher K. Kovach and H. Oya and H. Kawasaki},
299
- year = {2017},
300
- doi = {10.1016/j.neuroimage.2018.02.033},
301
- journal = {NeuroImage},
302
- url = {https://api.semanticscholar.org/CorpusId:3670544},
303
- journal_impact_factor = {4.7},
304
- volume = {173},
305
- pages = {518-539},
306
- }
307
-
308
- @article{Seymour2017TheDOX,
309
- title = {The Detection of Phase Amplitude Coupling during Sensory Processing},
310
- author = {Robert A. Seymour and Gina Rippon and Klaus Kessler},
311
- year = {2017},
312
- abstract = {<jats:label>1.</jats:label><jats:title>Abstract</jats:title><jats:p>There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13Hz) and gamma-band (&gt;40Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localised gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcellation scheme. These V1 responses were analysed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in gamma (40-100Hz) - alpha (7-13Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed.</jats:p>},
313
- keywords = {Toolbox, Local field potential, Sensory Processing, Stimulus (psychology)},
314
- doi = {10.3389/fnins.2017.00487},
315
- pmid = {28919850},
316
- journal = {Frontiers in Neuroscience},
317
- volume = {11},
318
- url = {https://api.semanticscholar.org/CorpusId:19922713},
319
- citation_count = {77},
320
- journal_impact_factor = {3.2},
321
- }
322
-
323
- @article{Li2021MeasuringPCY,
324
- title = {Measuring Phase-Amplitude Coupling Based on the Jensen-Shannon Divergence and Correlation Matrix},
325
- author = {Zhaohui Li and Xiaochen Bai and R. Hu and Xiaoli Li},
326
- year = {2021},
327
- abstract = {Phase-amplitude coupling (PAC) measures the relationship between the phase of low-frequency oscillations (LFO) and the amplitude of high-frequency oscillations (HFO). It plays an important functional role in neural information processing and cognition. Thus, we propose a novel method based on the Jensen-Shannon (JS) divergence and correlation matrix. The method takes the amplitude distributions of the HFO located in the corresponding phase bins of the LFO as multichannel inputs to construct a correlation matrix, where the elements are calculated based on the JS divergence between pairs of amplitude distributions. Then, the omega complexity extracted from the correlation matrix is used to estimate the PAC strength. The simulation results demonstrate that the proposed method can effectively reflect the PAC strength and slightly vary with the data length. Moreover, it outperforms five frequently used algorithms in the performance against additive white Gaussian noise and spike noise and the ability of detecting PAC in wide frequency ranges. To validate our proposed method with real data, it was applied to analyze the local field potential recorded from the dorsomedial striatum in a male Sprague-Dawley rat. It can replicate previous results obtained with other PAC metrics. In conclusion, these results suggest that our proposed method is a powerful tool for measuring the PAC between neural oscillations.},
328
- keywords = {Divergence (linguistics), Matrix (chemical analysis)},
329
- doi = {10.1109/tnsre.2021.3095510},
330
- pmid = {34236967},
331
- journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
332
- volume = {29},
333
- url = {https://api.semanticscholar.org/CorpusId:235776537},
334
- citation_count = {13},
335
- journal_impact_factor = {4.8},
336
- pages = {1375-1385},
337
- }
338
-
339
- @article{Cohen2009OscillatoryAAZ,
340
- title = {Oscillatory Activity and Phase–Amplitude Coupling in the Human Medial Frontal Cortex during Decision Making},
341
- author = {Michael X. Cohen and C. Elger and J. Fell},
342
- year = {2009},
343
- doi = {10.1162/jocn.2008.21020},
344
- journal = {Journal of Cognitive Neuroscience},
345
- url = {https://doi.org/10.1162/jocn.2008.21020},
346
- journal_impact_factor = {3.1},
347
- volume = {21},
348
- pages = {390-402},
349
- }
350
-
351
- @article{Cox2019HeterogeneousPOAA,
352
- title = {Heterogeneous profiles of coupled sleep oscillations in human hippocampus},
353
- author = {Roy Cox and Theodor R\{\"u\}ber and B. Staresina and J. Fell},
354
- year = {2019},
355
- abstract = {<jats:title>Abstract</jats:title><jats:p>Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations.</jats:p>},
356
- keywords = {Sleep spindle, Sleep, K-complex, Neuroscience of sleep},
357
- doi = {10.1016/j.neuroimage.2019.116178},
358
- pmid = {31505272},
359
- journal = {Neuroimage},
360
- volume = {202},
361
- url = {https://api.semanticscholar.org/CorpusId:109858184},
362
- citation_count = {28},
363
- journal_impact_factor = {4.7},
364
- }
365
-
366
- @article{Munia2021MultivariateAOAB,
367
- title = {Multivariate Analysis of Bivariate Phase-Amplitude Coupling in EEG Data Using Tensor Robust PCA},
368
- author = {T. T. Munia and Selin Aviyente},
369
- year = {2021},
370
- abstract = {Cross-frequency coupling is emerging as a crucial mechanism that coordinates the integration of spectrally and spatially distributed neuronal oscillations. Recently, phase-amplitude coupling, a form of cross-frequency coupling, where the phase of a slow oscillation modulates the amplitude of a fast oscillation, has gained attention. Existing phase-amplitude coupling measures are mostly confined to either coupling within a region or between pairs of brain regions. Given the availability of multi-channel electroencephalography recordings, a multivariate analysis of phase amplitude coupling is needed to accurately quantify the coupling across multiple frequencies and brain regions. In the present work, we propose a tensor based approach, i.e., higher order robust principal component analysis, to identify response-evoked phase-amplitude coupling across multiple frequency bands and brain regions. Our experiments on both simulated and electroencephalography data demonstrate that the proposed multivariate phase-amplitude coupling method can capture the spatial and spectral dynamics of phase-amplitude coupling more accurately compared to existing methods. Accordingly, we posit that the proposed higher order robust principal component analysis based approach filters out the background phase-amplitude coupling activity and predominantly captures the event-related phase-amplitude coupling dynamics to provide insight into the spatially distributed brain networks across different frequency bands.},
371
- keywords = {Oscillation (cell signaling)},
372
- doi = {10.1109/tnsre.2021.3092890},
373
- pmid = {34181545},
374
- journal = {IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society},
375
- volume = {29},
376
- url = {https://api.semanticscholar.org/CorpusId:235675330},
377
- citation_count = {9},
378
- pages = {1268 - 1279},
379
- }
380
-
381
- @article{Meij2012PhaseAmplitudeCIAC,
382
- title = {Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse},
383
- author = {Roemer van der Meij and M. Kahana and E. Maris},
384
- year = {2012},
385
- abstract = {<jats:p>Spatially distributed phase-amplitude coupling (PAC) is a possible mechanism for selectively routing information through neuronal networks. If so, two key properties determine its selectivity and flexibility, phase diversity over space, and frequency diversity. To investigate these issues, we analyzed 42 human electrocorticographic recordings from 27 patients performing a working memory task. We demonstrate that (1) spatially distributed PAC occurred at distances &gt;10 cm, (2) involved diverse preferred coupling phases, and (3) involved diverse frequencies. Using a novel technique [<jats:italic>N</jats:italic>-way decomposition based on the PARAFAC (for Parallel Factor analysis) model], we demonstrate that (4) these diverse phases originated mainly from the phase-providing oscillations. With these properties, PAC can be the backbone of a mechanism that is able to separate spatially distributed networks operating in parallel.</jats:p>},
386
- keywords = {Electrocorticography},
387
- doi = {10.1523/jneurosci.4816-11.2012},
388
- pmid = {22219274},
389
- journal = {The Journal of Neuroscience},
390
- volume = {32},
391
- url = {https://doi.org/10.1523/JNEUROSCI.4816-11.2012},
392
- citation_count = {132},
393
- pages = {111 - 123},
394
- }
395
-
396
- @article{RojasLbano2014TheOBAD,
397
- title = {The olfactory bulb theta rhythm follows all frequencies of diaphragmatic respiration in the freely behaving rat},
398
- author = {Daniel Rojas-L\{\'i\}bano and Donald E. Frederick and J. Ega\{\ n\}a and L. Kay},
399
- year = {2014},
400
- abstract = {Sensory-motor relationships are part of the normal operation of sensory systems. Sensing occurs in the context of active sensor movement, which in turn influences sensory processing. We address such a process in the rat olfactory system. Through recordings of the diaphragm electromyogram (EMG), we monitored the motor output of the respiratory circuit involved in sniffing behavior, simultaneously with the local field potential (LFP) of the olfactory bulb (OB) in rats moving freely in a familiar environment, where they display a wide range of respiratory frequencies. We show that the OB LFP represents the sniff cycle with high reliability at every sniff frequency and can therefore be used to study the neural representation of motor drive in a sensory cortex.},
401
- keywords = {Sniffing, Local field potential, Motor System},
402
- doi = {10.3389/fnbeh.2014.00214},
403
- pmid = {24966821},
404
- journal = {Frontiers in Behavioral Neuroscience},
405
- volume = {8},
406
- url = {https://api.semanticscholar.org/CorpusId:17638335},
407
- citation_count = {118},
408
- journal_impact_factor = {2.6},
409
- }
410
-
411
- @article{Mikutta2019PhaseamplitudeCOAE,
412
- title = {Phase‐amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation},
413
- author = {C. Mikutta and B. Feige and J. Maier and E. Hertenstein and J. Holz and D. Riemann and C. Nissen},
414
- year = {2019},
415
- abstract = {<jats:title>Abstract</jats:title><jats:p>Initially independent lines of research suggest that sleep‐specific brain activity patterns, observed as electroencephalographic slow oscillatory and sleep spindle activity, promote memory consolidation and underlying synaptic refinements. Here, we further tested the emerging concept that specifically the coordinated interplay of slow oscillations and spindle activity (phase‐amplitude coupling) support memory consolidation. Particularly, we associated indices of the interplay between slow oscillatory (0.16–1.25 Hz) and spindle activity (12–16 Hz) during non‐rapid eye movement sleep (strength [modulation index] and phase degree of coupling) in 20 healthy adults with parameters of overnight declarative (word‐list task) and procedural (mirror‐tracing task) memory consolidation. The pattern of results supports the notion that the interplay between oscillations facilitates memory consolidation. The coincidence of the spindle amplitude maximum with the up‐state of the slow oscillation (phase degree) was significantly associated with declarative memory consolidation (<jats:italic>r </jats:italic>= .65, <jats:italic>p </jats:italic>= .013), whereas the overall strength of coupling (modulation index) correlated with procedural memory consolidation (<jats:italic>r </jats:italic>= .45, <jats:italic>p </jats:italic>= .04). Future studies are needed to test for potential causal effects of the observed association between neural oscillations during sleep and memory consolidation, and to elucidate ways of modulating these processes, for instance through non‐invasive brain‐stimulation techniques.</jats:p>},
416
- keywords = {Sleep spindle, Consolidation, Sleep},
417
- doi = {10.1111/jsr.12835},
418
- pmid = {30848042},
419
- journal = {Journal of Sleep Research},
420
- volume = {28},
421
- url = {https://doi.org/10.1111/jsr.12835},
422
- citation_count = {88},
423
- journal_impact_factor = {3.4},
424
- }
425
-
426
- @article{GarcaRosales2020PhaseamplitudeCPAF,
427
- title = {Phase-amplitude coupling profiles differ in frontal and auditory cortices},
428
- author = {Francisco Garc\{\'i\}a-Rosales and Luciana L\{\'o\}pez-Jury and Eugenia Gonz\{\'a\}lez-Palomares and Yuranny Cabral-Calder\{\'i\}n and M. K\{\"o\}ssl and Julio C. Hechavarr\{\'i\}a},
429
- year = {2020},
430
- abstract = {Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1-4 Hz), theta (4-8 Hz), or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase-amplitude coupling (PAC) is one such plausible and well-described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal-auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local-field potentials (LFPs), we show that the amplitude of gamma-band activity couples with the phase of low-frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high-gamma frequencies (1-4/75-100 Hz), whereas in the AC the coupling is strongest in the theta/low-gamma (2-8/25-55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal-auditory cortex network.},
431
- keywords = {Local field potential, Frontal cortex, Sensory Processing, Auditory System},
432
- doi = {10.1101/2020.05.05.078667},
433
- journal = {bioRxiv},
434
- url = {https://api.semanticscholar.org/CorpusId:218571850},
435
- citation_count = {2},
436
- }
437
-
438
- @article{Zhang2017TemporalspatialCOAG,
439
- title = {Temporal-spatial characteristics of phase-amplitude coupling in electrocorticogram for human temporal lobe epilepsy},
440
- author = {Ruihua Zhang and Ye Ren and Chunyan Liu and Na Xu and Xiaoli Li and F. Cong and T. Ristaniemi and Yuping Wang},
441
- year = {2017},
442
- abstract = {Neural activity of the epileptic human brain contains low- and high-frequency oscillations in different frequency bands, some of which have been used as reliable biomarkers of the epileptogenic brain areas. However, the relationship between the low- and high-frequency oscillations in different cortical areas during the period from pre-seizure to post-seizure has not been completely clarified.},
443
- doi = {10.1016/j.clinph.2017.05.020},
444
- pmid = {28755546},
445
- journal = {Clinical Neurophysiology},
446
- volume = {128},
447
- url = {https://www.sciencedirect.com/science/article/pii/S138824571730216X?dgcid=api_sd_search-api-endpoint},
448
- citation_count = {61},
449
- journal_impact_factor = {3.7},
450
- pages = {1707-1718},
451
- }
452
-
453
- @article{Onslow2014ACCAI,
454
- title = {A Canonical Circuit for Generating Phase-Amplitude Coupling},
455
- author = {Angela C. E. Onslow and Matthew W. Jones and R. Bogacz},
456
- year = {2014},
457
- abstract = {'Phase amplitude coupling' (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity--also referred to as 'cross-frequency coupling' or 'nested rhythms'--has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.},
458
- keywords = {Biological neural network},
459
- doi = {10.1371/journal.pone.0102591},
460
- pmid = {25136855},
461
- journal = {PLoS ONE},
462
- volume = {9},
463
- url = {https://api.semanticscholar.org/CorpusId:157901},
464
- citation_count = {83},
465
- journal_impact_factor = {2.9},
466
- }
467
-
468
- @article{Kesebir2019CFCDIAJ,
469
- title = {CFC delta-beta is related with mixed features and response to treatment in bipolar II depression},
470
- author = {S. Kesebir and R. M. Demirer and N. Tarhan},
471
- year = {2019},
472
- abstract = {The aim of this study was to investigate whether differentiation of delta-beta cross frequency coupling (CFC) in bipolar II depressive episode with mixed features and consecutive remission was observed.},
473
- keywords = {Depression, Bipolar II disorder, Valproic Acid},
474
- doi = {10.1016/j.heliyon.2019.e01898},
475
- pmid = {31338449},
476
- journal = {Heliyon},
477
- volume = {5},
478
- url = {https://api.semanticscholar.org/CorpusId:196556378},
479
- citation_count = {12},
480
- journal_impact_factor = {3.4},
481
- }
482
-
483
- @article{Ohki2019TimingOPAK,
484
- title = {Timing of phase‐amplitude coupling is essential for neuronal and functional maturation of audiovisual integration in adolescents},
485
- author = {Takefumi Ohki and T. Matsuda and A. Gunji and Y. Takei and Ryusuke Sakuma and Y. Kaneko and M. Inagaki and T. Hanakawa and Kazuhiro Ueda and M. Fukuda and K. Hiraki},
486
- year = {2019},
487
- abstract = {The ability to integrate audiovisual information matures late in adolescents, but its neuronal mechanism is still unknown. Recent studies showed that phase‐amplitude coupling (PAC) of neuronal oscillations, which is defined as the modulation of high‐frequency amplitude by low‐frequency phase, is associated with audiovisual integration in adults. Thus, we investigated how PAC develops in adolescents and whether it is related to the functional maturation of audiovisual integration. In particular, we focused on the timing of PAC (or the coupling phase), which is defined as the low‐frequency phase with maximum high‐frequency amplitude.},
488
- doi = {10.1002/brb3.1635},
489
- journal = {Brain and Behavior},
490
- url = {https://api.semanticscholar.org/CorpusId:216596437},
491
- journal_impact_factor = {2.6},
492
- volume = {10},
493
- }
494
-
495
- @article{FitzGerald2013CrossfrequencyCWAL,
496
- title = {Cross-frequency coupling within and between the human thalamus and neocortex},
497
- author = {Thomas H. B. FitzGerald and A. Valent\{\'i\}n and R. Selway and M. Richardson},
498
- year = {2013},
499
- abstract = {There is currently growing interest in, and increasing evidence for, cross-frequency interactions between electrical field oscillations in the brains of various organisms. A number of theories have linked such interactions to crucial features of neuronal function and cognition. In mammals, these interactions have mostly been reported in the neocortex and hippocampus, and it remains unexplored whether similar patterns of activity occur in the thalamus, and between the thalamus and neocortex. Here we use data recorded from patients undergoing thalamic deep-brain stimulation for epilepsy to demonstrate the existence and prevalence, across a range of frequencies, of both phase–amplitude (PAC) and amplitude–amplitude coupling (AAC) both within the thalamus and prefrontal cortex (PFC), and between them. These cross-frequency interactions may play an important role in local processing within the thalamus and neocortex, as well as information transfer between them.},
500
- keywords = {Neocortex, Local field potential},
501
- doi = {10.3389/fnhum.2013.00084},
502
- pmid = {23532592},
503
- journal = {Frontiers in Human Neuroscience},
504
- volume = {7},
505
- url = {https://api.semanticscholar.org/CorpusId:14588601},
506
- citation_count = {62},
507
- journal_impact_factor = {2.4},
508
- }
509
-
510
- @article{Zhang2023VariationalPCAM,
511
- title = {Variational Phase-Amplitude Coupling Characterizes Signatures of Anterior Cortex Under Emotional Processing},
512
- author = {Chu Zhang and C. Yeh and Wenbin Shi},
513
- year = {2023},
514
- abstract = {Emotion, an essential aspect in inferring human psychological states, is featured by entangled oscillators operating at multiple frequencies and montages. However, the dynamics of mutual interactions among rhythmic activities in EEGs under various emotional expressions are unclear. To this end, a novel method named variational phase-amplitude coupling is proposed to quantify the rhythmic nesting structure in EEGs under emotional processing. The proposed algorithm lies in variational mode decomposition, featured by its robustness to noise artifacts and its merit in avoiding the mode-mixing problem. This novel method reduces the risk of spurious coupling compared to that with ensemble empirical mode decomposition or iterative filter when evaluated by simulations. An atlas of cross-couplings in EEGs under eight emotional processing is established. Mainly, α activity in the anterior frontal region serves as a critical sign for neutral emotional state, whereas γ amplitude seems to be linked with both positive and negative emotional states. Moreover, for those γ-amplitude-related couplings under neutral emotional state, the frontal lobe is associated with lower phase-given frequencies while the central lobe is attached to higher ones. The γ-amplitude-related coupling in EEGs is a promising biomarker for recognizing mental states. We recommend our method as an effective tool in characterizing the entangled multifrequency rhythms in brain signals for emotion neuromodulation.},
515
- keywords = {Robustness, Spurious relationship},
516
- doi = {10.1109/jbhi.2023.3243275},
517
- pmid = {37022817},
518
- journal = {IEEE Journal of Biomedical and Health Informatics},
519
- volume = {27},
520
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10040734},
521
- citation_count = {20},
522
- journal_impact_factor = {6.7},
523
- pages = {1935-1945},
524
- }
525
-
526
- @article{Sotero2016TopologyCAAN,
527
- title = {Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column},
528
- author = {R. Sotero},
529
- year = {2016},
530
- abstract = {Phase-amplitude coupling (PAC), a type of cross-frequency coupling (CFC) where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important indicator of information transmission in the brain. However, the neurobiological mechanisms underlying its generation remain undetermined. A realistic, yet tractable computational model of the phenomenon is thus needed. Here we propose a neural mass model of a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). The conditional transfer entropies (cTE) from the phases to the amplitudes of the generated oscillations are estimated by means of the conditional mutual information. This approach provides information regarding directionality by distinguishing PAC from APC (amplitude-phase coupling), i.e. the information transfer from amplitudes to phases, and can be used to estimate other types of CFC such as amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). While experiments often only focus on one or two PAC combinations (e.g., theta-gamma or alpha-gamma), we found that a cortical column can simultaneously generate almost all possible PAC combinations, depending on connectivity parameters, time constants, and external inputs. We found that the strength of PAC between two populations was strongly correlated with the strength of the effective connections between them and, on average, did not depend upon the presence or absence of a direct (anatomical) connection. When considering a cortical column circuit as a complex network, we found that neuronal populations making indirect PAC connections had, on average, higher local clustering coefficient, efficiency, and betweenness centrality than populations making direct connections and populations not involved in PAC connections. This suggests that their interactions were more efficient when transmitting information. Since more than 60% of the obtained interactions represented indirect connections, our results highlight the importance of the topology of cortical circuits for the generation on of the PAC phenomenon. Finally, our results demonstrated that indirect PAC interactions can be explained by a cascade of direct CFC and same-frequency band interactions, suggesting that PAC analysis of experimental data should be accompanied by the estimation of other types of frequency interactions for an integrative understanding of the phenomenon.},
531
- doi = {10.1371/journal.pcbi.1005180},
532
- pmid = {27802274},
533
- journal = {PLoS Computational Biology},
534
- volume = {12},
535
- url = {https://api.semanticscholar.org/CorpusId:3626970},
536
- citation_count = {37},
537
- journal_impact_factor = {3.8},
538
- }
539
-
540
- @article{Sotero2015ModelingTGAO,
541
- title = {Modeling the Generation of Phase-Amplitude Coupling in Cortical Circuits: From Detailed Networks to Neural Mass Models},
542
- author = {R. Sotero},
543
- year = {2015},
544
- abstract = {<jats:p>Phase-amplitude coupling (PAC), the phenomenon where the amplitude of a high frequency oscillation is modulated by the phase of a lower frequency oscillation, is attracting an increasing interest in the neuroscience community due to its potential relevance for understanding healthy and pathological information processing in the brain. PAC is a diverse phenomenon, having been experimentally detected in at least ten combinations of rhythms: delta-theta, delta-alpha, delta-beta, delta-gamma, theta-alpha, theta-beta, theta-gamma, alpha-beta, alpha-gamma, and beta-gamma. However, a complete understanding of the biophysical mechanisms generating this diversity is lacking. Here we review computational models of PAC generation that range from detailed models of neuronal networks, where each cell is described by Hodgkin-Huxley-type equations, to neural mass models (NMMs) where only the average activities of neuronal populations are considered. We argue that NMMs are an appropriate mathematical framework (due to the small number of parameters and variables involved and the richness of the dynamics they can generate) to study the PAC phenomenon.</jats:p>},
545
- keywords = {Oscillation (cell signaling), Alpha (finance), BETA (programming language), Biological neural network},
546
- doi = {10.1155/2015/915606},
547
- pmid = {26539537},
548
- journal = {BioMed Research International},
549
- volume = {2015},
550
- url = {https://api.semanticscholar.org/CorpusId:2399970},
551
- citation_count = {25},
552
- journal_impact_factor = {2.6},
553
- }
554
-
555
- @article{Mgevand2018PhaseRIAP,
556
- title = {Phase resetting in human auditory cortex to visual speech},
557
- author = {P. M\{\'e\}gevand and M. Mercier and David M. Groppe and E. Z. Golumbic and N. Mesgarani and M. Beauchamp and C. Schroeder and A. Mehta},
558
- year = {2018},
559
- abstract = {<jats:title>ABSTRACT</jats:title><jats:p>Natural conversation is multisensory: when we can see the speaker’s face, visual speech cues influence our perception of what is being said. The neuronal basis of this phenomenon remains unclear, though there is indication that phase modulation of neuronal oscillations—ongoing excitability fluctuations of neuronal populations in the brain—provides a mechanistic contribution. Investigating this question using naturalistic audiovisual speech with intracranial recordings in humans, we show that neuronal populations in auditory cortex track the temporal dynamics of unisensory visual speech using the phase of their slow oscillations and phase-related modulations in high-frequency activity. Auditory cortex thus builds a representation of the speech stream’s envelope based on visual speech alone, at least in part by resetting the phase of its ongoing oscillations. Phase reset could amplify the representation of the speech stream and organize the information contained in neuronal activity patterns.</jats:p><jats:sec><jats:title>SIGNIFICANCE STATEMENT</jats:title><jats:p>Watching the speaker can facilitate our understanding of what is being said. The mechanisms responsible for this influence of visual cues on the processing of speech remain incompletely understood. We studied those mechanisms by recording the human brain’s electrical activity through electrodes implanted surgically inside the skull. We found that some regions of cerebral cortex that process auditory speech also respond to visual speech even when it is shown as a silent movie without a soundtrack. This response can occur through a reset of the phase of ongoing oscillations, which helps augment the response of auditory cortex to audiovisual speech. Our results contribute to discover the mechanisms by which the brain merges auditory and visual speech into a unitary perception.</jats:p></jats:sec>},
560
- keywords = {Premovement neuronal activity},
561
- doi = {10.1101/405597},
562
- journal = {bioRxiv},
563
- url = {https://api.semanticscholar.org/CorpusId:91810493},
564
- citation_count = {14},
565
- }
566
-
567
- @article{Wang2021CrossregionalPAAQ,
568
- title = {Cross‐regional phase amplitude coupling supports the encoding of episodic memories},
569
- author = {David X. Wang and Kelsey Schmitt and S. Seger and C. Davila and B. Lega},
570
- year = {2021},
571
- abstract = {Phase amplitude coupling (PAC) between theta and gamma oscillations represents a key neurophysiological mechanism that promotes the temporal organization of oscillatory activity. For this reason, PAC has been implicated in item/context integration for episodic processes, including coordinating activity across multiple cortical regions. While data in humans has focused principally on PAC within a single brain region, data in rodents has revealed evidence that the phase of the hippocampal theta oscillation modulates gamma oscillations in the cortex (and vice versa). This pattern, termed cross‐regional PAC (xPAC), has not previously been observed in human subjects engaged in mnemonic processing. We use a unique dataset with intracranial electrodes inserted simultaneously into the hippocampus and seven cortical regions across 40 human subjects to (1) test for the presence of significant cross‐regional PAC (xPAC), (2) to establish that the magnitude of xPAC predicts memory encoding success, (3) to describe specific frequencies within the broad 2–9 Hz theta range that govern hippocampal‐cortical interactions in xPAC, and (4) compare anterior versus posterior hippocampal xPAC patterns. We find that strong functional xPAC occurs principally between the hippocampus and other mesial temporal structures, namely entorhinal and parahippocampal cortices, and that xPAC is overall stronger for posterior hippocampal connections. We also show that our results are not confounded by alternative factors such as inter‐regional phase synchrony, local PAC occurring within cortical regions, or artifactual theta oscillatory waveforms.},
572
- doi = {10.1002/hipo.23309},
573
- journal = {Hippocampus},
574
- url = {https://doi.org/10.1002/hipo.23309},
575
- journal_impact_factor = {2.4},
576
- volume = {31},
577
- pages = {481 - 492},
578
- }
579
-
580
- @article{Radiske2020CrossFrequencyPCAR,
581
- title = {Cross-Frequency Phase-Amplitude Coupling between Hippocampal Theta and Gamma Oscillations during Recall Destabilizes Memory and Renders It Susceptible to Reconsolidation Disruption},
582
- author = {Andressa Radiske and M. C. Gonzalez and Sergio Conde-Ocazionez and J. I. Rossato and C. K\{\"o\}hler and M. Cammarota},
583
- year = {2020},
584
- abstract = {Avoidance memory reactivation at recall triggers theta-gamma hippocampal phase amplitude coupling (hPAC) only when it elicits hippocampus-dependent reconsolidation. However, it is not known whether there is a causal relationship between these phenomena. We found that in adult male Wistar rats, silencing the medial septum during recall did not affect avoidance memory expression or maintenance but abolished hPAC and the amnesia caused by the intrahippocampal administration of reconsolidation blockers, both of which were restored by concomitant theta burst stimulation of the fimbria–fornix pathway. Remarkably, artificial hPAC generated by fimbria–fornix stimulation during recall of a learned avoidance response naturally resistant to hippocampus-dependent reconsolidation made it susceptible to reactivation-dependent amnesia. Our results indicate that hPAC mediates the destabilization required for avoidance memory reconsolidation and suggest that the generation of artificial hPAC at recall overcomes the boundary conditions of this process. SIGNIFICANCE STATEMENT Theta-gamma hippocampal phase-amplitude coupling (hPAC) increases during the induction of hippocampus-dependent avoidance memory reconsolidation. However, whether hPAC plays a causal role in this process remains unknown. Using behavioral, electrophysiological, optogenetic, and biochemical tools in adult male Wistar rats, we demonstrate that reactivation-induced hPAC is necessary for avoidance memory destabilization, and that artificial induction of this patterned activity during recall of reconsolidation-resistant aversive memories renders them liable to the amnesic effect of reconsolidation inhibitors.},
585
- keywords = {Fornix},
586
- doi = {10.1523/jneurosci.0259-20.2020},
587
- pmid = {32661022},
588
- journal = {The Journal of Neuroscience},
589
- volume = {40},
590
- url = {https://doi.org/10.1523/JNEUROSCI.0259-20.2020},
591
- citation_count = {33},
592
- pages = {6398 - 6408},
593
- }
594
-
595
- @article{Mariscal2021EEGPCAS,
596
- title = {EEG Phase-Amplitude Coupling Strength and Phase Preference: Association with Age over the First Three Years after Birth},
597
- author = {Michael G. Mariscal and A. Levin and Laurel J. Gabard-Durnam and Wanze Xie and H. Tager-Flusberg and C. Nelson},
598
- year = {2021},
599
- abstract = {<jats:title>Abstract</jats:title><jats:p>Phase-amplitude coupling (PAC), the coupling of the phase of slower electrophysiological oscillations with the amplitude of faster oscillations, is thought to facilitate dynamic integration of neural activity in the brain. Although the brain undergoes dramatic change and development during the first few years of life, how PAC changes through this developmental period has not been extensively studied. Here, we examined PAC through electroencephalography (EEG) data collected during an awake, eyes-open EEG collection paradigm in 98 children between the ages of three months and three years. We employed non-parametric clustering methods to identify areas of significant PAC across a range of frequency pairs and electrode locations, and examined how PAC strength and phase preference develops in these areas. We found that PAC, primarily between the α-β and γ frequencies, was positively correlated with age from early infancy to early childhood (<jats:italic>p</jats:italic> = 2.035 × 10<jats:sup>−6</jats:sup>). Additionally, we found γ over anterior electrodes coupled with the rising phase of the α-β waveform, while γ over posterior electrodes coupled with the falling phase of the α-β waveform; this regionalized phase preference became more prominent with age. This opposing trend may reflect each region’s specialization toward feedback or feedforward processing, respectively, suggesting opportunities for back translation in future studies.</jats:p>},
600
- keywords = {Association (psychology)},
601
- doi = {10.1523/eneuro.0264-20.2021},
602
- pmid = {34049989},
603
- journal = {eNeuro},
604
- volume = {8},
605
- url = {https://doi.org/10.1523/ENEURO.0264-20.2021},
606
- citation_count = {24},
607
- journal_impact_factor = {2.7},
608
- }
609
-
610
- @article{Ponzi2023ThetagammaPAAT,
611
- title = {Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit},
612
- author = {A. Ponzi and S. Dura-Bernal and M. Migliore},
613
- year = {2023},
614
- abstract = {<jats:p>Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequencies to produce PAC. Here, using a data-driven model of a hippocampal microcircuit, we demonstrate that PAC can naturally emerge from a single feedback mechanism involving an inhibitory and excitatory neuron population, which interplay to generate theta frequency periodic bursts of higher frequency gamma. The model suggests the conditions under which a CA1 microcircuit can operate to elicit theta-gamma PAC, and highlights the modulatory role of OLM and PVBC cells, recurrent connectivity, and short term synaptic plasticity. Surprisingly, the results suggest the experimentally testable prediction that the generation of the slow population oscillation requires the fast one and cannot occur without it.</jats:p>},
615
- keywords = {Oscillation (cell signaling)},
616
- doi = {10.1371/journal.pcbi.1010942},
617
- pmid = {36952558},
618
- journal = {PLOS Computational Biology},
619
- volume = {19},
620
- url = {https://pdfs.semanticscholar.org/8544/7fef2080fa46fe3f62e148f22c02d97631b9.pdf},
621
- citation_count = {18},
622
- journal_impact_factor = {3.8},
623
- }
624
-
625
- @article{Sacks2021PhaseAmplitudeCMAU,
626
- title = {Phase–Amplitude Coupling, Mental Health and Cognition: Implications for Adolescence},
627
- author = {D. Sacks and P. Schwenn and L. McLoughlin and J. Lagopoulos and D. Hermens},
628
- year = {2021},
629
- abstract = {<jats:p>Identifying biomarkers of developing mental disorder is crucial to improving early identification and treatment—a key strategy for reducing the burden of mental disorders. Cross-frequency coupling between two different frequencies of neural oscillations is one such promising measure, believed to reflect synchronization between local and global networks in the brain. Specifically, in adults phase–amplitude coupling (PAC) has been shown to be involved in a range of cognitive processes, including working and long-term memory, attention, language, and fluid intelligence. Evidence suggests that increased PAC mediates both temporary and lasting improvements in working memory elicited by transcranial direct-current stimulation and reductions in depressive symptoms after transcranial magnetic stimulation. Moreover, research has shown that abnormal patterns of PAC are associated with depression and schizophrenia in adults. PAC is believed to be closely related to cortico-cortico white matter (WM) microstructure, which is well established in the literature as a structural mechanism underlying mental health. Some cognitive findings have been replicated in adolescents and abnormal patterns of PAC have also been linked to ADHD in young people. However, currently most research has focused on cross-sectional adult samples. Whereas initial hypotheses suggested that PAC was a state-based measure due to an early focus on cognitive, task-based research, current evidence suggests that PAC has both state-based and stable components. Future longitudinal research focusing on PAC throughout adolescent development could further our understanding of the relationship between mental health and cognition and facilitate the development of new methods for the identification and treatment of youth mental health.</jats:p>},
630
- doi = {10.3389/fnhum.2021.622313},
631
- pmid = {33841115},
632
- journal = {Frontiers in Human Neuroscience},
633
- volume = {15},
634
- url = {https://www.ncbi.nlm.nih.gov/pubmed/33841115},
635
- citation_count = {21},
636
- journal_impact_factor = {2.4},
637
- }
638
-
639
- @article{Duchet2024HowTDAV,
640
- title = {How to design optimal brain stimulation to modulate phase-amplitude coupling?},
641
- author = {Benoit Duchet and R. Bogacz},
642
- year = {2024},
643
- abstract = {<jats:title>Abstract</jats:title><jats:sec><jats:title>Objective</jats:title><jats:p>Phase-amplitude coupling (PAC), the coupling of the amplitude of a faster brain rhythm to the phase of a slower brain rhythm, plays a significant role in brain activity and has been implicated in various neurological disorders. For example, in Parkinson’s disease, PAC between the beta (13–30 Hz) and gamma (50–200 Hz) rhythms in the motor cortex is exaggerated, while in Alzheimer’s disease, PAC between the theta (4-8 Hz) and gamma rhythms is diminished. Modulating PAC (i.e. reducing or enhancing PAC) using brain stimulation could therefore open new therapeutic avenues. However, while it has been previously reported that phase-locked stimulation can increase PAC, it is unclear what the optimal stimulation strategy to modulate PAC might be. Here, we provide a theoretical framework to narrow down the experimental optimisation of stimulation aimed at modulating PAC, which would otherwise rely on trial and error.</jats:p></jats:sec><jats:sec><jats:title>Approach</jats:title><jats:p>We make analytical predictions using a Stuart-Landau model, and confirm these predictions in a more realistic model of coupled neural populations.</jats:p></jats:sec><jats:sec><jats:title>Main results</jats:title><jats:p>Our framework specifies the critical Fourier coefficients of the stimulation waveform which should be tuned to optimally modulate PAC. Depending on the characteristics of the amplitude response curve of the fast population, these components may include the slow frequency, the fast frequency, combinations of these, as well as their harmonics. We also show that the optimal balance of energy between these Fourier components depends on the relative strength of the endogenous slow and fast rhythms, and that the alignment of fast components with the fast rhythm should change throughout the slow cycle. Furthermore, we identify the conditions requiring to phase-lock stimulation to the fast and/or slow rhythms.</jats:p></jats:sec><jats:sec><jats:title>Significance</jats:title><jats:p>Together, our theoretical framework lays the foundation for guiding the development of innovative and more effective brain stimulation aimed at modulating PAC for therapeutic benefit.</jats:p></jats:sec>},
644
- keywords = {Brain stimulation},
645
- doi = {10.1101/2024.02.12.579897},
646
- pmid = {38985096},
647
- journal = {Journal of neural engineering},
648
- volume = {21},
649
- url = {https://doi.org/10.1088/1741-2552%2Fad5b1a},
650
- citation_count = {3},
651
- journal_impact_factor = {3.7},
652
- }
653
-
654
- @article{Roehri2021PhaseAmplitudeCAAW,
655
- title = {Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall},
656
- author = {N. Roehri and Lucie Br\{\'e\}chet and M. Seeber and \{\'A\}. Pascual-Leone and C. Michel},
657
- year = {2021},
658
- abstract = {<jats:title>Abstract</jats:title><jats:p>Episodic autobiographical memory (EAM) is a complex cognitive function that emerges from the coordination of specific and distant brain regions. Specific brain rhythms, namely theta and gamma oscillations and their synchronization, are thought of as putative mechanisms enabling EAM. Yet, the mechanisms of inter-regional interaction in the EAM network remain unclear in humans at the whole brain level. To investigate this, we analyzed EEG recordings of participants instructed to retrieve autobiographical episodes. EEG recordings were projected in the source space, and time-courses of atlas-based brain regions-of-interest (ROIs) were derived. Directed phase synchrony in high theta (7-10 Hz) and gamma (30-80 Hz) bands and high theta-gamma phase-amplitude coupling were computed between each pair of ROIs. Using network-based statistics, a graph-theory method, we found statistically significant networks for each investigated mechanism. In the gamma band, two sub-networks were found, one between the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) and another within the medial frontal areas. In the high theta band, we found a PCC to ventromedial prefrontal cortex (vmPFC) network. In phase-amplitude coupling, we found the high theta phase of the left MTL biasing the gamma amplitude of posterior regions and the vmPFC. Other regions of the temporal lobe and the insula were also phase biasing the vmPFC. These findings suggest that EAM, rather than emerging from a single mechanism at a single frequency, involves precise spatio-temporal signatures mapping on distinct memory processes. We propose that the MTL orchestrates activity in vmPFC and PCC via precise phase-amplitude coupling, with vmPFC and PCC interaction via high theta phase synchrony and gamma synchronization contributing to bind information within the PCC-MTL sub-network or valuate the candidate memory within the medial frontal sub-network.</jats:p>},
659
- doi = {10.1101/2021.09.06.459104},
660
- journal = {Brain Topography},
661
- url = {https://doi.org/10.1007/s10548-022-00890-4},
662
- journal_impact_factor = {2.3},
663
- volume = {35},
664
- pages = {191 - 206},
665
- }
666
-
667
- @article{Zhang2023PhaseamplitudeCOAX,
668
- title = {Phase-amplitude coupling of Go/Nogo task-related neuronal oscillation decreases for humans with insufficient sleep.},
669
- author = {Peng Zhang and Chuancai Sun and Zhongqi Liu and Qianxiang Zhou},
670
- year = {2023},
671
- abstract = {<jats:title>Abstract</jats:title>
672
- <jats:p>Phase-amplitude coupling (PAC) across frequency might be associated with the long-range synchronization of brain networks, facilitating the spatiotemporal integration of multiple cell assemblies for information transmission during inhibitory control. However, sleep problems may affect these cortical information transmissions based on cross-frequency PAC, especially when humans work in environments of social isolation. This study aimed to evaluate changes in the theta–beta/gamma PAC of task-related electroencephalography (EEG) for humans with insufficient sleep. Here, we monitored the EEG signals of 60 healthy volunteers and 18 soldiers in the normal environment, performing a Go/Nogo task. Soldiers also participated in the same test in isolated cabins. These measures demonstrated theta–beta PACs between the frontal and central-parietal, and robust theta–gamma PACs between the frontal and occipital cortex. Unfortunately, these PACs significantly decreased when humans experienced insufficient sleep, which was positively correlated with the behavioral performance of inhibitory control. The evaluation of theta–beta/gamma PAC of Go/Nogo task-related EEG is necessary to help understand the different influences of sleep problems in humans.</jats:p>},
673
- keywords = {Sleep, Beta Rhythm, Delta wave, BETA (programming language), Sleep spindle, Frontal cortex},
674
- doi = {10.1093/sleep/zsad243},
675
- pmid = {37707941},
676
- journal = {Sleep},
677
- volume = {46},
678
- url = {https://www.ncbi.nlm.nih.gov/pubmed/37707941},
679
- citation_count = {4},
680
- journal_impact_factor = {5.3},
681
- }
682
-
683
- @article{Liu2022PhaseAmplitudeCBAY,
684
- title = {Phase-Amplitude Coupling Brain Networks in Children with Attention-Deficit/Hyperactivity Disorder},
685
- author = {Xingping Liu and Ling Sun and Dujuan Zhang and Shanshan Wang and Shengjing Hu and Bei Fang and Guoli Yan and Guanghong Sui and Qiangwei Huang and Suogang Wang},
686
- year = {2022},
687
- abstract = {<jats:p> In cognitive neuroscience, there is an increasing interest in identifying and understanding the synchronization of distinct neural oscillations with different frequencies that might support dynamic communication within the brain. This study explored the cross-frequency phase-amplitude coupling brain network characteristics of resting-state electroencephalograms between 30 children with attention-deficit/hyperactivity disorder (ADHD) and 30 age-matched typically developing children. Compared with control group, children with ADHD show increased coupling intensity and altered distribution patterns of dominant paired channels, especially in the δ-γ<jats:sub>H</jats:sub>, θ-γ<jats:sub>H</jats:sub>, α-γ<jats:sub>H</jats:sub>, β<jats:sub>L</jats:sub>-γ<jats:sub>H</jats:sub>, and β<jats:sub>H</jats:sub>-γ<jats:sub>H</jats:sub> coupling networks. Regarding graph theory properties, the characteristic path length, the mean clustering coefficient, the global efficiency, and the mean local efficiency significant difference in many cross-frequency coupling networks, especially in the δ-γ<jats:sub>H</jats:sub>, θ-γ<jats:sub>H</jats:sub>, α-γ<jats:sub>H</jats:sub>, β<jats:sub>L</jats:sub>-γ<jats:sub>H</jats:sub>, and β<jats:sub>H</jats:sub>-γ<jats:sub>H</jats:sub> coupling networks. The area under the receiver operating characteristic curve (AUC) in low-frequency coupling with a high-gamma frequency was larger than that in coupling with low-gamma frequency (AUC values of δ-γ<jats:sub>L</jats:sub>, θ-γ<jats:sub>L</jats:sub>, α-γ<jats:sub>L</jats:sub>, β<jats:sub>L</jats:sub>-γ<jats:sub>L</jats:sub>, β<jats:sub>H</jats:sub>-γ<jats:sub>L</jats:sub>, δ-γ<jats:sub>H</jats:sub>, θ-γ<jats:sub>H</jats:sub>, α-γ<jats:sub>H</jats:sub>, β<jats:sub>L</jats:sub>-γ<jats:sub>H</jats:sub>, and β<jats:sub>H</jats:sub>-γ<jats:sub>H</jats:sub> were 0.794, 0.722, 0.666, 0.570, 0.881, 0.992, 0.998, 0.998, 0.989, and 0.974, respectively). These findings demonstrate altered coupling intensity and disrupted topological organization of coupling networks, support the altered brain network theory in children with ADHD. The coupling intensity and graph theory properties of low-frequency coupling with high-gamma frequency were promising resting-state electroencephalogram biomarkers of ADHD in children. </jats:p>},
688
- keywords = {Intensity, Clustering coefficient},
689
- doi = {10.1177/15500594221086195},
690
- pmid = {35257602},
691
- journal = {Clinical EEG and Neuroscience},
692
- volume = {53},
693
- url = {https://doi.org/10.1177/15500594221086195},
694
- citation_count = {10},
695
- journal_impact_factor = {1.6},
696
- pages = {399 - 405},
697
- }
698
-
699
- @article{Thompson2014PhaseamplitudeCAAZ,
700
- title = {Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI},
701
- author = {G. Thompson and W. Pan and J. Billings and J. Grooms and S. Shakil and D. Jaeger and S. Keilholz},
702
- year = {2014},
703
- abstract = {Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine. Signal phases were calculated from low-frequency LFP and compared to signal amplitudes from high-frequency LFP to determine if modulation existed between the two frequency bands (phase-amplitude coupling). Isoflurane showed significant, consistent phase-amplitude coupling at nearly all pairs of frequencies, likely due to the burst-suppression pattern of activity that it induces. However, no consistent phase-amplitude coupling was observed in rats that were anesthetized with dexmedetomidine. fMRI-LFP correlations under isoflurane using high frequency LFP were reduced when the low frequency LFP's influence was accounted for, but not vice-versa, or in any condition under dexmedetomidine. The lack of consistent phase-amplitude coupling under dexmedetomidine and lack of shared variance between high frequency and low frequency LFP as it relates to fMRI suggests that high and low frequency neural electrical signals may contribute differently, possibly even independently, to resting state fMRI. This finding suggests that researchers take care in interpreting the neural basis of resting state fMRI, as multiple dynamic factors in the underlying electrophysiology could be driving any particular observation.},
704
- doi = {10.3389/fnint.2014.00041},
705
- pmid = {24904325},
706
- journal = {Frontiers in Integrative Neuroscience},
707
- volume = {8},
708
- url = {https://api.semanticscholar.org/CorpusId:1195192},
709
- journal_impact_factor = {2.6},
710
- }
711
-
712
- @article{Wang2021EEGPCBA,
713
- title = {EEG phase-amplitude coupling to stratify encephalopathy severity in the developing brain},
714
- author = {Xinlong Wang and H. Liu and Srinivas Kota and Yudhajit Das and Yulun Liu and Rong Zhang and L. Chalak},
715
- year = {2021},
716
- abstract = {Neonatal hypoxic ischemic encephalopathy (HIE) is difficult to classify within the narrow therapeutic window of hypothermia. Neurophysiological biomarkers are needed for timely differentiation of encephalopathy severity within the short therapeutic window for initiation of hypothermia therapy.},
717
- keywords = {Hypoxic-Ischemic Encephalopathy, Neurophysiology, Therapeutic window},
718
- doi = {10.1016/j.cmpb.2021.106593},
719
- pmid = {34959157},
720
- journal = {Computer methods and programs in biomedicine},
721
- volume = {214},
722
- citation_count = {13},
723
- journal_impact_factor = {4.9},
724
- }
725
-
726
- @article{Jurkiewicz2020AddressingPIBB,
727
- title = {Addressing Pitfalls in Phase-Amplitude Coupling Analysis with an Extended Modulation Index Toolbox},
728
- author = {G. Jurkiewicz and M. Hunt and J. Żygierewicz},
729
- year = {2020},
730
- abstract = {<jats:title>Abstract</jats:title><jats:p>Phase-amplitude coupling (PAC) is proposed to play an essential role in coordinating the processing of information on local and global scales. In recent years, the methods able to reveal trustworthy PAC has gained considerable interest. However, the intrinsic features of some signals can lead to the identification of spurious or waveform-dependent coupling. This prompted us to develop an easily accessible tool that could be used to differentiate spurious from authentic PAC. Here, we propose a new tool for more reliable detection of PAC named the Extended Modulation Index () based on the classical Modulation Index measure of coupling. is suitable both for continuous and epoched data and allows estimation of the statistical significance of each pair of frequencies for phase and for amplitude in the whole comodulogram in the framework of extreme value statistics. We compared with the reference PAC measures—direct PAC estimator (a modification of Mean Vector Length) and standard Modulation Index. All three methods were tested using computer-simulated data and actual local field potential recordings from freely moving rats. All methods exhibited similar properties in terms of sensitivity and specificity of PAC detection. proved to be more selective in the dimension of frequency for phase. One of the novelty’s offered by is a heuristic algorithm for classification of PAC as <jats:italic>Reliable</jats:italic> or <jats:italic>Ambiguous</jats:italic>. It relies on analysis of the relation between the spectral properties of the signal and the detected coupling. Moreover, generates visualizations that support further evaluation of the coupling properties. It also introduces the concept of the polar phase-histogram to study phase relations of coupled slow and fast oscillations. We discuss the extent to which addresses the known problems of interpreting PAC. The Matlab<jats:sup>®</jats:sup> toolbox implementing framework, and the two reference PAC estimators is freely available as EEGLAB plugin at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/GabrielaJurkiewicz/ePAC">https://github.com/GabrielaJurkiewicz/ePAC</jats:ext-link>.</jats:p>},
731
- keywords = {Modulation index, Spurious relationship, Modulation (music)},
732
- doi = {10.1007/s12021-020-09487-3},
733
- pmid = {32845497},
734
- journal = {Neuroinformatics},
735
- volume = {19},
736
- url = {https://doi.org/10.1007/s12021-020-09487-3},
737
- citation_count = {23},
738
- journal_impact_factor = {2.7},
739
- pages = {319 - 345},
740
- }
741
-
742
- @article{Wang2021DecreasedPCBC,
743
- title = {Decreased Phase–Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats},
744
- author = {Zihe Wang and Qi-Lai Cao and Wenwen Bai and Xuyuan Zheng and Tiaotiao Liu},
745
- year = {2021},
746
- abstract = {<jats:p>Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase–amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel <jats:italic>in vivo</jats:italic> recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4–12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70–120 Hz) in the BLA. Compared to the control group, this theta–gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.</jats:p>},
747
- keywords = {Depression, Chronic Stress},
748
- doi = {10.3389/fnbeh.2021.799556},
749
- pmid = {34975430},
750
- journal = {Frontiers in Behavioral Neuroscience},
751
- volume = {15},
752
- url = {https://www.ncbi.nlm.nih.gov/pubmed/34975430},
753
- citation_count = {9},
754
- journal_impact_factor = {2.6},
755
- }
756
-
757
- @article{Huang2021EventRelatedPCBD,
758
- title = {Event-Related Phase-Amplitude Coupling During Working Memory of Musical Chords},
759
- author = {Ting Huang and Hsien-Ming Ding and Y. Tseng},
760
- year = {2021},
761
- abstract = {Phase-amplitude coupling (PAC) is a well-established concept for evaluating the strength of memory coding within brain regions, and has been shown to possess the characteristic of presenting memory mechanisms. It has been demonstrated that oscillations of theta and gamma brain waves can represent the neural coding structure of memory retrieval. However, most previous studies have presented PAC-related memory mechanisms with visual modalities, and little is known about the influence of auditory stimuli. In this study, 18 participants were recruited and 36-channels electroencephalography (EEG) signals were recorded while they were performing an $n$ -back auditory working memory task. There were three experimental conditions with different levels of working memory load. Event-related phase-amplitude coupling (ERPAC) with the advantage of better temporal resolution was used to evaluate the coupling phenomenon from the reconstructed dipole brain sources. We primarily focused on independent components from the frontal and parietal regions, which were reported to be related to memory mechanisms. The results suggest that significant ERPAC was observed in both the frontal and parietal regions. In addition to the coupling between theta (4-7 Hz) and low gamma (30-40 Hz) frequency bands, pronounced high beta oscillations (20-30 Hz) were also observed to be modulated by the phases of theta oscillations. These findings suggest the existence of phase-amplitude coupling in the neocortex during auditory working memory, and provide a highly resolved timeline to evaluate brain dynamics. In addition, the ERPAC results also support the involvement of theta-gamma and theta-beta neural coding mechanisms in cognitive and memory tasks. Collectively, these findings demonstrate the existence of ERPAC within the frontal and parietal regions during an auditory working memory task using complex chords as stimuli, and prompt the use of complex stimuli in studies that are closer to the real-life applications of cognitive evaluations, mental treatments, and brain-computer interfaces.},
762
- doi = {10.1109/access.2021.3097774},
763
- journal = {IEEE Access},
764
- volume = {9},
765
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9488237},
766
- citation_count = {3},
767
- journal_impact_factor = {3.4},
768
- pages = {102649-102662},
769
- }
770
-
771
- @article{Lepage2021MultitaperEOBE,
772
- title = {Multitaper estimates of phase-amplitude coupling},
773
- author = {K. Lepage and C. N. Fleming and M. Witcher and S. Vijayan},
774
- year = {2021},
775
- abstract = {<jats:title>Abstract</jats:title><jats:p>Phase-amplitude coupling (PAC) is the association of the amplitude of a high-frequency oscillation with the phase of a low-frequency oscillation. In neuroscience, this relationship provides a mechanism by which neural activity might be coordinated between distant regions. The dangers and pitfalls of assessing phase-amplitude coupling with existing statistical measures have been well-documented. The limitations of these measures include: (i) response to non-oscillatory, high-frequency, broad-band activity, (ii) response to high-frequency components of the low-frequency oscillation, (iii) adhoc selection of analysis frequency-intervals, and (iv) reliance upon data shuffling to assess statistical significance. In this work, a multitaper phase-amplitude coupling estimator is proposed that addresses issues (i)-(iv) above. Specifically, issue (i) is addressed by replacing the analytic signal envelope estimator computed using the Hilbert transform with a multitaper estimator that down-weights non-sinusoidal activity using a classical, multitaper super-resolution technique. Issue (ii) is addressed by replacing coherence between the low-frequency and high-frequency components in a standard PAC estimator with multitaper partial coherence, while issue (iii) is addressed with a physical argument regarding meaningful neural oscillation. Finally, asymptotic statistical assessment of the multitaper estimator is introduced to address issue (iv).</jats:p>},
776
- keywords = {Multitaper},
777
- doi = {10.1101/2021.03.02.433586},
778
- pmid = {34399415},
779
- journal = {Journal of Neural Engineering},
780
- volume = {18},
781
- url = {https://doi.org/10.1088/1741-2552%2Fac1deb},
782
- citation_count = {3},
783
- journal_impact_factor = {3.7},
784
- }
785
-
786
- @article{Munia2021GrangerCBBF,
787
- title = {Granger Causality Based Directional Phase-Amplitude Coupling Measure},
788
- author = {T. T. Munia and Selin Aviyente},
789
- year = {2021},
790
- abstract = {Phase-amplitude coupling (PAC), which quantifies the coupling between the amplitude of a fast oscillation and the phase of a slow oscillation, is reported as a possible mechanism that controls the flow of information in the brain. Although there is ample evidence suggesting that neural interactions are directional, conventional PAC measures mostly quantify the cross-frequency coupling, failing to provide information on the direction of interactions. In this paper, we introduce a Granger causality (GC) based approach to estimate the direction of PAC. This approach infers the directionality of cross-frequency coupling by computing GC between the instantaneous phase and amplitude components extracted from the signal through a complex time-frequency (t-f) distribution, known as the Reduced Interference Distribution (RID)-Rihaczek. The method is evaluated on both simulated and real electroencephalogram (EEG) signals. The results demonstrate that the proposed GC based directional PAC measure can infer the direction of neural interactions across frequency bands.},
791
- keywords = {SIGNAL (programming language), Oscillation (cell signaling), Causality, Instantaneous phase},
792
- doi = {10.1109/icassp39728.2021.9414004},
793
- journal = {ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
794
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414004},
795
- citation_count = {2},
796
- pages = {1070-1074},
797
- }
798
-
799
- @article{Miao2021SeizureOZBG,
800
- title = {Seizure Onset Zone Identification Based on Phase-Amplitude Coupling of Interictal Electrocorticogram},
801
- author = {Yao Miao and Y. Iimura and H. Sugano and Kosuke Fukumori and Takuhei Shoji and Toshihisa Tanaka},
802
- year = {2021},
803
- abstract = {Presurgical localization from interictal electrocorticogram (ECoG) and resection of seizure onset zone (SOZ) are difficult processes to achieve seizure freedom. Recently, high frequency oscillations (HFOs) have been recognized as reliable biomarkers for epilepsy surgery which has a relation with the phase of low frequency activities in ECoG. Considering the recent valid biomarker for epilepsy surgery, we hypothesize that the approach of coupling between HFOs and low frequency phases differs SOZ from non-seizure onset zone (NSOZ). This study proposes phase-amplitude coupling (PAC) method to identify SOZ by measuring whether the amplitude of HFOs is coupled with a phase at 2-34 Hz in ECoG. Besides, three machine learning models for PAC-based features are designed for SOZ detection. Four patients with focal cortical dysplasia (FCD) are examined to observe efficiency. Experimental results indicate that the mode of coupling is a potential feature to detect SOZ.Clinical relevance- This suggests the PAC feature between low frequency phase and HFO amplitude may be used as a candidate biomarker to detect SOZ.},
804
- keywords = {Electrocorticography, Feature (linguistics)},
805
- doi = {10.1109/embc46164.2021.9630941},
806
- pmid = {34891362},
807
- journal = {2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
808
- volume = {2021},
809
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9630941},
810
- citation_count = {1},
811
- pages = {587-590},
812
- }
813
-
814
- @article{MartnezCancino2020WhatCLBH,
815
- title = {What Can Local Transfer Entropy Tell Us about Phase-Amplitude Coupling in Electrophysiological Signals?},
816
- author = {Ram\{\'o\}n Mart\{\'i\}nez-Cancino and A. Delorme and J. Wagner and K. Kreutz-Delgado and R. Sotero and S. Makeig},
817
- year = {2020},
818
- abstract = {Modulation of the amplitude of high-frequency cortical field activity locked to changes in the phase of a slower brain rhythm is known as phase-amplitude coupling (PAC). The study of this phenomenon has been gaining traction in neuroscience because of several reports on its appearance in normal and pathological brain processes in humans as well as across different mammalian species. This has led to the suggestion that PAC may be an intrinsic brain process that facilitates brain inter-area communication across different spatiotemporal scales. Several methods have been proposed to measure the PAC process, but few of these enable detailed study of its time course. It appears that no studies have reported details of PAC dynamics including its possible directional delay characteristic. Here, we study and characterize the use of a novel information theoretic measure that may address this limitation: local transfer entropy. We use both simulated and actual intracranial electroencephalographic data. In both cases, we observe initial indications that local transfer entropy can be used to detect the onset and offset of modulation process periods revealed by mutual information estimated phase-amplitude coupling (MIPAC). We review our results in the context of current theories about PAC in brain electrical activity, and discuss technical issues that must be addressed to see local transfer entropy more widely applied to PAC analysis. The current work sets the foundations for further use of local transfer entropy for estimating PAC process dynamics, and extends and complements our previous work on using local mutual information to compute PAC (MIPAC).},
819
- keywords = {Local field potential, Information Transfer},
820
- doi = {10.20944/preprints202010.0006.v1},
821
- pmid = {33287030},
822
- journal = {Entropy},
823
- volume = {22},
824
- url = {https://pdfs.semanticscholar.org/2f98/b8624c8505473e95ffbceebaae21a3380ad0.pdf},
825
- citation_count = {14},
826
- journal_impact_factor = {2.1},
827
- }
828
-
829
- @article{Sotero2015GenerationOPBI,
830
- title = {Generation of phase-amplitude coupling of neurophysiological signals in a neural mass model of a cortical column},
831
- author = {R. Sotero},
832
- year = {2015},
833
- abstract = {Phase-amplitude coupling (PAC), the phenomenon where the phase of a low-frequency rhythm modulates the amplitude of a higher frequency, is becoming an important neurophysiological indicator of short- and long-range information transmission in the brain. Although recent evidence suggests that PAC might play a functional role during sensorimotor, and cognitive events, the neurobiological mechanisms underlying its generation remain imprecise. Thus, a realistic but simple enough computational model of the phenomenon is needed. Here we propose a neural mass model of a cortical column, comprising fourteen neuronal populations distributed across four layers (L2/3, L4, L5 and L6). While experimental studies often focus in only one or two PAC combinations (e.g., theta-gamma or alpha-gamma) our simulations show that the cortical column can generate almost all possible couplings of phases and amplitudes, which are influenced by connectivity parameters, time constants, and external inputs. Furthermore, our simulations suggest that the effective connectivity between neuronal populations can result in the emergence of PAC combinations with frequencies different from the natural frequencies of the oscillators involved. For instance, simulations of oscillators with natural frequencies in the theta, alpha and gamma bands, were able to produce significant PAC combinations involving delta and beta bands.},
834
- keywords = {Neurophysiology, Beta Rhythm, Alpha (finance)},
835
- doi = {10.1101/023291},
836
- journal = {bioRxiv},
837
- url = {https://api.semanticscholar.org/CorpusId:14415201},
838
- citation_count = {2},
839
- pages = {023291},
840
- }
841
-
842
- @article{Qin2020PhaseamplitudeCIBJ,
843
- title = {Phase-amplitude coupling in neuronal oscillator networks},
844
- author = {Yuzhen Qin and Tommaso Menara and D. Bassett and F. Pasqualetti},
845
- year = {2020},
846
- abstract = {Phase-amplitude coupling (PAC) describes the phenomenon where the power of a high-frequency oscillation evolves with the phase of a low-frequency one. We propose a model that explains the emergence of PAC in two commonly-accepted architectures in the brain, namely, a high-frequency neural oscillation driven by an external low-frequency input and two interacting local oscillations with distinct, locally-generated frequencies. We further propose an interconnection structure for brain regions and demonstrate that low-frequency phase synchrony can integrate high-frequency activities regulated by local PAC and control the direction of information flow across distant regions.},
847
- doi = {10.1103/PhysRevResearch.3.023218},
848
- journal = {arXiv: Neurons and Cognition},
849
- url = {https://arxiv.org/pdf/2012.04217.pdf},
850
- }
851
-
852
- @article{MartnezCancino2020ComputingPABK,
853
- title = {Computing Phase Amplitude Coupling in EEGLAB: PACTools},
854
- author = {Ram\{\'o\}n Mart\{\'i\}nez-Cancino and A. Delorme and K. Kreutz-Delgado and S. Makeig},
855
- year = {2020},
856
- abstract = {Phase-Amplitude Coupling (PAC) in electrophysiological signals refers to the transient interplay of activities in different frequency ranges, wherein phase in a low-frequency band and amplitude in a high-frequency band are in some way dependent. PAC phenomena have received increasing interest in neuroscience given the growing evidence of their apparent role in both normal and pathological brain processes. This interest has resulted in publication of a wave of methods for PAC estimation, each with its own advantages and drawbacks relative to others. Motivated by the widespread study of this phenomenon, most academic open source software environments for analyzing electrophysiological signals (e.g., Fieldtrip, Brainstorm, MNE) have implemented at least one method of PAC estimation. Here we describe an EEGLAB plug-in release, PACTools for MATLAB (The Mathworks, Inc.), that computes PAC in either continuous or event-related data using any of five methods for PAC estimation: Mean Vector Length Modulation Index, Kullback- Leibler Modulation Index, Phase-Locking Value, General Linear Model Modulation Index and Mutual Information PAC (MIPAC). PACTools uses parallelized code for efficient performance and offers built-in direct access to online high-performance computing resources made freely available for nonprofit research by the Neurosciences Gateway (nsgportal.org). PACTools features intuitive graphic user interfaces and equivalent command line calls that make its use straightforward and seamless in the EEGLAB environment. We discuss toolbox implementation, architecture, dependencies, and the implemented methods of PAC computation and visualization.},
857
- doi = {10.1109/bibe50027.2020.00070},
858
- journal = {2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE)},
859
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9288037},
860
- citation_count = {10},
861
- pages = {387-394},
862
- }
863
-
864
- @article{Tour2017ParametricEOBL,
865
- title = {Parametric estimation of spectrum driven by an exogenous signal},
866
- author = {Tom Dupr\{\'e\} la Tour and Y. Grenier and Alexandre Gramfort},
867
- year = {2017},
868
- abstract = {In this paper, we introduce new parametric generative driven auto-regressive (DAR) models. DAR models provide a nonlinear and non-stationary spectral estimation of a signal, conditionally to another exogenous signal. We detail how inference can be done efficiently while guaranteeing model stability. We show how model comparison and hyper-parameter selection can be done using likelihood estimates. We also point out the limits of DAR models when the exogenous signal contains too high frequencies. Finally, we illustrate how DAR models can be applied on neuro-physiologic signals to characterize phase-amplitude coupling.},
869
- keywords = {SIGNAL (programming language), Parametric model},
870
- doi = {10.1109/icassp.2017.7952968},
871
- journal = {2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
872
- url = {https://api.semanticscholar.org/CorpusId:31776345},
873
- citation_count = {4},
874
- pages = {4301-4305},
875
- }
876
-
877
- @article{Cisotto2020REPACREBM,
878
- title = {REPAC: Reliable Estimation of Phase-Amplitude Coupling in Brain Networks},
879
- author = {Giulia Cisotto},
880
- year = {2020},
881
- abstract = {Recent evidence has revealed cross-frequency coupling and, particularly, phase-amplitude coupling (PAC) as an important strategy for the brain to accomplish a variety of high-level cognitive and sensory functions. However, decoding PAC is still challenging. This contribution presents REPAC, a reliable and robust algorithm for modeling and detecting PAC events in EEG signals. First, we explain the synthesis of PAC-like EEG signals, with special attention to the most critical parameters that characterize PAC, i.e., SNR, modulation index, duration of coupling. Second, REPAC is introduced in detail. We use computer simulations to generate a set of random PAC-like EEG signals and test the performance of REPAC with regard to a baseline method. REPAC is shown to outperform the baseline method even with realistic values of SNR, e.g., −10 dB. They both reach accuracy levels around 99%, but REPAC leads to a significant improvement of sensitivity, from 20.11% to 65.21%, with comparable specificity (around 99%). REPAC is also applied to a real EEG signal showing preliminary encouraging results.},
882
- doi = {10.1109/ICASSP39728.2021.9414749},
883
- journal = {ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
884
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414749},
885
- pages = {1075-1079},
886
- }
887
-
888
- @article{Salimpour2020PhasedependentSFBN,
889
- title = {Phase-dependent Stimulation for Modulating Phase-amplitude Coupling: A Computational Modeling Approach},
890
- author = {Y. Salimpour and A. Nayak and E. Naydanova and Min Jae Kim and Brian Y. Hwang and Kelly A. Mills and P. Kudela and W. Anderson},
891
- year = {2020},
892
- abstract = {Phase-amplitude coupling (PAC), in which the amplitude of a faster neural oscillation couples to the phase of a slower rhythm, is one of the most common representations of complex neuronal rhythmic activities. In a healthy brain, PAC accompanies cognitive function, and abnormal patterns of PAC have been linked to several neurological disorders. Among the various brain neuromodulation techniques, phase-dependent stimulation has a strong potential to modulate PAC levels. In this study, we utilize a computational model in the NEURON environment based on a detailed mathematical model of neuronal populations, consisting of networks with both excitatory and inhibitory neurons, to simulate PAC generation. The model was then used to investigate the modulatory effects of phase-dependent stimulation on the generated PAC. Simulated data from the model shows that stimulation locked to the phase of slower rhythms increased PAC level during stimulation. These results demonstrate the capacity of phase-dependent stimulation to modulate PAC, which could allow for applications in the treatment of neurological disorders associated with abnormal PAC, such as Parkinson's disease.Clinical Relevance— Analyzing the origins of neuronal PAC and developing a brain stimulation technique for modulating the level of PAC can facilitate the development of novel treatment methods for neurological disorders associated with abnormal cross-frequency coupling.},
893
- keywords = {Neuromodulation, Brain stimulation},
894
- doi = {10.1109/embc44109.2020.9175966},
895
- pmid = {33018779},
896
- journal = {2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
897
- volume = {2020},
898
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9175966},
899
- citation_count = {4},
900
- pages = {3590-3593},
901
- }
902
-
903
- @article{Zandvoort2020UnderstandingPCBO,
904
- title = {Understanding phase-amplitude coupling from bispectral analysis},
905
- author = {Coen S. Zandvoort and G. Nolte},
906
- year = {2020},
907
- abstract = {<jats:title>Abstract</jats:title><jats:p>Two measures of cross-frequency coupling (CFC) are Phase-Amplitude Coupling (PAC) and bicoherence. The estimation of PAC with meaningful bandwidth for the high frequency amplitude is crucial in order to avoid misinterpretations. While recommendations on the bandwidth of PAC’s amplitude component exist, there is no consensus yet. Here, we show that the earlier recommendations on filter settings lead to estimates which are smeared in the frequency domain, which makes it difficult to distinguish higher harmonics from other types of CFC. We also show that smearing can be avoided with a different choice of filter settings by theoretically relating PAC to bicoherence. To illustrate this, PAC estimates of simulations and empirical data are compared to bispectral analyses. We used simulations replicated from an earlier study and empirical data from human electro-encephalography and rat local field potentials. PAC’s amplitude component was estimated using a bandwidth with a ratio of (1) 2:1, (2) 1:1, or (3) 0.5:1 relative to the frequency of the phase component. For both simulated and empirical data, PAC was smeared over a broad frequency range and not present when the estimates comprised a 2:1- and 0.5:1-ratio, respectively. In contrast, the 1:1-ratio accurately avoids smearing and results in clear signals of CFC. Bicoherence estimates, which do not smear across frequencies by construction, were found to be essentially identical to PAC calculated with the recommended frequency setting.</jats:p>},
908
- keywords = {Bicoherence, Component (thermodynamics)},
909
- doi = {10.1101/2020.03.20.000745},
910
- journal = {bioRxiv},
911
- url = {https://doi.org/10.1101/2020.03.20.000745},
912
- citation_count = {5},
913
- }
914
-
915
- @article{Hawasli2016InfluenceOWBP,
916
- title = {Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations},
917
- author = {Ammar H. Hawasli and DoHyun Kim and N. M. Ledbetter and S. Dahiya and D. Barbour and E. Leuthardt},
918
- year = {2016},
919
- abstract = {Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain.},
920
- keywords = {Gray (unit), Human brain},
921
- doi = {10.3389/fnhum.2016.00330},
922
- pmid = {27445767},
923
- journal = {Frontiers in Human Neuroscience},
924
- volume = {10},
925
- url = {https://api.semanticscholar.org/CorpusId:11725868},
926
- citation_count = {13},
927
- journal_impact_factor = {2.4},
928
- }
929
-
930
- @article{Marimpis2021DyconnmapDCBQ,
931
- title = {Dyconnmap: Dynamic connectome mapping—A neuroimaging python module},
932
- author = {Avraam D. Marimpis and S. Dimitriadis and R. Goebel},
933
- year = {2021},
934
- abstract = {<jats:title>Abstract</jats:title><jats:p>Despite recent progress in the analysis of neuroimaging data sets, our comprehension of the main mechanisms and principles which govern human brain cognition and function remains incomplete. Network neuroscience makes substantial efforts to manipulate these challenges and provide real answers. For the last decade, researchers have been modelling brain structure and function via a graph or network that comprises brain regions that are either anatomically connected via tracts or functionally via a more extensive repertoire of functional associations. Network neuroscience is a relatively new multidisciplinary scientific avenue of the study of complex systems by pursuing novel ways to analyze, map, store and model the essential elements and their interactions in complex neurobiological systems, particularly the human brain, the most complex system in nature. Due to a rapid expansion of neuroimaging data sets' size and complexity, it is essential to propose and adopt new empirical tools to track dynamic patterns between neurons and brain areas and create comprehensive maps. In recent years, there is a rapid growth of scientific interest in moving functional neuroimaging analysis beyond simplified group or time‐averaged approaches and sophisticated algorithms that can capture the time‐varying properties of functional connectivity. We describe algorithms and network metrics that can capture the dynamic evolution of functional connectivity under this perspective. We adopt the word ‘chronnectome’ (integration of the Greek word ‘Chronos’, which means time, and connectome) to describe this specific branch of network neuroscience that explores how mutually informed brain activity correlates across time and brain space in a functional way. We also describe how good temporal mining of temporally evolved dynamic functional networks could give rise to the detection of specific brain states over which our brain evolved. This characteristic supports our complex human mind. The temporal evolution of these brain states and well‐known network metrics could give rise to new analytic trends. Functional brain networks could also increase the multi‐faced nature of the dynamic networks revealing complementary information. Finally, we describe a python module (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://github.com/makism/dyconnmap">https://github.com/makism/dyconnmap</jats:ext-link>) which accompanies this article and contains a collection of dynamic complex network analytics and measures and demonstrates its great promise for the study of a healthy subject's repeated fMRI scans.</jats:p>},
935
- keywords = {Human Connectome Project, Connectomics, Python, Systems neuroscience, Dynamic network analysis},
936
- doi = {10.1002/hbm.25589},
937
- pmid = {34250674},
938
- journal = {Human Brain Mapping},
939
- volume = {42},
940
- url = {https://api.semanticscholar.org/CorpusId:235796871},
941
- citation_count = {8},
942
- journal_impact_factor = {3.5},
943
- pages = {4909 - 4939},
944
- }
945
-
946
- @article{Lemkhenter2020BoostingGIBR,
947
- title = {Boosting Generalization in Bio-signal Classification by Learning the Phase-Amplitude Coupling},
948
- author = {Abdelhak Lemkhenter and Paolo Favaro},
949
- year = {2020},
950
- abstract = {Various hand-crafted feature representations of bio-signals rely primarily on the amplitude or power of the signal in specific frequency bands. The phase component is often discarded as it is more sample specific, and thus more sensitive to noise, than the amplitude. However, in general, the phase component also carries information relevant to the underlying biological processes. In fact, in this paper we show the benefits of learning the coupling of both phase and amplitude components of a bio-signal. We do so by introducing a novel self-supervised learning task, which we call phase-swap, that detects if bio-signals have been obtained by merging the amplitude and phase from different sources. We show in our evaluation that neural networks trained on this task generalize better across subjects and recording sessions than their fully supervised counterpart.},
951
- keywords = {Boosting, SIGNAL (programming language), Supervised Learning},
952
- doi = {10.1007/978-3-030-71278-5_6},
953
- journal = {Pattern Recognition},
954
- url = {https://api.semanticscholar.org/CorpusId:221739189},
955
- citation_count = {1},
956
- journal_impact_factor = {7.5},
957
- volume = {12544},
958
- pages = {72 - 85},
959
- }
960
-
961
- @article{Peck2022PhaseAmplitudeCIBT,
962
- title = {Phase-Amplitude Coupling in Autism Spectrum Disorder: Results from the Autism Biomarkers Consortium for Clinical Trials},
963
- author = {Fleming C. Peck and A. Naples and S. Webb and Raphael A Bernier and K. Chawarska and Geraldine Dawson and S. Faja and S. Jeste and M. Murias and Charles A. Nelson and F. Shic and Catherine Sugar and D. Şent\{\"u\}rk and J. McPartland and A. Levin and ABC-CT Network},
964
- year = {2022},
965
- abstract = {<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Autism spectrum disorder (ASD) is defined behaviorally, but measures that probe underlying neural mechanisms may provide clues to biomarker discovery and brain-based patient stratification with clinical utility. Phase-amplitude coupling (PAC) has been posited as a measure of the balance between top-down and bottom-up processing in cortex, as well as a marker for sensory processing and predictive coding difficulties in ASD. We evaluate differences in PAC metrics of resting-state brain dynamics between children with and without ASD and relate PAC measures to age and behavioral assessments.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We analyzed electroencephalography data collected by the Autism Biomarkers Consortium for Clinical Trials, including 225 (192 male) ASD and 116 (81 male) typically-developing children aged 6-11 years. We evaluated the strength and phase preference of PAC and the test-retest reliability of PAC across sessions.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>There was significantly increased alpha-gamma and theta-gamma PAC strength in ASD. When considering all participants together, we found significant associations of whole brain theta-gamma PAC strength with measures of social communication (Beta = 0.185; p = 0.006) and repetitive behaviors (Beta = 0.166; p = 0.009) as well as age (Beta = 0.233; p &lt; 0.0001); however, these associations did not persist when considering the ASD group alone. There are also group differences in theta-gamma phase preference.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>This large, rigorously collected sample indicated altered PAC strength and phase bias in ASD. These findings suggest opportunities for back-translation into animal models as well as clinical potential for stratification of brain-based subgroups in ASD.</jats:p></jats:sec>},
966
- keywords = {Sensory Processing},
967
- doi = {10.1101/2022.09.25.22279830},
968
- journal = {medRxiv},
969
- url = {https://doi.org/10.1101/2022.09.25.22279830},
970
- citation_count = {7},
971
- booktitle = {medRxiv},
972
- }
973
-
974
- @article{Perley2022AMIBU,
975
- title = {A Mutual Information Measure of Phase-Amplitude Coupling using High Dimensional Sparse Models},
976
- author = {Andrew S. Perley and Todd P. Coleman},
977
- year = {2022},
978
- abstract = {Cross frequency coupling (CFC) between electrophysiological signals in the brain has been observed and it's abnormalities have been observed in conditions such as Parkinson's disease and epilepsy. More recently, CFC has been observed in stomach-brain electrophysiologic studies and thus becomes an enticing possible target for diseases involving aberrations of the gut-brain axis. However, current methods of detecting coupling do not attempt to capture the underlying statistical relationships that give rise to this coupling. In this paper, we demonstrate a new method of calculating phase amplitude coupling by estimating the mutual information between phase and amplitude, using a flexible parametric modeling approach. Specifically, we develop an exponential generalized linear model (GLM) to model amplitude given phase, using a high dimensional basis of von-Mises function regressors and $\ell_\{1\}$ regularized model selection. Using synthetically generated gut-brain coupled signals, we demonstrate that our method outperforms the existing gold-standard methods for detectable low-levels of phase amplitude coupling through receiver operating characteristic (ROC) curve analysis.},
979
- keywords = {Neurophysiology, Parametric model},
980
- doi = {10.1109/embc48229.2022.9871816},
981
- pmid = {36086427},
982
- journal = {2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
983
- volume = {2022},
984
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871816},
985
- citation_count = {7},
986
- pages = {21-24},
987
- }
988
-
989
- @article{Thengone2016PhaseAmplitudeCIBV,
990
- title = {Phase-Amplitude Coupling in Spontaneous Mouse Behavior},
991
- author = {Daniel T Thengone and K. Gagnidze and D. Pfaff and A. Proekt},
992
- year = {2016},
993
- abstract = {The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many animals is influenced by multiple oscillations occurring at faster—ultradian—time scales. These ultradian oscillations are also thought to be driven by feedback loops. While many studies have focused on identifying such ultradian oscillations, less is known about how the ultradian behavioral oscillations interact with each other and with the circadian oscillation. Decoding the coupling among the various physiological oscillators may be important for understanding how they conspire together to regulate the normal activity levels, as well in disease states in which such rhythmic fluctuations in behavior may be disrupted. Here, we use a wavelet-based cross-frequency analysis to show that different oscillations identified in spontaneous mouse behavior are coupled such that the amplitude of oscillations occurring at higher frequencies are modulated by the phase of the slower oscillations. The patterns of these interactions are different among different individuals. Yet this variability is not random. Differences in the pattern of interactions are confined to a low dimensional subspace where different patterns of interactions form clusters. These clusters expose the differences among individuals—males and females are preferentially segregated into different clusters. These sex-specific features of spontaneous behavior were not apparent in the spectra. Thus, our methodology reveals novel aspects of the structure of spontaneous animal behavior that are not observable using conventional methodology.},
994
- keywords = {Oscillation (cell signaling)},
995
- doi = {10.1371/journal.pone.0162262},
996
- pmid = {27631971},
997
- journal = {PLoS ONE},
998
- volume = {11},
999
- url = {https://api.semanticscholar.org/CorpusId:7675931},
1000
- citation_count = {5},
1001
- journal_impact_factor = {2.9},
1002
- }
1003
-
1004
- @article{Siems2018DissociatedCPBW,
1005
- title = {Dissociated cortical phase- and amplitude-coupling patterns in the human brain},
1006
- author = {M. Siems and M. Siegel},
1007
- year = {2018},
1008
- abstract = {<jats:title>Abstract</jats:title><jats:p>Coupling of neuronal oscillations may reflect and facilitate the communication between neuronal populations. Two primary neuronal coupling modes have been described: phase-coupling and amplitude-coupling. Theoretically, both coupling modes are independent, but so far, their neuronal relationship remains unclear. Here, we combined MEG, source-reconstruction and simulations to systematically compare cortical phase-coupling and amplitude-coupling patterns in the human brain. Importantly, we took into account a critical bias of amplitude-coupling measures due to phase-coupling. We found differences between both coupling modes across a broad frequency range and most of the cortex. Furthermore, by combining empirical measurements and simulations we ruled out that these results were caused by methodological biases, but instead reflected genuine neuronal amplitude coupling. Overall, our results suggest that cortical phase- and amplitude-coupling patterns are non-redundant, which may reflect at least partly distinct neuronal mechanisms. Furthermore, our findings highlight and clarify the compound nature of amplitude coupling measures.</jats:p><jats:sec><jats:title>Highlights</jats:title><jats:list list-type="bullet"><jats:list-item><jats:p>Systematic comparison of cortical phase- and amplitude-coupling patterns</jats:p></jats:list-item><jats:list-item><jats:p>Demonstration of genuine amplitude coupling independent of phase coupling bias</jats:p></jats:list-item><jats:list-item><jats:p>Amplitude- and phase coupling patterns differ across many cortical regions and frequencies</jats:p></jats:list-item></jats:list></jats:sec>},
1009
- doi = {10.1101/485599},
1010
- journal = {bioRxiv},
1011
- url = {https://api.semanticscholar.org/CorpusId:92394688},
1012
- citation_count = {7},
1013
- }
1014
-
1015
-
1016
- % ============================================================
1017
- % Source: seizure_prediction.bib
1018
- % Entries: 75
1019
- % ============================================================
1020
-
1021
- @article{Kuhlmann2018SeizurePA,
1022
- title = {Seizure prediction — ready for a new era},
1023
- author = {L. Kuhlmann and K. Lehnertz and M. Richardson and B. Schelter and H. Zaveri},
1024
- year = {2018},
1025
- doi = {10.1038/s41582-018-0055-2},
1026
- pmid = {30131521},
1027
- journal = {Nature Reviews Neurology},
1028
- volume = {14},
1029
- url = {https://doi.org/10.1038/s41582-018-0055-2},
1030
- citation_count = {393},
1031
- journal_impact_factor = {28.2},
1032
- pages = {618-630},
1033
- }
1034
-
1035
- @article{Natu2022ReviewOEB,
1036
- title = {Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches},
1037
- author = {Milind Natu and M. Bachute and Shilpa Gite and K. Kotecha and Ankit Vidyarthi},
1038
- year = {2022},
1039
- abstract = {<jats:p>Epileptic seizures occur due to brain abnormalities that can indirectly affect patient’s health. It occurs abruptly without any symptoms and thus increases the mortality rate of humans. Almost 1% of world’s population suffers from epileptic seizures. Prediction of seizures before the beginning of onset is beneficial for preventing seizures by medication. Nowadays, modern computational tools, machine learning, and deep learning methods have been used to predict seizures using EEG. However, EEG signals may get corrupted with background noise, and artifacts such as eye blinks and physical movements of muscles may lead to “pops” in the signal, resulting in electrical interference, which is cumbersome to detect through visual inspection for longer duration recordings. These limitations in automatic detection of interictal spikes and epileptic seizures are preferred, which is an essential tool for examining and scrutinizing the EEG recording more precisely. These restrictions bring our attention to present a review of automated schemes that will help neurologists categorize epileptic and nonepileptic signals. While preparing this review paper, it is observed that feature selection and classification are the main challenges in epilepsy prediction algorithms. This paper presents various techniques depending on various features and classifiers over the last few years. The methods presented will give a detailed understanding and ideas about seizure prediction and future research directions.</jats:p>},
1040
- keywords = {Epileptic seizure, Feature (linguistics)},
1041
- doi = {10.1155/2022/7751263},
1042
- pmid = {35096136},
1043
- journal = {Computational and Mathematical Methods in Medicine},
1044
- volume = {2022},
1045
- url = {https://api.semanticscholar.org/CorpusId:246191848},
1046
- citation_count = {74},
1047
- }
1048
-
1049
- @article{Detti2020EEGSAC,
1050
- title = {EEG Synchronization Analysis for Seizure Prediction: A Study on Data of Noninvasive Recordings},
1051
- author = {P. Detti and G. Vatti and Garazi Zabalo Manrique de Lara},
1052
- year = {2020},
1053
- abstract = {<jats:p>Objective: Epilepsy is a neurological disorder arising from anomalies of the electrical activity in the brain, affecting ~65 million individuals worldwide. Prediction methods, typically based on machine learning methods, require a large amount of data for training, in order to correctly classify seizures with small false alarm rates. Methods: In this work, we present a new database containing EEG scalp signals of 14 epileptic patients acquired at the Unit of Neurology and Neurophysiology of the University of Siena, Italy. Furthermore, a patient-specific seizure prediction method, based on the detection of synchronization patterns in the EEG, is proposed and tested on the data of the database. The use of noninvasive EEG data aims to explore the possibility of developing a noninvasive monitoring/control device for the prediction of seizures. The prediction method employs synchronization measures computed over all channel pairs and a computationally inexpensive threshold-based classification approach. Results and conclusions: The experimental analysis, performed by inspection and by the proposed threshold-based classifier on all the patients of the database, shows that the features extracted by the synchronization measures are able to detect preictal and ictal states and allow the prediction of the seizures few minutes before the seizure onsets.</jats:p>},
1054
- keywords = {Epileptic seizure, False alarm, Neurophysiology},
1055
- doi = {10.3390/pr8070846},
1056
- journal = {Processes},
1057
- volume = {8},
1058
- url = {https://api.semanticscholar.org/CorpusId:225557909},
1059
- citation_count = {100},
1060
- journal_impact_factor = {2.8},
1061
- }
1062
-
1063
- @article{Rong2020ArtificialIID,
1064
- title = {Artificial Intelligence in Healthcare: Review and Prediction Case Studies},
1065
- author = {Guoguang Rong and Arnaldo Mendez and E. B. Assi and Bo Zhao and Mohamad Sawan},
1066
- year = {2020},
1067
- keywords = {Biomedicine, Scope (computer science)},
1068
- doi = {10.1016/j.eng.2019.08.015},
1069
- journal = {Engineering},
1070
- volume = {6},
1071
- url = {https://api.semanticscholar.org/CorpusId:212829945},
1072
- citation_count = {455},
1073
- journal_impact_factor = {10.1},
1074
- }
1075
-
1076
- @article{Hussein2022MultiChannelVTE,
1077
- title = {Multi-Channel Vision Transformer for Epileptic Seizure Prediction},
1078
- author = {Ramy Hussein and Soojin Lee and R. Ward},
1079
- year = {2022},
1080
- abstract = {<jats:p>Epilepsy is a neurological disorder that causes recurrent seizures and sometimes loss of awareness. Around 30% of epileptic patients continue to have seizures despite taking anti-seizure medication. The ability to predict the future occurrence of seizures would enable the patients to take precautions against probable injuries and administer timely treatment to abort or control impending seizures. In this study, we introduce a Transformer-based approach called Multi-channel Vision Transformer (MViT) for automated and simultaneous learning of the spatio-temporal-spectral features in multi-channel EEG data. Continuous wavelet transform, a simple yet efficient pre-processing approach, is first used for turning the time-series EEG signals into image-like time-frequency representations named Scalograms. Each scalogram is split into a sequence of fixed-size non-overlapping patches, which are then fed as inputs to the MViT for EEG classification. Extensive experiments on three benchmark EEG datasets demonstrate the superiority of the proposed MViT algorithm over the state-of-the-art seizure prediction methods, achieving an average prediction sensitivity of 99.80% for surface EEG and 90.28–91.15% for invasive EEG data.</jats:p>},
1081
- doi = {10.3390/biomedicines10071551},
1082
- pmid = {35884859},
1083
- journal = {Biomedicines},
1084
- volume = {10},
1085
- url = {https://api.semanticscholar.org/CorpusId:250203545},
1086
- citation_count = {36},
1087
- journal_impact_factor = {3.9},
1088
- }
1089
-
1090
- @article{Assi2017TowardsAPF,
1091
- title = {Towards accurate prediction of epileptic seizures: A review},
1092
- author = {E. B. Assi and D. Nguyen and S. Rihana and M. Sawan},
1093
- year = {2017},
1094
- keywords = {Epileptic seizure},
1095
- doi = {10.1016/j.bspc.2017.02.001},
1096
- journal = {Biomed. Signal Process. Control.},
1097
- volume = {34},
1098
- url = {https://doi.org/10.1016/J.BSPC.2017.02.001},
1099
- citation_count = {202},
1100
- pages = {144-157},
1101
- }
1102
-
1103
- @article{Peng2022SeizurePIG,
1104
- title = {Seizure Prediction in EEG Signals Using STFT and Domain Adaptation},
1105
- author = {Peizhen Peng and Yang Song and Lu Yang and Haikun Wei},
1106
- year = {2022},
1107
- abstract = {<jats:p>Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional approaches commonly collect training and testing samples from the same patient due to inter-individual variability. However, the challenging problem of domain shift between various subjects remains unsolved, resulting in a low conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed to extract the time-frequency features from raw EEG data, and an autoencoder is developed to map these features into high-dimensional space. By minimizing the inter-domain distance in the embedding space, this model learns the domain-invariant information, such that the generalization ability is improved by distribution alignment. Besides, to increase the feasibility of its application, this work mimics the data distribution under the clinical sampling situation and tests the model under this condition, which is the first study that adopts the assessment strategy. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can minimize the domain gap effectively compared with previous approaches.</jats:p>},
1108
- keywords = {Autoencoder},
1109
- doi = {10.3389/fnins.2021.825434},
1110
- pmid = {35115906},
1111
- journal = {Frontiers in Neuroscience},
1112
- volume = {15},
1113
- url = {https://www.ncbi.nlm.nih.gov/pubmed/35115906},
1114
- citation_count = {61},
1115
- journal_impact_factor = {3.2},
1116
- }
1117
-
1118
- @article{Usman2017EpilepticSPH,
1119
- title = {Epileptic Seizures Prediction Using Machine Learning Methods},
1120
- author = {Syed Muhammad Usman and Muhammad Usman and S. Fong},
1121
- year = {2017},
1122
- abstract = {<jats:p>Epileptic seizures occur due to disorder in brain functionality which can affect patient’s health. Prediction of epileptic seizures before the beginning of the onset is quite useful for preventing the seizure by medication. Machine learning techniques and computational methods are used for predicting epileptic seizures from Electroencephalograms (EEG) signals. However, preprocessing of EEG signals for noise removal and features extraction are two major issues that have an adverse effect on both anticipation time and true positive prediction rate. Therefore, we propose a model that provides reliable methods of both preprocessing and feature extraction. Our model predicts epileptic seizures’ sufficient time before the onset of seizure starts and provides a better true positive rate. We have applied empirical mode decomposition (EMD) for preprocessing and have extracted time and frequency domain features for training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes before the onset of the seizure, with a higher true positive rate compared to traditional methods, 92.23%, and maximum anticipation time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects.</jats:p>},
1123
- keywords = {Epileptic seizure, Anticipation (artificial intelligence), Data pre-processing},
1124
- doi = {10.1155/2017/9074759},
1125
- pmid = {29410700},
1126
- journal = {Computational and Mathematical Methods in Medicine},
1127
- volume = {2017},
1128
- url = {https://api.semanticscholar.org/CorpusId:5306369},
1129
- citation_count = {195},
1130
- }
1131
-
1132
- @article{Alotaiby2017EpilepticSPI,
1133
- title = {Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals},
1134
- author = {T. Alotaiby and S. Alshebeili and Faisal M. Alotaibi and Saud R. Alrshoud},
1135
- year = {2017},
1136
- abstract = {<jats:p>This paper presents a patient-specific epileptic seizure predication method relying on the common spatial pattern- (CSP-) based feature extraction of scalp electroencephalogram (sEEG) signals. Multichannel EEG signals are traced and segmented into overlapping segments for both preictal and interictal intervals. The features extracted using CSP are used for training a linear discriminant analysis classifier, which is then employed in the testing phase. A leave-one-out cross-validation strategy is adopted in the experiments. The experimental results for seizure prediction obtained from the records of 24 patients from the CHB-MIT database reveal that the proposed predictor can achieve an average sensitivity of 0.89, an average false prediction rate of 0.39, and an average prediction time of 68.71 minutes using a 120-minute prediction horizon.</jats:p>},
1137
- keywords = {Stereoelectroencephalography, Epileptic seizure},
1138
- doi = {10.1155/2017/1240323},
1139
- pmid = {29225615},
1140
- journal = {Computational Intelligence and Neuroscience},
1141
- volume = {2017},
1142
- url = {https://api.semanticscholar.org/CorpusId:31034268},
1143
- citation_count = {140},
1144
- }
1145
-
1146
- @article{Kapoor2022EpilepticSPJ,
1147
- title = {Epileptic Seizure Prediction Based on Hybrid Seek Optimization Tuned Ensemble Classifier Using EEG Signals},
1148
- author = {Bhaskar Kapoor and Bharti Nagpal and P. Jain and Ajith Abraham and L. Gabralla},
1149
- year = {2022},
1150
- abstract = {<jats:p>Visual analysis of an electroencephalogram (EEG) by medical professionals is highly time-consuming and the information is difficult to process. To overcome these limitations, several automated seizure detection strategies have been introduced by combining signal processing and machine learning. This paper proposes a hybrid optimization-controlled ensemble classifier comprising the AdaBoost classifier, random forest (RF) classifier, and the decision tree (DT) classifier for the automatic analysis of an EEG signal dataset to predict an epileptic seizure. The EEG signal is pre-processed initially to make it suitable for feature selection. The feature selection process receives the alpha, beta, delta, theta, and gamma wave data from the EEG, where the significant features, such as statistical features, wavelet features, and entropy-based features, are extracted by the proposed hybrid seek optimization algorithm. These extracted features are fed forward to the proposed ensemble classifier that produces the predicted output. By the combination of corvid and gregarious search agent characteristics, the proposed hybrid seek optimization technique has been developed, and is used to evaluate the fusion parameters of the ensemble classifier. The suggested technique’s accuracy, sensitivity, and specificity are determined to be 96.6120%, 94.6736%, and 91.3684%, respectively, for the CHB-MIT database. This demonstrates the effectiveness of the suggested technique for early seizure prediction. The accuracy, sensitivity, and specificity of the proposed technique are 95.3090%, 93.1766%, and 90.0654%, respectively, for the Siena Scalp database, again demonstrating its efficacy in the early seizure prediction process.</jats:p>},
1151
- keywords = {AdaBoost, Ensemble Learning},
1152
- doi = {10.3390/s23010423},
1153
- pmid = {36617019},
1154
- journal = {Sensors (Basel, Switzerland)},
1155
- volume = {23},
1156
- url = {https://api.semanticscholar.org/CorpusId:255521270},
1157
- citation_count = {29},
1158
- }
1159
-
1160
- @article{Chu2017PredictingESK,
1161
- title = {Predicting epileptic seizures from scalp EEG based on attractor state analysis},
1162
- author = {Hyunho Chu and C. Chung and Woorim Jeong and Kwang-Hyun Cho},
1163
- year = {2017},
1164
- abstract = {Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction.},
1165
- doi = {10.1016/j.cmpb.2017.03.002},
1166
- pmid = {28391821},
1167
- journal = {Computer methods and programs in biomedicine},
1168
- volume = {143},
1169
- citation_count = {119},
1170
- journal_impact_factor = {4.9},
1171
- }
1172
-
1173
- @article{Aldahr2023PatientSpecificPPL,
1174
- title = {Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning},
1175
- author = {Raghdah Saem Aldahr and Mohammad Ilyas},
1176
- year = {2023},
1177
- abstract = {Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.},
1178
- keywords = {Epileptic seizure},
1179
- doi = {10.20944/preprints202306.2253.v1},
1180
- pmid = {37514873},
1181
- journal = {Sensors (Basel, Switzerland)},
1182
- volume = {23},
1183
- url = {https://api.semanticscholar.org/CorpusId:260151979},
1184
- citation_count = {6},
1185
- }
1186
-
1187
- @article{Talukder2023ComparativeAOM,
1188
- title = {Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse Pre-Processing Techniques and Machine Learning Models},
1189
- author = {Md. Simul Hasan Talukder and R. Sulaiman},
1190
- year = {2023},
1191
- keywords = {Epileptic seizure},
1192
- doi = {10.1109/upcon59197.2023.10434289},
1193
- journal = {2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)},
1194
- url = {https://api.semanticscholar.org/CorpusId:260775937},
1195
- citation_count = {11},
1196
- volume = {10},
1197
- pages = {712-719},
1198
- }
1199
-
1200
- @article{Yuan2024EEGBasedSPN,
1201
- title = {EEG-Based Seizure Prediction Using Hybrid DenseNet-ViT Network with Attention Fusion},
1202
- author = {Shasha Yuan and Kuiting Yan and Shihan Wang and Jin-Xing Liu and Juan Wang},
1203
- year = {2024},
1204
- abstract = {Epilepsy seizure prediction is vital for enhancing the quality of life for individuals with epilepsy. In this study, we introduce a novel hybrid deep learning architecture, merging DenseNet and Vision Transformer (ViT) with an attention fusion layer for seizure prediction. DenseNet captures hierarchical features and ensures efficient parameter usage, while ViT offers self-attention mechanisms and global feature representation. The attention fusion layer effectively amalgamates features from both networks, guaranteeing the most relevant information is harnessed for seizure prediction. The raw EEG signals were preprocessed using the short-time Fourier transform (STFT) to implement time-frequency analysis and convert EEG signals into time-frequency matrices. Then, they were fed into the proposed hybrid DenseNet-ViT network model to achieve end-to-end seizure prediction. The CHB-MIT dataset, including data from 24 patients, was used for evaluation and the leave-one-out cross-validation method was utilized to evaluate the performance of the proposed model. Our results demonstrate superior performance in seizure prediction, exhibiting high accuracy and low redundancy, which suggests that combining DenseNet, ViT, and the attention mechanism can significantly enhance prediction capabilities and facilitate more precise therapeutic interventions.},
1205
- doi = {10.3390/brainsci14080839},
1206
- pmid = {39199530},
1207
- journal = {Brain Sciences},
1208
- volume = {14},
1209
- url = {https://api.semanticscholar.org/CorpusId:272133091},
1210
- journal_impact_factor = {2.7},
1211
- }
1212
-
1213
- @article{Ji2023AnEFO,
1214
- title = {An effective fusion model for seizure prediction: GAMRNN},
1215
- author = {Hong Ji and Ting Xu and Tao Xue and Tao Xu and Zhiqiang Yan and Yonghong Liu and Badong Chen and Wen Jiang},
1216
- year = {2023},
1217
- abstract = {<jats:p>The early prediction of epileptic seizures holds paramount significance in patient care and medical research. Extracting useful spatial-temporal features to facilitate seizure prediction represents a primary challenge in this field. This study proposes GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit (GRU) model with a convolutional attention module. GAMRNN aims to capture intricate spatial-temporal characteristics by highlighting informative feature channels and spatial pattern dynamics. We employ the Lion optimization algorithm to enhance the model's generalization capability and predictive accuracy. Our evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates its effectiveness in seizure prediction. The results include an impressive average classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable performance improvements compared to similar prediction models.</jats:p>},
1218
- keywords = {Epileptic seizure, Feature (linguistics)},
1219
- doi = {10.3389/fnins.2023.1246995},
1220
- pmid = {37674519},
1221
- journal = {Frontiers in Neuroscience},
1222
- volume = {17},
1223
- url = {https://api.semanticscholar.org/CorpusId:261084333},
1224
- citation_count = {5},
1225
- journal_impact_factor = {3.2},
1226
- }
1227
-
1228
- @article{Pinto2021APAP,
1229
- title = {A personalized and evolutionary algorithm for interpretable EEG epilepsy seizure prediction},
1230
- author = {Mauro F. Pinto and A. Leal and F\{\'a\}bio Lopes and A. Dourado and Pedro Martins and C. Teixeira},
1231
- year = {2021},
1232
- abstract = {<jats:title>Abstract</jats:title><jats:p>Seizure prediction may improve the quality of life of patients suffering from drug-resistant epilepsy, which accounts for about 30% of the total epileptic patients. The pre-ictal period determination, characterized by a transitional stage between normal brain activity and seizure, is a critical step. Past approaches failed to attain real-world applicability due to lack of generalization capacity. More recently, deep learning techniques may outperform traditional classifiers and handle time dependencies. However, despite the existing efforts for providing interpretable insights, clinicians may not be willing to make high-stake decisions based on them. Furthermore, a disadvantageous aspect of the more usual seizure prediction pipeline is its modularity and significant independence between stages. An alternative could be the construction of a search algorithm that, while considering pipeline stages’ synergy, fine-tunes the selection of a reduced set of features that are widely used in the literature and computationally efficient. With extracranial recordings from 19 patients suffering from temporal-lobe seizures, we developed a patient-specific evolutionary optimization strategy, aiming to generate the optimal set of features for seizure prediction with a logistic regression classifier, which was tested prospectively in a total of 49 seizures and 710 h of continuous recording and performed above chance for 32% of patients, using a surrogate predictor. These results demonstrate the hypothesis of pre-ictal period identification without the loss of interpretability, which may help understanding brain dynamics leading to seizures and improve prediction algorithms.</jats:p>},
1233
- keywords = {Interpretability},
1234
- doi = {10.1038/s41598-021-82828-7},
1235
- pmid = {33564050},
1236
- journal = {Scientific Reports},
1237
- volume = {11},
1238
- url = {https://api.semanticscholar.org/CorpusId:231869290},
1239
- citation_count = {59},
1240
- journal_impact_factor = {3.8},
1241
- }
1242
-
1243
- @article{DAlessandro2003EpilepticSPQ,
1244
- title = {Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients},
1245
- author = {M. D'Alessandro and R. Esteller and G. Vachtsevanos and A. Hinson and J. Echauz and B. Litt},
1246
- year = {2003},
1247
- abstract = {Epileptic seizure prediction has steadily evolved from its conception in the 1970s, to proof-of-principle experiments in the late 1980s and 1990s, to its current place as an area of vigorous, clinical and laboratory investigation. As a step toward practical implementation of this technology in humans, we present an individualized method for selecting electroencephalogram (EEG) features and electrode locations for seizure prediction focused on precursors that occur within ten minutes of electrographic seizure onset. This method applies an intelligent genetic search process to EEG signals simultaneously collected from multiple intracranial electrode contacts and multiple quantitative features derived from these signals. The algorithm is trained on a series of baseline and preseizure records and then validated on other, previously unseen data using split sample validation techniques. The performance of this method is demonstrated on multiday recordings obtained from four patients implanted with intracranial electrodes during evaluation for epilepsy surgery. An average probability of prediction (or block sensitivity) of 62.5% was achieved in this group, with an average block false positive (FP) rate of 0.2775 FP predictions/h, corresponding to 90.47% specificity. These findings are presented as an example of a method for training, testing and validating a seizure prediction system on data from individual patients. Given the heterogeneity of epilepsy, it is likely that methods of this type will be required to configure intelligent devices for treating epilepsy to each individual's neurophysiology prior to clinical deployment.},
1248
- keywords = {Epileptic seizure, Neurophysiology, Clinical neurophysiology, Feature (linguistics)},
1249
- doi = {10.1109/tbme.2003.810706},
1250
- pmid = {12769436},
1251
- journal = {IEEE Transactions on Biomedical Engineering},
1252
- volume = {50},
1253
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1213858},
1254
- citation_count = {269},
1255
- journal_impact_factor = {4.4},
1256
- pages = {603-615},
1257
- }
1258
-
1259
- @article{Messaoud2021RandomFCR,
1260
- title = {Random Forest classifier for EEG-based seizure prediction},
1261
- author = {R\{\'e\}my Ben Messaoud and Mario Chavez},
1262
- year = {2021},
1263
- abstract = {Epileptic seizure prediction has gained considerable interest in the computational Epilepsy research community. This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods. We compute a probability for a given epoch, of being pre-ictal against interictal using the Random Forest classifier and introduce new concepts to enhance the robustness of the algorithm to false alarms. We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on intracranial EEG recordings.},
1264
- keywords = {Epileptic seizure, Robustness},
1265
- doi = {10.48550/arxiv.2106.04510},
1266
- journal = {ArXiv},
1267
- url = {https://api.semanticscholar.org/CorpusId:235368019},
1268
- citation_count = {7},
1269
- volume = {abs/2106.04510},
1270
- }
1271
-
1272
- @article{Iasemidis2003EpilepticSPS,
1273
- title = {Epileptic seizure prediction and control},
1274
- author = {L. Iasemidis},
1275
- year = {2003},
1276
- abstract = {Epileptic seizures are manifestations of epilepsy, a serious brain dynamical disorder second only to strokes. Of the world's approximately 50 million people with epilepsy, fully 1/3 have seizures that are not controlled by anti-convulsant medication. The field of seizure prediction, in which engineering technologies are used to decode brain signals and search for precursors of impending epileptic seizures, holds great promise to elucidate the dynamical mechanisms underlying the disorder, as well as to enable implantable devices to intervene in time to treat epilepsy. There is currently an explosion of interest in this field in academic centers and medical industry with clinical trials underway to test potential prediction and intervention methodology and devices for Food and Drug Administration (FDA) approval. This invited paper presents an overview of the application of signal processing methodologies based upon the theory of nonlinear dynamics to the problem of seizure prediction. Broader application of these developments to a variety of systems requiring monitoring, forecasting and control is a natural outgrowth of this field.},
1277
- keywords = {Epileptic seizure, Convulsants},
1278
- doi = {10.1109/tbme.2003.810705},
1279
- pmid = {12769431},
1280
- journal = {IEEE Transactions on Biomedical Engineering},
1281
- volume = {50},
1282
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1198245},
1283
- citation_count = {358},
1284
- journal_impact_factor = {4.4},
1285
- pages = {549-558},
1286
- }
1287
-
1288
- @article{Fujiwara2016EpilepticSPT,
1289
- title = {Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features},
1290
- author = {K. Fujiwara and M. Miyajima and T. Yamakawa and Erika Abe and Yoko Suzuki and Yuriko Sawada and M. Kano and T. Maehara and K. Ohta and T. Sasai-Sakuma and T. Sasano and M. Matsuura and E. Matsushima},
1291
- year = {2016},
1292
- abstract = {The present study proposes a new epileptic seizure prediction method through integrating heart rate variability (HRV) analysis and an anomaly monitoring technique.},
1293
- doi = {10.1109/tbme.2015.2512276},
1294
- pmid = {26841385},
1295
- journal = {IEEE Transactions on Biomedical Engineering},
1296
- volume = {63},
1297
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7365453},
1298
- journal_impact_factor = {4.4},
1299
- pages = {1321-1332},
1300
- }
1301
-
1302
- @article{Liu2024EpilepticSPU,
1303
- title = {Epileptic seizure prediction based on EEG using pseudo-three-dimensional CNN},
1304
- author = {Xin Liu and Chunyang Li and Xicheng Lou and Haohuan Kong and Xinwei Li and Zhangyong Li and Lisha Zhong},
1305
- year = {2024},
1306
- abstract = {<jats:p>Epileptic seizures are characterized by their sudden and unpredictable nature, posing significant risks to a patient’s daily life. Accurate and reliable seizure prediction systems can provide alerts before a seizure occurs, as well as give the patient and caregivers provider enough time to take appropriate measure. This study presents an effective seizure prediction method based on deep learning that combine with handcrafted features. The handcrafted features were selected by Max-Relevance and Min-Redundancy (mRMR) to obtain the optimal set of features. To extract the epileptic features from the fused multidimensional structure, we designed a P3D-BiConvLstm3D model, which is a combination of pseudo-3D convolutional neural network (P3DCNN) and bidirectional convolutional long short-term memory 3D (BiConvLstm3D). We also converted EEG signals into a multidimensional structure that fused spatial, manual features, and temporal information. The multidimensional structure is then fed into a P3DCNN to extract spatial and manual features and feature-to-feature dependencies, followed by a BiConvLstm3D input to explore temporal dependencies while preserving the spatial features, and finally, a channel attention mechanism is implemented to emphasize the more representative information in the multichannel output. The proposed has an average accuracy of 98.13%, an average sensitivity of 98.03%, an average precision of 98.30% and an average specificity of 98.23% for the CHB-MIT scalp EEG database. A comparison of the proposed model with other baseline methods was done to confirm the better performance of features through time–space nonlinear feature fusion. The results show that the proposed P3DCNN-BiConvLstm3D-Attention3D method for epilepsy prediction by time–space nonlinear feature fusion is effective.</jats:p>},
1307
- keywords = {Epileptic seizure, Feature (linguistics), Feature vector},
1308
- doi = {10.3389/fninf.2024.1354436},
1309
- pmid = {38566773},
1310
- journal = {Frontiers in Neuroinformatics},
1311
- volume = {18},
1312
- url = {https://api.semanticscholar.org/CorpusId:268587462},
1313
- citation_count = {9},
1314
- journal_impact_factor = {2.5},
1315
- }
1316
-
1317
- @article{Truong2021SeizureSPV,
1318
- title = {Seizure Susceptibility Prediction in Uncontrolled Epilepsy},
1319
- author = {N. D. Truong and Yikai Yang and C. Maher and L. Kuhlmann and A. McEwan and A. Nikpour and O. Kavehei},
1320
- year = {2021},
1321
- abstract = {<jats:p>Epileptic seizure forecasting, combined with the delivery of preventative therapies, holds the potential to greatly improve the quality of life for epilepsy patients and their caregivers. Forecasting seizures could prevent some potentially catastrophic consequences such as injury and death in addition to several potential clinical benefits it may provide for patient care in hospitals. The challenge of seizure forecasting lies within the seemingly unpredictable transitions of brain dynamics into the ictal state. The main body of computational research on determining seizure risk has been focused solely on prediction algorithms, which involves a challenging issue of balancing sensitivity and false alarms. There have been some studies on identifying potential biomarkers for seizure forecasting; however, the questions of “What are the true biomarkers for seizure prediction” or even “Is there a valid biomarker for seizure prediction?” are yet to be fully answered. In this paper, we introduce a tool to facilitate the exploration of the potential biomarkers. We confirm using our tool that interictal slowing activities are a promising biomarker for epileptic seizure susceptibility prediction.</jats:p>},
1322
- keywords = {Epileptic seizure},
1323
- doi = {10.3389/fneur.2021.721491},
1324
- pmid = {34589049},
1325
- journal = {Frontiers in Neurology},
1326
- volume = {12},
1327
- url = {https://www.ncbi.nlm.nih.gov/pubmed/34589049},
1328
- citation_count = {11},
1329
- journal_impact_factor = {2.7},
1330
- }
1331
-
1332
- @article{KiralKornek2017EpilepticSPW,
1333
- title = {Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System},
1334
- author = {Isabell Kiral-Kornek and Subhrajit Roy and E. Nurse and B. Mashford and Philippa J. Karoly and T. Carroll and D. Payne and Susmita Saha and S. Baldassano and T. O'Brien and D. Grayden and M. Cook and D. Freestone and S. Harrer},
1335
- year = {2017},
1336
- keywords = {Neuromorphic engineering, Wearable Technology},
1337
- doi = {10.1016/j.ebiom.2017.11.032},
1338
- pmid = {29262989},
1339
- journal = {EBioMedicine},
1340
- volume = {27},
1341
- url = {https://www.ncbi.nlm.nih.gov/pubmed/29262989},
1342
- citation_count = {279},
1343
- journal_impact_factor = {9.7},
1344
- pages = {103 - 111},
1345
- }
1346
-
1347
- @article{Hussein2020EpilepticSPX,
1348
- title = {Epileptic Seizure Prediction: A Semi-Dilated Convolutional Neural Network Architecture},
1349
- author = {Ramy Hussein and Soojin Lee and R. Ward and M. McKeown},
1350
- year = {2020},
1351
- abstract = {Accurate prediction of epileptic seizures has remained elusive, despite the many advances in machine learning and time-series classification. In this work, we develop a convolutional network module that exploits Electroencephalogram (EEG) scalograms to distinguish between the pre-seizure and normal brain activities. Since these scalograms have rectangular image shapes with many more temporal bins than spectral bins, the presented module uses “semi-dilated convolutions” to create a proportional non-square receptive field. The proposed semi-dilated convolutions support exponential expansion of the receptive field over the long dimension (image width, i.e. time) while maintaining high resolution over the short dimension (image height, i.e., frequency). The proposed architecture comprises a set of co-operative semi-dilated convolutional blocks, each block has a stack of parallel semi-dilated convolutional modules with different dilation rates. Results show that our proposed solution outperforms the state-of-the-art methods, achieving seizure prediction sensitivity scores of 88.45% and 89.52% for the American Epilepsy Society and Melbourne University EEG datasets, respectively.},
1352
- doi = {10.1109/ICPR48806.2021.9412384},
1353
- journal = {2020 25th International Conference on Pattern Recognition (ICPR)},
1354
- url = {https://api.semanticscholar.org/CorpusId:220714062},
1355
- pages = {5436-5443},
1356
- }
1357
-
1358
- @article{Dissanayake2020PatientindependentESY,
1359
- title = {Patient-independent Epileptic Seizure Prediction using Deep Learning Models},
1360
- author = {T. Dissanayake and Tharindu Fernando and Simon Denman and S. Sridharan and C. Fookes},
1361
- year = {2020},
1362
- abstract = {Objective: Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid the treatment of patients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the high inter-subject variability in EEG data. Methods: We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects. Results: Proposed models achieve state-of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy respectively. Conclusions: The Siamese model trained on the proposed learning strategy is able to learn patterns related to patient variations in data while predicting seizures. Significance: Our models show superior performance for patient-independent seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and pre-ictal brain states.},
1363
- keywords = {Epileptic seizure},
1364
- doi = {10.48550/arxiv.2011.09581},
1365
- journal = {ArXiv},
1366
- url = {https://api.semanticscholar.org/CorpusId:227054144},
1367
- citation_count = {8},
1368
- volume = {abs/2011.09581},
1369
- }
1370
-
1371
- @article{Rogowski1981OnTPZ,
1372
- title = {On the prediction of epileptic seizures},
1373
- author = {Z. Rogowski and I. Gath and E. Bental},
1374
- year = {1981},
1375
- abstract = {In 12 epileptic patients suffering from "absences" 8-channel EEG was recorded by telemetry. The autoregressive model was applied to the signal and the prediction coefficients being the basis for calculation of the poles of the predictor. The location of the poles in the z- and s-planes was described as a function of time for 0.1 s steps along the pre-seizure EEG. In 10 of the 12 patients, and in 25 of the 28 recorded seizures this presentation of the poles of the predictor showed specific pattern linked with the occurrence of the seizure. The trajectory of the "most mobile pole" during the pre-seizure period could aid in the prediction of the seizure by several seconds.},
1376
- keywords = {Epileptic seizure, SIGNAL (programming language)},
1377
- doi = {10.1007/bf00335153},
1378
- pmid = {6799009},
1379
- journal = {Biological Cybernetics},
1380
- volume = {42},
1381
- url = {https://doi.org/10.1007/BF00335153},
1382
- citation_count = {9},
1383
- journal_impact_factor = {1.7},
1384
- pages = {9-15},
1385
- }
1386
-
1387
- @article{Guo2020EpilepsySPAA,
1388
- title = {Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network},
1389
- author = {Yao Guo and Po Yang and Wei Chen and Benny P. L. Lo},
1390
- year = {2020},
1391
- abstract = {Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial pre-ictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patients’ data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods.},
1392
- doi = {10.1109/jbhi.2019.2933046},
1393
- pmid = {31395568},
1394
- journal = {IEEE Journal of Biomedical and Health Informatics},
1395
- volume = {24},
1396
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8788635},
1397
- journal_impact_factor = {6.7},
1398
- pages = {465-474},
1399
- }
1400
-
1401
- @article{Razi2022EfficientGCAC,
1402
- title = {Efficient graph convolutional networks for seizure prediction using scalp EEG},
1403
- author = {Adeel Razi and Ramy Hussein and Duong Nhu and Qun Wang and cnZhiguoZhou and Liu Jia M and Chen Clp and \{\textcopyright\}. Jia and Duan Liu and Chen Chen and Zhou. This and Manhua Jia and Wenjian Liu and Junwei Duan and Long Chen},
1404
- year = {2022},
1405
- abstract = {<jats:p>Epilepsy is a chronic brain disease that causes persistent and severe damage to the physical and mental health of patients. Daily effective prediction of epileptic seizures is crucial for epilepsy patients especially those with refractory epilepsy. At present, a large number of deep learning algorithms such as Convolutional Neural Networks and Recurrent Neural Networks have been used to predict epileptic seizures and have obtained better performance than traditional machine learning methods. However, these methods usually transform the Electroencephalogram (EEG) signal into a Euclidean grid structure. The conversion suffers from loss of adjacent spatial information, which results in deep learning models requiring more storage and computational consumption in the process of information fusion after information extraction. This study proposes a general Graph Convolutional Networks (GCN) model architecture for predicting seizures to solve the problem of oversized seizure prediction models based on exploring the graph structure of EEG signals. As a graph classification task, the network architecture includes graph convolution layers that extract node features with one-hop neighbors, pooling layers that summarize abstract node features; and fully connected layers that implement classification, resulting in superior prediction performance and smaller network size. The experiment shows that the model has an average sensitivity of 96.51%, an average AUC of 0.92, and a model size of 15.5 k on 18 patients in the CHB-MIT scalp EEG dataset. Compared with traditional deep learning methods, which require a large number of parameters and computational effort and are demanding in terms of storage space and energy consumption, this method is more suitable for implementation on compact, low-power wearable devices as a standard process for building a generic low-consumption graph network model on similar biomedical signals. Furthermore, the edge features of graphs can be used to make a preliminary determination of locations and types of discharge, making it more clinically interpretable.</jats:p>},
1406
- keywords = {Pooling},
1407
- doi = {10.3389/fnins.2022.967116},
1408
- pmid = {35979333},
1409
- journal = {Frontiers in Neuroscience},
1410
- volume = {16},
1411
- url = {https://www.ncbi.nlm.nih.gov/pubmed/35979333},
1412
- citation_count = {29},
1413
- journal_impact_factor = {3.2},
1414
- }
1415
-
1416
- @article{Tian2021ANNAD,
1417
- title = {A New Neuromorphic Computing Approach for Epileptic Seizure Prediction},
1418
- author = {Fengshi Tian and Jie Yang and Shiqi Zhao and M. Sawan},
1419
- year = {2021},
1420
- abstract = {Several high specificity and sensitivity seizure prediction methods with convolutional neural networks (CNNs) are reported. However, CNNs are computationally expensive and power hungry. These inconveniences make CNN-based methods hard to be implemented on wearable devices. Motivated by the energy-efficient spiking neural networks (SNNs), a neuromorphic computing approach for seizure prediction is proposed in this work. This approach uses a designed gaussian random discrete encoder to generate spike sequences from the EEG samples and make predictions in a spiking convolutional neural network (Spiking-CNN) which combines the advantages of CNNs and SNNs. The experimental results show that the sensitivity, specificity and AUC can remain 95.1%, 99.2% and 0.912 respectively while the computation complexity is reduced by 98.58% compared to CNN, indicating that the proposed Spiking-CNN is hardware friendly and of high precision.},
1421
- keywords = {Neuromorphic engineering},
1422
- doi = {10.1109/iscas51556.2021.9401560},
1423
- eprint = {2102.12773},
1424
- journal = {2021 IEEE International Symposium on Circuits and Systems (ISCAS)},
1425
- url = {https://api.semanticscholar.org/CorpusId:232046246},
1426
- citation_count = {25},
1427
- pages = {1-5},
1428
- }
1429
-
1430
- @article{Yang2018EpilepticSPAE,
1431
- title = {Epileptic Seizure Prediction Based on Permutation Entropy},
1432
- author = {Yanli Yang and Mengni Zhou and Yan Niu and Conggai Li and R. Cao and Bin Wang and Pengfei Yan and Yao Ma and Jie Xiang},
1433
- year = {2018},
1434
- abstract = {Epilepsy is a chronic non-communicable disorder of the brain that affects individuals of all ages. It is caused by a sudden abnormal discharge of brain neurons leading to temporary dysfunction. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. However, the potential that permutation entropy(PE) can be applied in human epilepsy prediction from intracranial electroencephalogram (iEEG) recordings remains unclear. Here, we described the novel application of PE to track the dynamical changes of human brain activity from iEEG recordings for the epileptic seizure prediction. The iEEG signals of 19 patients were obtained from the Epilepsy Centre at the University Hospital of Freiburg. After preprocessing, PE was extracted in a sliding time window, and a support vector machine (SVM) was employed to discriminate cerebral state. Then a two-step post-processing method was applied for the purpose of prediction. The results showed that we obtained an average sensitivity (SS) of 94% and false prediction rates (FPR) with 0.111 h−1. The best results with SS of 100% and FPR of 0 h−1 were achieved for some patients. The average prediction horizon was 61.93 min, leaving sufficient treatment time before a seizure. These results indicated that applying PE as a feature to extract information and SVM for classification could predict seizures, and the presented method shows great potential in clinical seizure prediction for human.},
1435
- keywords = {Epileptic seizure},
1436
- doi = {10.3389/fncom.2018.00055},
1437
- pmid = {30072886},
1438
- journal = {Frontiers in Computational Neuroscience},
1439
- volume = {12},
1440
- url = {https://api.semanticscholar.org/CorpusId:49865563},
1441
- citation_count = {90},
1442
- journal_impact_factor = {2.1},
1443
- }
1444
-
1445
- @article{Moghim2014PredictingESAF,
1446
- title = {Predicting Epileptic Seizures in Advance},
1447
- author = {Negin Moghim and D. Corne},
1448
- year = {2014},
1449
- abstract = {Epilepsy is the second most common neurological disorder, affecting 0.6–0.8% of the world's population. In this neurological disorder, abnormal activity of the brain causes seizures, the nature of which tend to be sudden. Antiepileptic Drugs (AEDs) are used as long-term therapeutic solutions that control the condition. Of those treated with AEDs, 35% become resistant to medication. The unpredictable nature of seizures poses risks for the individual with epilepsy. It is clearly desirable to find more effective ways of preventing seizures for such patients. The automatic detection of oncoming seizures, before their actual onset, can facilitate timely intervention and hence minimize these risks. In addition, advance prediction of seizures can enrich our understanding of the epileptic brain. In this study, drawing on the body of work behind automatic seizure detection and prediction from digitised Invasive Electroencephalography (EEG) data, a prediction algorithm, ASPPR (Advance Seizure Prediction via Pre-ictal Relabeling), is described. ASPPR facilitates the learning of predictive models targeted at recognizing patterns in EEG activity that are in a specific time window in advance of a seizure. It then exploits advanced machine learning coupled with the design and selection of appropriate features from EEG signals. Results, from evaluating ASPPR independently on 21 different patients, suggest that seizures for many patients can be predicted up to 20 minutes in advance of their onset. Compared to benchmark performance represented by a mean S1-Score (harmonic mean of Sensitivity and Specificity) of 90.6% for predicting seizure onset between 0 and 5 minutes in advance, ASPPR achieves mean S1-Scores of: 96.30% for prediction between 1 and 6 minutes in advance, 96.13% for prediction between 8 and 13 minutes in advance, 94.5% for prediction between 14 and 19 minutes in advance, and 94.2% for prediction between 20 and 25 minutes in advance.},
1450
- keywords = {Epileptic seizure},
1451
- doi = {10.1371/journal.pone.0099334},
1452
- pmid = {24911316},
1453
- journal = {PLoS ONE},
1454
- volume = {9},
1455
- url = {https://api.semanticscholar.org/CorpusId:17778854},
1456
- citation_count = {119},
1457
- journal_impact_factor = {2.9},
1458
- }
1459
-
1460
- @article{Shi2023B2ViTNBAH,
1461
- title = {B2-ViT Net: Broad Vision Transformer Network With Broad Attention for Seizure Prediction},
1462
- author = {Shuiling Shi and Wenqi Liu},
1463
- year = {2023},
1464
- keywords = {Interpretability, Feature (linguistics), Feature Learning},
1465
- doi = {10.1109/tnsre.2023.3346955},
1466
- pmid = {38145523},
1467
- journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
1468
- volume = {32},
1469
- url = {https://api.semanticscholar.org/CorpusId:266550135},
1470
- citation_count = {13},
1471
- journal_impact_factor = {4.8},
1472
- pages = {178-188},
1473
- }
1474
-
1475
- @article{Batista2024EEGESAI,
1476
- title = {EEG epilepsy seizure prediction: the post-processing stage as a chronology},
1477
- author = {Joana Batista and Mauro F. Pinto and Mariana Tavares and F\{\'a\}bio Lopes and Ana Oliveira and C\{\'e\}sar A. Teixeira and Mariana Taveres and Gonçalo Costa},
1478
- year = {2024},
1479
- abstract = {<jats:title>Abstract</jats:title><jats:p>Almost one-third of epileptic patients fail to achieve seizure control through anti-epileptic drug administration. In the scarcity of completely controlling a patient’s epilepsy, seizure prediction plays a significant role in clinical management and providing new therapeutic options such as warning or intervention devices. Seizure prediction algorithms aim to identify the preictal period that Electroencephalogram (EEG) signals can capture. However, this period is associated with substantial heterogeneity, varying among patients or even between seizures from the same patient. The present work proposes a patient-specific seizure prediction algorithm using post-processing techniques to explore the existence of a set of chronological events of brain activity that precedes epileptic seizures. The study was conducted with 37 patients with Temporal Lobe Epilepsy (TLE) from the EPILEPSIAE database. The designed methodology combines univariate linear features with a classifier based on Support Vector Machines (SVM) and two post-processing techniques to handle pre-seizure temporality in an easily explainable way, employing knowledge from network theory. In the Chronological Firing Power approach, we considered the preictal as a sequence of three brain activity events separated in time. In the Cumulative Firing Power approach, we assumed the preictal period as a sequence of three overlapping events. These methodologies were compared with a control approach based on the typical machine learning pipeline. We considered a Seizure Prediction horizon (SPH) of 5 mins and analyzed several values for the Seizure Occurrence Period (SOP) duration, between 10 and 55 mins. Our results showed that the Cumulative Firing Power approach may improve the seizure prediction performance. This new strategy performed above chance for 62% of patients, whereas the control approach only validated 49% of its models.</jats:p>},
1480
- keywords = {Epileptic seizure, Univariate},
1481
- doi = {10.1038/s41598-023-50609-z},
1482
- pmid = {38172583},
1483
- journal = {Scientific Reports},
1484
- volume = {14},
1485
- url = {https://api.semanticscholar.org/CorpusId:266754792},
1486
- citation_count = {10},
1487
- journal_impact_factor = {3.8},
1488
- }
1489
-
1490
- @article{Wu2021C2SPNetJCAJ,
1491
- title = {C2SP-Net: Joint Compression and Classification Network for Epilepsy Seizure Prediction},
1492
- author = {Di Wu and Yi Shi and Ziyu Wang and Jie Yang and M. Sawan},
1493
- year = {2021},
1494
- abstract = {Recent developments in brain-machine interface technology have rendered seizure prediction possible. However, the transmission of a large volume of electrophysiological signals between sensors and processing apparatuses and the related computation become two major bottlenecks for seizure prediction systems due to the constrained bandwidth and limited computational resources, especially for power-critical wearable and implantable medical devices. Although many data compression methods can be adopted to compress the signals to reduce communication bandwidth requirement, they require complex compression and reconstruction procedures before the signal can be used for seizure prediction. In this paper, we propose $\text\{C\}^\{\{2\}\}$ SP-Net, a framework to jointly solve compression, prediction, and reconstruction without extra computation overhead. The framework consists of a plug-and-play in-sensor compression matrix to reduce transmission bandwidth requirements. The compressed signal can be utilized for seizure prediction without additional reconstruction steps. Reconstruction of the original signal can also be carried out in high fidelity. Compression and classification overhead from the energy consumption perspective, prediction accuracy, sensitivity, false prediction rate, and reconstruction quality of the proposed framework are evaluated using various compression ratios. The experimental results illustrate that our proposed framework is energy efficient and outperforms the competitive state-of-the-art baselines by a large margin in prediction accuracy. In particular, our proposed method produces an average loss of 0.6% in prediction accuracy with a compression ratio ranging from 1/2 to 1/16.},
1495
- doi = {10.1109/TNSRE.2023.3235390},
1496
- journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
1497
- url = {https://api.semanticscholar.org/CorpusId:239885442},
1498
- journal_impact_factor = {4.8},
1499
- volume = {31},
1500
- pages = {841-850},
1501
- }
1502
-
1503
- @article{Zhong2023EpilepticPUAK,
1504
- title = {Epileptic prediction using spatiotemporal information combined with optimal features strategy on EEG},
1505
- author = {Lisha Zhong and Jiangzhong Wan and Fangji Yi and Shuling He and Jia Wu and Zhiwei Huang and Yi Lu and Jiazhang Yang and Zhangyong Li},
1506
- year = {2023},
1507
- abstract = {<jats:sec><jats:title>Objective</jats:title><jats:p>Epilepsy is the second most common brain neurological disease after stroke, which has the characteristics of sudden and recurrence. Seizure prediction is seriously important for improving the quality of patients’ lives.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>From the perspective of multiple dimensions including time-frequency, entropy and brain network, this paper proposed a novel approach by constructing the optimal spatiotemporal feature set to predict seizures. Based on strong independence and large information capabilities, the two-dimensional feature screening algorithm is performed to eliminate unnecessary redundant features. In order to verify the effectiveness of the optimal feature set, support vector machine (SVM) was used to classify the preictal and interictal states on both the Kaggle intracranial EEG and CHB-MIT scalp EEG dataset.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>This model achieved an average accuracy of 98.01%, AUC of 0.96, F-Score of 98.3% and FPR of 0.0383/h on the Kaggle dataset; On the CHB-MIT dataset, the average accuracy, AUC, F-score and FPR were 95.93%, 0.92, 94.97% and 0.0473/h, respectively. Further ablation experiments have confirmed that the temporal and spatial features fusion has better performance than the individual temporal or spatial features.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>Compared to the state-of-the-art methods, our approach outperforms most of these existing techniques. The results show that our approach can effectively extract the spatiotemporal information of epileptic EEG signals to predict epileptic seizures with high performance.</jats:p></jats:sec>},
1508
- keywords = {Feature (linguistics), Epileptic seizure},
1509
- doi = {10.3389/fnins.2023.1174005},
1510
- pmid = {37081931},
1511
- journal = {Frontiers in Neuroscience},
1512
- volume = {17},
1513
- url = {https://api.semanticscholar.org/CorpusId:257914789},
1514
- citation_count = {9},
1515
- journal_impact_factor = {3.2},
1516
- }
1517
-
1518
- @article{Alasiry2025EpilepticSDAL,
1519
- title = {Epileptic seizures diagnosis and prognosis from EEG signals using heterogeneous graph neural network},
1520
- author = {Areej Alasiry and Gabriel Avelino R. Sampedro and Ahmad S. Almadhor and Roben A. Juanatas and Shtwai Alsubai and Vincent Karovic},
1521
- year = {2025},
1522
- abstract = {<jats:p>Epilepsy, often associated with neurodegenerative disorders following brain strokes, manifests as abnormal electrical activity bursts in the cerebral cortex, disrupting regular brain function. Electroencephalogram (EEG) recordings capture these distinctive brain signals, offering crucial insights into seizure detection and management. This study presents a novel approach leveraging a graph neural network (GNN) model with a heterogeneous graph representation to detect epileptic seizures from EEG data. Utilizing the well-established CHB-MIT EEG dataset for training and evaluation, the proposed method includes preprocessing steps such as signal segmentation, resampling, label encoding, normalization, and exploratory data analysis. We employed a standard train-test split with stratified sampling to ensure class distribution and reduce bias. Experimental comparisons with long short-term memory (LSTM) and recurrent neural network (RNN) models highlight the GNN’s superior performance, achieving a classification accuracy of 98.0% and demonstrating incremental improvements in precision and F1-score. These findings emphasize the efficacy of GNN in capturing spatial and temporal dependencies within EEG data, surpassing conventional deep learning techniques. Furthermore, the study highlights the model’s interpretability, which is essential for clinical decision-making. By advancing EEG-based seizure prediction methods, this research offers a robust framework for enhancing patient outcomes in epilepsy management while addressing the limitations of existing approaches.</jats:p>},
1523
- doi = {10.7717/peerj-cs.2765},
1524
- pmid = {40567653},
1525
- journal = {PeerJ Computer Science},
1526
- volume = {11},
1527
- url = {https://api.semanticscholar.org/CorpusId:278024614},
1528
- citation_count = {1},
1529
- journal_impact_factor = {3.5},
1530
- }
1531
-
1532
- @article{Englot2024ChasingTHAM,
1533
- title = {Chasing the Holy Grail: Seizure Prediction Through Neural Cycles},
1534
- author = {Dario J. Englot},
1535
- year = {2024},
1536
- abstract = {<jats:p>
1537
- <jats:boxed-text orientation="portrait" position="float">
1538
- <jats:p>
1539
- <jats:bold>Hippocampal Network Activity Forecasts Epileptic Seizures</jats:bold>
1540
- </jats:p>
1541
- <jats:p>
1542
- Khambhati AN, Chang EF, Baud MO, Rao VR.
1543
- <jats:italic>Nat Med</jats:italic>
1544
- . 2024. doi:
1545
- <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://doi.org/10.1038/s41591-024-03149-6">10.1038/s41591-024-03149-6</jats:ext-link>
1546
- . Online ahead of print.
1547
- </jats:p>
1548
- <jats:p>Seizures in people with epilepsy were long thought to occur at random, but recent methods for seizure forecasting enable estimation of the likelihood of seizure occurrence over short horizons. These methods rely on days-long cyclical patterns of brain electrical activity and other physiological variables that determine seizure likelihood and that require measurement through long-term, multimodal recordings. In this retrospective cohort study of 15 adults with bitemporal epilepsy who had a device that provides chronic intracranial recordings, functional connectivity of hippocampal networks fluctuated in multiday cycles with patterns that mirrored cycles of seizure likelihood. A functional connectivity biomarker of seizure likelihood derived from 90 s recordings of background hippocampal activity generalized across individuals and forecasted 24 h seizure likelihood as accurately as cycle-based models requiring months-long baseline recordings. Larger, prospective studies are needed to validate this approach, but our results have the potential to make reliable seizure forecasts accessible to more people with epilepsy.</jats:p>
1549
- </jats:boxed-text>
1550
- </jats:p>},
1551
- doi = {10.1177/15357597241281842},
1552
- pmid = {39539397},
1553
- journal = {Epilepsy Currents},
1554
- volume = {25},
1555
- url = {https://api.semanticscholar.org/CorpusId:273716774},
1556
- journal_impact_factor = {5.8},
1557
- pages = {48 - 50},
1558
- }
1559
-
1560
- @article{Khan2023UsingSRAN,
1561
- title = {Using Sparse Representation of EEG Signal from a Shallow Sparse Autoencoder for Epileptic Seizure Prediction},
1562
- author = {Gul Hameed Khan and N. Khan and Wala Saadeh and M. B. Altaf},
1563
- year = {2023},
1564
- abstract = {: Patients with epilepsy are affected with unexpected seizure events, which significantly diminish their quality of life. It is crucial to evaluate whether an epileptic patient’s brain state is indicative of a possible seizure occurrence so that necessary therapy or alarm can be generated on time. If seizures could be predicted before the onset, interventions may be applied to avoid further damage during seizure attack, and patients could take medications or other treatments to prevent seizures from occurring. This research describes a patient-specific technique for predicting epileptic seizures based on a hybrid model. Single layer sparse autoencoder is trained to obtain a aparse representation of the scalp electroencephalogram (EEG) signals. SVM classifier is used to categorize the sparse signal as inter-ictal or pre-ictal. Individual EEG channel analysis for seizure prediction are presented. In addition, various hidden sizes of the autoencoder for optimal sparse representation are anlyzed.The proposed model evaluates 13 patients from the CHB-MIT dataset and obtains a sensitivity of 98% and an area under the curve (AUC) of 98%. We have evaluated the performance of our hybrid strategy to both deep learning models and conventional procedures. The proposed method outperforms current seizure prediction techniques, proving its efficacy.},
1565
- keywords = {Autoencoder, Epileptic seizure, Representation, SIGNAL (programming language)},
1566
- doi = {10.5220/0011813400003414},
1567
- journal = {Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies},
1568
- url = {https://api.semanticscholar.org/CorpusId:257360988},
1569
- citation_count = {1},
1570
- booktitle = {International Conference on Bio-inspired Systems and Signal Processing},
1571
- }
1572
-
1573
- @article{Xiong2023EEGBasedEPAO,
1574
- title = {EEG-Based Epilepsy Prediction: Evaluation Metrics, Data Deficiency and Limitation of Current Methods.},
1575
- author = {Bowen Xiong},
1576
- year = {2023},
1577
- abstract = {<jats:p>Epilepsy is a disease of the brain that can do severe damage for patient’s health. Due to the recurrent and unpredictable characteristics of epilepsy, it is of vital importance to develop reliable methods to predict seizures in advance. Nowadays, many researchers have developed deep learning (DL) or machine learning (ML) methods to predict epileptic seizures with electroencephalogram (EEG). But there are still many problems and challenges on the way towards a high-performance and generalized model. This study discussed and analyzed the current ML and DL techniques used in seizure prediction and summarized some challenges that remains to be solved, including the Inconsistency of the evaluation metrics, the imbalance and insufficiency of the available data and some limitations of current models. This study summarized the solutions that used to solve them and proposed some suggestions that can help improve the performance of the models. Furthermore, this review discussed some potential DL/ML methods that can be applied in the area of seizure prediction. This study aims to provide researchers with clear concepts in future works and proposed future directions.</jats:p>},
1578
- doi = {10.3233/shti230818},
1579
- pmid = {38007719},
1580
- journal = {Studies in health technology and informatics},
1581
- volume = {308},
1582
- citation_count = {2},
1583
- }
1584
-
1585
- @article{Deshmukh2023PredictionOEAP,
1586
- title = {Prediction of Epilepsy Seizures by Machine Learning Methods},
1587
- author = {M. T. Deshmukh and S. Suralkar},
1588
- year = {2023},
1589
- abstract = {<jats:p>According to the Globe Health Organization (WHO), more than 50 million people throughout the world are living with a diagnosis of epilepsy, making it perhaps of the most widely recognized neurological issue. Epileptic seizures are a leading cause of hospitalization and mortality across the globe. Accurate and prompt diagnosis is more crucial than ever given the increase in epileptic seizures all through the globe and their effect on individuals' lives. Epilepsy, cancer, diabetes, heart disease, thyroid disease, and many more are only some of the diseases for which machine learning approaches are being applied in prediction and diagnosis. Epilepsy is one ailment that may be treated early on to save a person's life. The main objective of this research is to use feature label extraction to the dataset in order to obtain the best ML models for epileptic seizures. In order to predict epilepsy, we used the techniques of logistic regression, SVM, linear SVM, KNN, and RNN in this study. The models employed in this research are accurate to varying degrees and have attributes including precision, recall, f1-score, and support. This study demonstrates that the model is able to accurately predict the occurrence of epilepsy. Our discoveries demonstrate that involving Examination highlight extraction in the dataset, the Regional Neural Network (RNN) model with 99.9998 % Training data accuracy and 97.78% Test data accuracy and 100% prediction probability of epilepsy seizure produces the best results and also the feature characteristics of RNN is better as compared to other models used in current research work.</jats:p>},
1590
- doi = {10.17762/ijritcc.v11i7.7939},
1591
- journal = {International Journal on Recent and Innovation Trends in Computing and Communication},
1592
- volume = {11},
1593
- url = {https://api.semanticscholar.org/CorpusId:262174641},
1594
- }
1595
-
1596
- @article{Ode2022DevelopmentOAAR,
1597
- title = {Development of an epileptic seizure prediction algorithm using R–R intervals with self-attentive autoencoder},
1598
- author = {Rikumo Ode and K. Fujiwara and M. Miyajima and Toshikata Yamakawa and M. Kano and K. Jin and N. Nakasato and Yasuko Sawai and T. Hoshida and M. Iwasaki and Y. Murata and Satsuki Watanabe and Yutaka Watanabe and Yoko Suzuki and M. Inaji and N. Kunii and S. Oshino and H. M. Khoo and H. Kishima and T. Maehara},
1599
- year = {2022},
1600
- abstract = {<jats:title>Abstract</jats:title><jats:p>Epilepsy is a neurological disorder that may affect the autonomic nervous system (ANS) from 15 to 20 min before seizure onset, and disturbances of ANS affect R–R intervals (RRI) on an electrocardiogram (ECG). This study aims to develop a machine learning algorithm for predicting focal epileptic seizures by monitoring R–R interval (RRI) data in real time. The developed algorithm adopts a self-attentive autoencoder (SA-AE), which is a neural network for time-series data. The results of applying the developed seizure prediction algorithm to clinical data demonstrated that it functioned well in most patients; however, false positives (FPs) occurred in specific participants. In a future work, we will investigate the causes of FPs and optimize the developing seizure prediction algorithm to further improve performance using newly added clinical data.</jats:p>},
1601
- keywords = {Autoencoder, Epileptic seizure},
1602
- doi = {10.1007/s10015-022-00832-0},
1603
- journal = {Artificial Life and Robotics},
1604
- volume = {28},
1605
- url = {https://api.semanticscholar.org/CorpusId:254202961},
1606
- citation_count = {8},
1607
- journal_impact_factor = {0.8},
1608
- pages = {403-409},
1609
- }
1610
-
1611
- @article{Nazari2022EpilepsySPAS,
1612
- title = {Epilepsy seizure prediction with few-shot learning method},
1613
- author = {Jamal Nazari and Ali Motie Nasrabadi and M. Menhaj and S. Raiesdana},
1614
- year = {2022},
1615
- abstract = {<jats:title>Abstract</jats:title><jats:p>Epileptic seizures prediction and timely alarms allow the patient to take effective and preventive actions. In this paper, a convolutional neural network (CNN) is proposed to diagnose the preictal period. Our goal is for those epileptic patients in whom seizures occur late and it is very challenging to record the preictal signal for them. In the previous works, generalized methods were inevitably used for this group of patients which were not very accurate. Our approach to solve this problem is to provide a few-shot learning method. This method, having the previous knowledge, is trained with only a small number of samples, learns new tasks and reduces the efforts to collect more data. Evaluation results for three patients from the CHB–MIT database, for a 10-min seizure prediction horizon (SPH) and a 20-min seizure occurrence period (SOP), averaged sensitivity of 95.70% and a false prediction rate (FPR) of 0.057/h and for the 5-min prediction horizon and the 25-min seizure occurrence period averaged sensitivity of 98.52% and a false prediction rate of (FPR) of 0.045/h. The proposed few-shot learning method, based on previous knowledge gained from the generalizable method, is regulated with a few new patient samples for the patient. Our results show that the accuracy obtained in this method is higher than the generalizable methods.</jats:p>},
1616
- keywords = {Epileptic seizure, False positive rate},
1617
- doi = {10.1186/s40708-022-00170-8},
1618
- pmid = {36112246},
1619
- journal = {Brain Informatics},
1620
- volume = {9},
1621
- url = {https://api.semanticscholar.org/CorpusId:252310192},
1622
- citation_count = {4},
1623
- }
1624
-
1625
- @article{Aung2021PredictionOEAT,
1626
- title = {Prediction of epileptic seizures based on multivariate multiscale modified-distribution entropy},
1627
- author = {Si Thu Aung and Y. Wongsawat},
1628
- year = {2021},
1629
- abstract = {Epilepsy is a common neurological disease that affects a wide range of the world population and is not limited by age. Moreover, seizures can occur anytime and anywhere because of the sudden abnormal discharge of brain neurons, leading to malfunction. The seizures of approximately 30% of epilepsy patients cannot be treated with medicines or surgery; hence these patients would benefit from a seizure prediction system to live normal lives. Thus, a system that can predict a seizure before its onset could improve not only these patients’ social lives but also their safety. Numerous seizure prediction methods have already been proposed, but the performance measures of these methods are still inadequate for a complete prediction system. Here, a seizure prediction system is proposed by exploring the advantages of multivariate entropy, which can reflect the complexity of multivariate time series over multiple scales (frequencies), called multivariate multiscale modified-distribution entropy (MM-mDistEn), with an artificial neural network (ANN). The phase-space reconstruction and estimation of the probability density between vectors provide hidden complex information. The multivariate time series property of MM-mDistEn provides more understandable information within the multichannel data and makes it possible to predict of epilepsy. Moreover, the proposed method was tested with two different analyses: simulation data analysis proves that the proposed method has strong consistency over the different parameter selections, and the results from experimental data analysis showed that the proposed entropy combined with an ANN obtains performance measures of 98.66% accuracy, 91.82% sensitivity, 99.11% specificity, and 0.84 area under the curve (AUC) value. In addition, the seizure alarm system was applied as a postprocessing step for prediction purposes, and a false alarm rate of 0.014 per hour and an average prediction time of 26.73 min before seizure onset were achieved by the proposed method. Thus, the proposed entropy as a feature extraction method combined with an ANN can predict the ictal state of epilepsy, and the results show great potential for all epilepsy patients.},
1630
- doi = {10.7717/peerj-cs.744},
1631
- pmid = {34722874},
1632
- journal = {PeerJ Computer Science},
1633
- volume = {7},
1634
- url = {https://api.semanticscholar.org/CorpusId:239014245},
1635
- citation_count = {12},
1636
- journal_impact_factor = {3.5},
1637
- }
1638
-
1639
- @article{Peng2022SeizurePWAU,
1640
- title = {Seizure Prediction With HIVE-CODAs: The Hierarchical Vote Collective of Domain Adaptation Methods},
1641
- author = {Peizhen Peng},
1642
- year = {2022},
1643
- abstract = {<jats:p>Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods are usually trained and tested on the same patient due to the interindividual variability. However, the challenging problem of the domain shift between different subjects remains unsolved, resulting in low prevalence of clinical application. In this study, a generic model based on the domain adaptation (DA) technique is proposed to alleviate such problems. Ensemble learning is employed by developing a hierarchical vote collective of seven DA modules over multi-modality data, such that the predictive performance is improved by training multiple models. Moreover, to increase the feasibility of its implementation, this study mimics the data distribution of clinical sampling and tests the model under this simulated realistic condition. Based on the performance of seven subnetworks, the applicability of each DA algorithm for seizure prediction is evaluated, which is the first study that provides the assessment. Experimental results on both intracranial and scalp EEG databases demonstrate that this method can reduce the domain gap effectively compared with previous studies.</jats:p>},
1644
- keywords = {Epileptic seizure, Domain Adaptation},
1645
- doi = {10.3389/fphy.2021.811681},
1646
- journal = {Frontiers in Physics},
1647
- volume = {9},
1648
- url = {https://api.semanticscholar.org/CorpusId:245681574},
1649
- citation_count = {1},
1650
- journal_impact_factor = {1.9},
1651
- booktitle = {Frontiers of Physics},
1652
- }
1653
-
1654
- @article{Banupriya2021RobustOOAV,
1655
- title = {Robust Optimization of electroencephalograph (EEG) Signals for Epilepsy Seizure Prediction by utilizing VSPO Genetic Algorithms with SVM and Machine Learning Methods},
1656
- author = {C. Banupriya and A. D. Devi},
1657
- year = {2021},
1658
- abstract = {Objectives: To optimize the EEG signals in order to predict the epileptic seizures at early stage and to improve the accuracy level by employing genetic algorithm and machine learning methods. Methods: Virus Swarm Particle Optimization Technique (VSPO) based Genetic algorithm is utilized for the purpose of feature selection and Machine Learning SVM technique is utilized for classification of EEG signals to determine seizure or non-seizure. The Discrete Wavelet Transform (DWT) is utilized for factor extraction to assess the recurrence range of EEG signals associated with seizures, to partition them into separate spaces using DWT of EEG symbols, and to consider the variations between seizure and normal functionality. VPSO-GA with SVM extracts the features from the Andrzejak R G dataset and then selects the relevant function to perform classification and prediction in order to optimize the EEG signals for early ES prediction and to improve the accuracy level. To demonstrate the effectiveness of the proposed algorithm, MATLAB is used for implementation. The performance results are compared to the existing baseline versions FCM-MPSO, EDMLC and K-MODE. Findings: EEG signals are optimized and early ES prediction is done with 98.13% accuracy level, 98.03% sensitivity, 98.01% specificity, 98.90% Precision, 97.96% Recall, 191 True Positive, 104 True Negative and 98.46% F-Score to predict the seizure in an optimized manner which is high compared to the existing versions. Novelty: According to the findings of the comprehensive study, the proposed algorithm VPSO-SVM outperforms FCM-MPSO, EDMLC and K-MODE in terms of accuracy level of epileptic seizure prediction at early stage by optimizing the EEG signals in a robust manner. pathological epileptic GA, ML, NB techniques to study 54-DWT EEG signal waves, bi-class epilepsy detection time the use of multi-resolution wavelets, detect sudden epileptic automatically in EEG signals. Using DWT, EEG five sub wavelet approximately 20-24 dataset average sensitivity specificity more than 90% all class modes, diagnose two simultaneously in a dynamic way. epilepsy EEG signals, MC epilepsy short-term four-part processing EEG time interictal},
1659
- keywords = {Epileptic seizure},
1660
- doi = {10.17485/ijst/v14i16.625},
1661
- journal = {Indian Journal of Science and Technology},
1662
- volume = {14},
1663
- url = {https://api.semanticscholar.org/CorpusId:236614252},
1664
- citation_count = {14},
1665
- }
1666
-
1667
- @article{Budde2021SeizurePIAW,
1668
- title = {Seizure Prediction in Genetic Rat Models of Absence Epilepsy: Improved Performance through Multiple-Site Cortico-Thalamic Recordings Combined with Machine Learning},
1669
- author = {Bj\{\"o\}rn Budde and V. Maksimenko and K. Sarink and T. Seidenbecher and G. van Luijtelaar and T. Hahn and H. Pape and A. L\{\"u\}ttjohann},
1670
- year = {2021},
1671
- abstract = {<jats:title>Abstract</jats:title><jats:p>Seizure prediction is the grand challenge of epileptology. However, effort was devoted to prediction of focal seizures, while generalized seizures were regarded as stochastic events. Long-lasting local field potential (LFP) recordings containing several hundred generalized spike and wave discharges (SWDs), acquired at eight locations in the cortico-thalamic system of absence epileptic rats, were iteratively analyzed in all possible combinations of either two or three recording sites, by a wavelet-based algorithm, calculating the product of the wavelet-energy signaling increases in synchronicity. Sensitivity and false alarm rate of prediction were compared between various combinations, and wavelet spectra of true and false positive predictions were fed to a random forest machine learning algorithm to further differentiate between them. Wavelet analysis of intracortical and cortico-thalamic LFP traces showed a significantly smaller number of false alarms compared with intrathalamic combinations, while predictions based on recordings in Layers IV, V, and VI of the somatosensory-cortex significantly outreached all other combinations in terms of prediction sensitivity. In 24-h out-of-sample recordings of nine Genetic Absence Epilepsy Rats from Strasbourg (GAERS), containing diurnal fluctuations of SWD occurrence, classification of true and false positives by the trained random forest further reduced the false alarm rate by 71%, although at some trade-off between false alarms and sensitivity of prediction, as reflected in relatively low F1 score values. Results provide support for the cortical-focus theory of absence epilepsy and allow the conclusion that SWDs are predictable to some degree. The latter paves the way for the development of closed-loop SWD prediction-prevention systems. Suggestions for a possible translation to human data are outlined.</jats:p>},
1672
- keywords = {False alarm},
1673
- doi = {10.1523/eneuro.0160-21.2021},
1674
- pmid = {34782347},
1675
- journal = {eNeuro},
1676
- volume = {9},
1677
- url = {https://api.semanticscholar.org/CorpusId:244131810},
1678
- citation_count = {8},
1679
- journal_impact_factor = {2.7},
1680
- }
1681
-
1682
- @article{Patel2021EssentialsOPAX,
1683
- title = {Essentials of Predicting Epileptic Seizures Based on EEG Using Machine Learning: A Review},
1684
- author = {Vibha Patel and Jaishree Tailor and Amit Ganatra},
1685
- year = {2021},
1686
- abstract = {<jats:sec>
1687
- <jats:title>Objective:</jats:title>
1688
- <jats:p>Epilepsy is one of the chronic diseases, which requires exceptional attention. The unpredictability of the seizures makes it worse for a person suffering from epilepsy.</jats:p>
1689
- </jats:sec>
1690
- <jats:sec>
1691
- <jats:title>Methods:</jats:title>
1692
- <jats:p>The challenge to predict seizures using modern machine learning algorithms and computing resources would be a boon to a person with epilepsy and its caregivers. Researchers have shown great interest in the task of epileptic seizure prediction for a few decades. However, the results obtained have not clinical applicability because of the high false-positive ratio. The lack of standard practices in the field of epileptic seizure prediction makes it challenging for novice ones to follow the research. The chances of reproducibility of the result are negligible due to the unavailability of implementation environment-related details, use of standard datasets, and evaluation parameters.</jats:p>
1693
- </jats:sec>
1694
- <jats:sec>
1695
- <jats:title>Results:</jats:title>
1696
- <jats:p>Work here presents the essential components required for the prediction of epileptic seizures, which includes the basics of epilepsy, its treatment, and the need for seizure prediction algorithms. It also gives a detailed comparative analysis of datasets used by different researchers, tools and technologies used, different machine learning algorithm considerations, and evaluation parameters.</jats:p>
1697
- </jats:sec>
1698
- <jats:sec>
1699
- <jats:title>Conclusion:</jats:title>
1700
- <jats:p>The main goal of this paper is to synthesize different methodologies for creating a broad view of the state-of-the-art in the field of seizure prediction.</jats:p>
1701
- </jats:sec>},
1702
- keywords = {Unavailability, Epileptic seizure},
1703
- doi = {10.2174/1874120702115010090},
1704
- journal = {The Open Biomedical Engineering Journal},
1705
- volume = {15},
1706
- url = {https://api.semanticscholar.org/CorpusId:239067574},
1707
- citation_count = {6},
1708
- }
1709
-
1710
- @article{Korshunova2018TowardsIDAY,
1711
- title = {Towards Improved Design and Evaluation of Epileptic Seizure Predictors},
1712
- author = {I. Korshunova and Pieter-Jan Kindermans and Jonas Degrave and T. Verhoeven and B. Brinkmann and J. Dambre},
1713
- year = {2018},
1714
- abstract = {Key issues in the epilepsy seizure prediction research are (1) the reproducibility of results (2) the inability to compare multiple approaches directly. To overcome these problems, the seizure prediction challenge was organized on Kaggle.com. It aimed at establishing benchmarks on a dataset with predefined train, validation, and test sets. Our main objective is to analyze the competition format, and to propose improvements, which would facilitate a better comparison of algorithms. The second objective is to present a novel deep learning approach to seizure prediction and compare it to other commonly used methods using patient centered metrics.},
1715
- doi = {10.1109/tbme.2017.2700086},
1716
- pmid = {28475041},
1717
- journal = {IEEE Transactions on Biomedical Engineering},
1718
- volume = {65},
1719
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7915772},
1720
- journal_impact_factor = {4.4},
1721
- pages = {502-510},
1722
- }
1723
-
1724
- @article{Namazi2015ASPAZ,
1725
- title = {A signal processing based analysis and prediction of seizure onset in patients with epilepsy},
1726
- author = {H. Namazi and V. Kulish and J. Hussaini and Jalal Hussaini and Ali Delaviz and Fatemeh Delaviz and Shaghayegh Habibi and Sara Ramezanpoor},
1727
- year = {2015},
1728
- abstract = {One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.},
1729
- doi = {10.18632/oncotarget.6341},
1730
- pmid = {26586477},
1731
- journal = {Oncotarget},
1732
- volume = {7},
1733
- url = {https://api.semanticscholar.org/CorpusId:14252389},
1734
- citation_count = {102},
1735
- journal_impact_factor = {2.7},
1736
- pages = {342 - 350},
1737
- }
1738
-
1739
- @article{Hussain2020EpilepticSPBA,
1740
- title = {Epileptic Seizure Prediction},
1741
- author = {S. Hussain and Gurajapu Raja Sumant},
1742
- year = {2020},
1743
- journal = {Epilepsy - Update on Classification, Etiologies, Instrumental Diagnosis and Treatment},
1744
- url = {https://api.semanticscholar.org/CorpusId:229412725},
1745
- }
1746
-
1747
- @article{Kim2020ProspectsOSBB,
1748
- title = {Prospects of Seizure Prediction Technology for Patients with Epilepsy},
1749
- author = {Tae Joon Kim and K. Jung},
1750
- year = {2020},
1751
- abstract = {뇌전증은 반복적인 뇌전증 발작을 특징으로 하는 신경계 질환 Epilepsy, which is characterized by recurrent seizures, is a relatively common disorder. For patients with drug-refractory epilepsy, it is necessary to forecast and cope with seizures since they cause accidents and diminish quality of life. Seizure prediction is challenging, but numerous studies have investigated methods of detecting the physical changes preceding seizures. Attempts are being made to use wearable devices to deploy technologies that recognize limb movements or changes in the autonomic nervous system and associated heart rate variability. The most researched field is electroencephalography, with the goal of identifying electrical abnormalities before seizures with high sensitivity through deep learning models. If we overcome the limitations of practical applications, seizure prediction technology will change the paradigm of epilepsy treatment.},
1752
- keywords = {Epileptic seizure},
1753
- doi = {10.35615/epilia.2020.00157},
1754
- journal = {Epilia: Epilepsy and Community},
1755
- volume = {2},
1756
- url = {https://api.semanticscholar.org/CorpusId:224894713},
1757
- citation_count = {1},
1758
- booktitle = {unknown},
1759
- }
1760
-
1761
- @article{Dilorenzo2019NeuralSMBC,
1762
- title = {Neural State Monitoring in the Treatment of Epilepsy: Seizure Prediction—Conceptualization to First-In-Man Study},
1763
- author = {D. Dilorenzo and Kent W. Leyde and Dmitry Kaplan},
1764
- year = {2019},
1765
- abstract = {<jats:p>This research study is part of a therapy development effort in which a novel approach was taken to develop an implantable electroencephalographic (EEG) based brain monitoring and seizure prediction system. Previous attempts to predict seizures by other groups had not been demonstrated to be statistically more successful than chance. The primary clinical findings from this group were published in a clinical paper; however much of the fundamental technology, including the strategy and techniques behind the development of the seizure advisory system have not been published. Development of this technology comprised several steps: a vast high quality database of EEG recordings was assembled, a structured approach to algorithm development was undertaken, an implantable 16-channel subdural neural monitoring and seizure advisory system was designed and built, preclinical studies were conducted in a canine model, and a First-In-Man study involving implantation of 15 patients followed for two years was conducted to evaluate the algorithm. The algorithm was successfully trained to correctly provide a) notification of a high likelihood of seizure in 11 of 14 patients, and b) notification of a low likelihood of seizure in 5 of 14 patients (NCT01043406). Continuous neural state monitoring shows promise for applications in seizure prediction and likelihood estimation, and insights for further research and development are drawn.</jats:p>},
1766
- keywords = {Epileptic seizure},
1767
- doi = {10.3390/brainsci9070156},
1768
- pmid = {31266223},
1769
- journal = {Brain Sciences},
1770
- volume = {9},
1771
- url = {https://api.semanticscholar.org/CorpusId:195786948},
1772
- citation_count = {17},
1773
- journal_impact_factor = {2.7},
1774
- }
1775
-
1776
- @article{Lu2023AnESBD,
1777
- title = {An Epileptic Seizure Prediction Method Based on CBAM-3D CNN-LSTM Model},
1778
- author = {Xiang Lu and Anhao Wen and Lei Sun and Hao Wang and Yinjing Guo and Yande Ren},
1779
- year = {2023},
1780
- abstract = {Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification. Finally CBAM is introduced into the model. Different attention is given to the data channel and space to extract key information, so that the model can accurately extract interictal and pre-ictal features. Our proposed approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h−1 on 11 patients from the public CHB-MIT scalp EEG dataset. Clinical and Translational Impact Statement—Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients.},
1781
- keywords = {Epileptic seizure},
1782
- doi = {10.1109/jtehm.2023.3290036},
1783
- pmid = {37426305},
1784
- journal = {IEEE Journal of Translational Engineering in Health and Medicine},
1785
- volume = {11},
1786
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10164022},
1787
- citation_count = {33},
1788
- journal_impact_factor = {3.7},
1789
- pages = {417 - 423},
1790
- }
1791
-
1792
- @article{Agarwal2018EpilepticSPBE,
1793
- title = {Epileptic Seizure Prediction over EEG Data using Hybrid CNN-SVM Model with Edge Computing Services},
1794
- author = {Punjal Agarwal and Hwang-Cheng Wang and Kathiravan Srinivasan},
1795
- year = {2018},
1796
- abstract = {<jats:p>Epilepsy is one of the most common neurological disorders, which is characterized by unpredictable brain seizure. About 30% of the patients are not even aware that they have epilepsy and many have to undergo surgeries to relieve the pain. Therefore, developing a robust brain-computer interface for seizure prediction can help epileptic patients significantly. In this paper, we propose a hybrid CNN-SVM model for better epileptic seizure prediction. A convolutional neural network (CNN) consists of a multilayer structure, which can be adapted and modified according to the requirement of different applications. A support vector machine is a discriminative classifier which can be described by a separating optimal hyperplane used for categorizing new samples. The combination of CNN and SVM is found to provide an effective way for epileptic prediction. Furthermore, the resulting model is made autonomous using edge computing services and is shown to be a viable seizure prediction method. The results can be beneficial in real-life support of epilepsy patients.</jats:p>},
1797
- keywords = {Epileptic seizure, Discriminative model},
1798
- doi = {10.1051/matecconf/201821003016},
1799
- journal = {MATEC Web of Conferences},
1800
- volume = {210},
1801
- url = {https://api.semanticscholar.org/CorpusId:55456708},
1802
- citation_count = {31},
1803
- }
1804
-
1805
- @article{Freestone2015SeizurePSBF,
1806
- title = {Seizure Prediction: Science Fiction or Soon to Become Reality?},
1807
- author = {D. Freestone and Philippa J. Karoly and A. Peterson and L. Kuhlmann and Alan Lai and F. Goodarzy and M. Cook},
1808
- year = {2015},
1809
- abstract = {This review highlights recent developments in the field of epileptic seizure prediction. We argue that seizure prediction is possible; however, most previous attempts have used data with an insufficient amount of information to solve the problem. The review discusses four methods for gaining more information above standard clinical electrophysiological recordings. We first discuss developments in obtaining long-term data that enables better characterisation of signal features and trends. Then, we discuss the usage of electrical stimulation to probe neural circuits to obtain robust information regarding excitability. Following this, we present a review of developments in high-resolution micro-electrode technologies that enable neuroimaging across spatial scales. Finally, we present recent results from data-driven model-based analyses, which enable imaging of seizure generating mechanisms from clinical electrophysiological measurements. It is foreseeable that the field of seizure prediction will shift focus to a more probabilistic forecasting approach leading to improvements in the quality of life for the millions of people who suffer uncontrolled seizures. However, a missing piece of the puzzle is devices to acquire long-term high-quality data. When this void is filled, seizure prediction will become a reality.},
1810
- doi = {10.1007/s11910-015-0596-3},
1811
- pmid = {26404726},
1812
- journal = {Current Neurology and Neuroscience Reports},
1813
- volume = {15},
1814
- url = {https://doi.org/10.1007/s11910-015-0596-3},
1815
- citation_count = {73},
1816
- journal_impact_factor = {4.8},
1817
- pages = {1-9},
1818
- }
1819
-
1820
- @article{Zhang2024ASCBG,
1821
- title = {A scheme combining feature fusion and hybrid deep learning models for epileptic seizure detection and prediction},
1822
- author = {Jincan Zhang and Shaojie Zheng and Wenna Chen and Ganqin Du and Qizhi Fu and H. Jiang},
1823
- year = {2024},
1824
- abstract = {Epilepsy is one of the most well-known neurological disorders globally, leading to individuals experiencing sudden seizures and significantly impacting their quality of life. Hence, there is an urgent necessity for an efficient method to detect and predict seizures in order to mitigate the risks faced by epilepsy patients. In this paper, a new method for seizure detection and prediction is proposed, which is based on multi-class feature fusion and the convolutional neural network-gated recurrent unit-attention mechanism (CNN-GRU-AM) model. Initially, the Electroencephalography (EEG) signal undergoes wavelet decomposition through the Discrete Wavelet Transform (DWT), resulting in six subbands. Subsequently, time-frequency domain and nonlinear features are extracted from each subband. Finally, the CNN-GRU-AM further extracts features and performs classification. The CHB-MIT dataset is used to validate the proposed approach. The results of tenfold cross validation show that our method achieved a sensitivity of 99.24% and 95.47%, specificity of 99.51% and 94.93%, accuracy of 99.35% and 95.16%, and an AUC of 99.34% and 95.15% in seizure detection and prediction tasks, respectively. The results show that the method proposed in this paper can effectively achieve high-precision detection and prediction of seizures, so as to remind patients and doctors to take timely protective measures.},
1825
- keywords = {Epileptic seizure, Feature (linguistics)},
1826
- doi = {10.1038/s41598-024-67855-4},
1827
- pmid = {39043914},
1828
- journal = {Scientific Reports},
1829
- volume = {14},
1830
- url = {https://www.ncbi.nlm.nih.gov/pubmed/39043914},
1831
- citation_count = {17},
1832
- journal_impact_factor = {3.8},
1833
- }
1834
-
1835
- @article{Eberlein2019EvaluationOMBH,
1836
- title = {Evaluation of machine learning methods for seizure prediction in epilepsy},
1837
- author = {Matthias Eberlein and Jens M\{\"u\}ller and Hongliu Yang and Simon Walz and Janina Schreiber and R. Tetzlaff and Susanne Creutz and Ortrud Uckermann and G. Leonhardt},
1838
- year = {2019},
1839
- abstract = {<jats:title>Abstract</jats:title>
1840
- <jats:p>Epilepsy affects about 50 million people worldwide of which one third is refractory to medication. An automated and reliable system that warns of impending seizures would greatly improve patient’s quality of life by overcoming the uncertainty and helplessness due to the unpredicted events. Here we present new seizure prediction results including a performance comparison of different methods. The analysis is based on a new set of intracranial EEG data that has been recorded in our working group during presurgical evaluation. We applied two different methods for seizure prediction and evaluated their performance pseudoprospectively. The comparison of this evaluation with common statistical evaluation reveals possible reasons for overly optimistic estimations of the performance of seizure forecasting systems.</jats:p>},
1841
- keywords = {Epileptic seizure, Learned helplessness},
1842
- doi = {10.1515/cdbme-2019-0028},
1843
- journal = {Current Directions in Biomedical Engineering},
1844
- volume = {5},
1845
- url = {https://api.semanticscholar.org/CorpusId:202730348},
1846
- citation_count = {8},
1847
- pages = {109 - 112},
1848
- }
1849
-
1850
- @article{Salant1998PredictionOEBI,
1851
- title = {Prediction of epileptic seizures from two-channel EEG},
1852
- author = {Y. Salant and Prof. I. Gath and O. Henriksen},
1853
- year = {1998},
1854
- abstract = {Multivariate spectral estimation based on parametric modelling has been applied to epileptic surface EEG in order to detect EEG changes that occur prior to the clinical outbreak of the seizure. A better time/frequency resolution has been achieved using residual energy ratios (Dickinson's method). Prediction of oncoming seizures was based on detection of increased preictal synchronisation by calculation of coherence and pole trajectories. The method has been tested on simulated EEG data and on real EEG data from patients with primary generalised epilepsy. Prediction times of 1-6 s have been found in several seizures from five patients.},
1855
- keywords = {Epileptic seizure, Clinical neurophysiology},
1856
- doi = {10.1007/bf02524422},
1857
- pmid = {10367436},
1858
- journal = {Medical and Biological Engineering and Computing},
1859
- volume = {36},
1860
- url = {https://doi.org/10.1007/BF02524422},
1861
- citation_count = {95},
1862
- pages = {549-556},
1863
- }
1864
-
1865
- @article{Zhu2024EpilepticSPBJ,
1866
- title = {Epileptic seizure prediction via multidimensional transformer and recurrent neural network fusion},
1867
- author = {Rong Zhu and Wen-Xin Pan and Jin-Xing Liu and Junliang Shang},
1868
- year = {2024},
1869
- abstract = {Background Epilepsy is a prevalent neurological disorder in which seizures cause recurrent episodes of unconsciousness or muscle convulsions, seriously affecting the patient’s work, quality of life, and health and safety. Timely prediction of seizures is critical for patients to take appropriate therapeutic measures. Accurate prediction of seizures remains a challenge due to the complex and variable nature of EEG signals. The study proposes an epileptic seizure model based on a multidimensional Transformer with recurrent neural network(LSTM-GRU) fusion for seizure classification of EEG signals. Methodology Firstly, a short-time Fourier transform was employed in the extraction of time-frequency features from EEG signals. Second, the extracted time-frequency features are learned using the Multidimensional Transformer model. Then, LSTM and GRU are then used for further learning of the time and frequency characteristics of the EEG signals. Next, the output features of LSTM and GRU are spliced and categorized using the gating mechanism. Subsequently, seizure prediction is conducted. Results The model was tested on two datasets: the Bonn EEG dataset and the CHB-MIT dataset. On the CHB-MIT dataset, the average sensitivity and average specificity of the model were 98.24% and 97.27%, respectively. On the Bonn dataset, the model obtained about 99% and about 98% accuracy on the binary classification task and the tertiary upper classification task, respectively. Conclusion The findings of the experimental investigation demonstrate that our model is capable of exploiting the temporal and frequency characteristics present within EEG signals.},
1870
- keywords = {Epileptic seizure},
1871
- doi = {10.1186/s12967-024-05678-7},
1872
- pmid = {39367475},
1873
- journal = {Journal of Translational Medicine},
1874
- volume = {22},
1875
- url = {https://www.ncbi.nlm.nih.gov/pubmed/39367475},
1876
- citation_count = {21},
1877
- journal_impact_factor = {6.1},
1878
- }
1879
-
1880
- @article{Ra2023ANEBK,
1881
- title = {A novel epileptic seizure prediction method based on synchroextracting transform and 1-dimensional convolutional neural network},
1882
- author = {Jee Sook Ra and Tianning Li and Yan Li},
1883
- year = {2023},
1884
- abstract = {BACKGROUND AND OBJECTIVE
1885
- Epilepsy is a serious brain disorder affecting more than 50 million people worldwide. If epileptic seizures can be predicted in advance, patients can take measures to avoid unfortunate consequences. Important approaches for epileptic seizure predictions are often signal transformation and classification using electroencephalography (EEG) signals. A time-frequency (TF) transformation, such as the short-term Fourier transform (STFT), has been widely used over many years but curtailed by the Heisenberg uncertainty principle. This research focuses on decomposing epileptic EEG signals with a higher resolution so that an epileptic seizure can be predicted accurately before its episodes.
1886
-
1887
-
1888
- METHODS
1889
- This study applies a synchroextracting transformation (SET) and singular value decomposition (SET-SVD) to improve the time-frequency resolution. The SET is a more energy-concentrated TF representation than classical TF analysis methods.
1890
-
1891
-
1892
- RESULTS
1893
- The pre-seizure classification method employing a 1-dimensional convolutional neural network (1D-CNN) reached an accuracy of 99.71% (the CHB-MIT database) and 100% (the Bonn University database). The experiments on the CHB-MIT show that the accuracy, sensitivity and specificity from the SET-SVD method, compared with the results of the STFT, are increased by 8.12%, 6.24% and 13.91%, respectively. In addition, a multi-layer perceptron (MLP) was also used as a classifier. Its experimental results also show that the SET-SVD generates a higher accuracy, sensitivity and specificity by 5.0%, 2.41% and 11.42% than the STFT, respectively.
1894
-
1895
-
1896
- CONCLUSIONS
1897
- The results of two classification methods (the MLP and 1D-CNN) show that the SET-SVD has the capacity to extract more accurate information than the STFT. The 1D-CNN model is suitable for a fast and accurate patient-specific EEG classification.},
1898
- keywords = {Epileptic seizure, Multilayer perceptron},
1899
- doi = {10.1016/j.cmpb.2023.107678},
1900
- pmid = {37418802},
1901
- journal = {Computer methods and programs in biomedicine},
1902
- volume = {240},
1903
- citation_count = {17},
1904
- journal_impact_factor = {4.9},
1905
- }
1906
-
1907
- @article{Ji2024EpilepticSPBM,
1908
- title = {Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG},
1909
- author = {Dezan Ji and Landi He and Xingchen Dong and Haotian Li and Xiangwen Zhong and Guoyang Liu and Weidong Zhou},
1910
- year = {2024},
1911
- abstract = {<jats:p> Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering. </jats:p>},
1912
- keywords = {Epileptic seizure, Feature (linguistics)},
1913
- doi = {10.1142/s0129065724500412},
1914
- pmid = {38770650},
1915
- journal = {International journal of neural systems},
1916
- volume = {34},
1917
- citation_count = {12},
1918
- journal_impact_factor = {6.6},
1919
- }
1920
-
1921
- @article{Wei2024ACGBN,
1922
- title = {A Compact Graph Convolutional Network With Adaptive Functional Connectivity for Seizure Prediction},
1923
- author = {Boxuan Wei and Lu Xu and Jicong Zhang},
1924
- year = {2024},
1925
- abstract = {Seizure prediction using EEG has significant implications for the daily monitoring and treatment of epilepsy patients. However, the task is challenging due to the underlying spatiotemporal correlations and patient heterogeneity. Traditional methods often use large-scale models with independent components to capture the spatial and temporal features of EEG separately or explore shared patterns among patients with the help of pre-defined functional connectivity. In this paper, we propose a compact model, called the graph convolutional network based on adaptive functional connectivity (AFC-GCN), for seizure prediction. The model can adaptively infer evolution of functional connectivity in epilepsy patients during seizures through data-driven methods and synchronously analyze spatiotemporal response of functional connectivity in multiple topologies. On CHB-MIT datasets, the experimental results demonstrate that AFC-GCN achieves accurate and robust performance with low complexity. (AUC: 0.9820, accuracy: 0.9815, sensitivity: 0.9802, FPR: 0.0172). The proposed method has the potential to predict seizure during daily monitoring.},
1926
- doi = {10.1109/tnsre.2024.3460348},
1927
- pmid = {39269793},
1928
- journal = {IEEE Transactions on Neural Systems and Rehabilitation Engineering},
1929
- volume = {32},
1930
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680083},
1931
- citation_count = {4},
1932
- journal_impact_factor = {4.8},
1933
- pages = {3531-3542},
1934
- }
1935
-
1936
- @article{Ibrahim2023EpilepticSPBO,
1937
- title = {Epileptic seizure prediction based on multiresolution convolutional neural networks},
1938
- author = {Ali K. Ibrahim and H. Zhuang and E. Tognoli and Ali Muhamed Ali and N. Erdol},
1939
- year = {2023},
1940
- abstract = {<jats:p>Epilepsy withholds patients’ control of their body or consciousness and puts them at risk in the course of their daily life. This article pursues the development of a smart neurocomputational technology to alert epileptic patients wearing EEG sensors of an impending seizure. An innovative approach for epileptic seizure prediction has been proposed to improve prediction accuracy and reduce the false alarm rate in comparison with state-of-the-art benchmarks. Maximal overlap discrete wavelet transform was used to decompose EEG signals into different frequency resolutions, and a multiresolution convolutional neural network is designed to extract discriminative features from each frequency band. The algorithm automatically generates patient-specific features to best classify preictal and interictal segments of the subject. The method can be applied to any patient case from any dataset without the need for a handcrafted feature extraction procedure. The proposed approach was tested with two popular epilepsy patient datasets. It achieved a sensitivity of 82% and a false prediction rate of 0.058 with the Children’s Hospital Boston-MIT scalp EEG dataset and a sensitivity of 85% and a false prediction rate of 0.19 with the American Epilepsy Society Seizure Prediction Challenge dataset. This technology provides a personalized solution for the patient that has improved sensitivity and specificity, yet because of the algorithm’s intrinsic ability for generalization, it emancipates from the reliance on epileptologists’ expertise to tune a wearable technological aid, which will ultimately help to deploy it broadly, including in medically underserved locations across the globe.</jats:p>},
1941
- keywords = {Discriminative model, Epileptic seizure, False alarm},
1942
- doi = {10.3389/frsip.2023.1175305},
1943
- journal = {Frontiers in Signal Processing},
1944
- volume = {3},
1945
- url = {https://doi.org/10.3389/frsip.2023.1175305},
1946
- citation_count = {6},
1947
- journal_impact_factor = {1.3},
1948
- booktitle = {Frontiers in Signal Processing},
1949
- }
1950
-
1951
- @article{Pontes2024ConceptdriftsAFBP,
1952
- title = {Concept-drifts adaptation for machine learning EEG epilepsy seizure prediction},
1953
- author = {Edson David Pontes and Mauro F. Pinto and F\{\'a\}bio Lopes and C\{\'e\}sar A. Teixeira},
1954
- year = {2024},
1955
- abstract = {<jats:title>Abstract</jats:title>
1956
- <jats:p>The administration of antiepileptic drugs or surgical interventions fails to control seizures in about 30% of patients. Seizure prediction is a viable strategy for enhancing their quality of life because it can be used in intervention or warning systems. These systems may disarm seizures or, at the very least, lessen their adverse effects. Identifying the preictal interval, which marks the change from regular brain activity to a seizure, is critical to this research field. Even though several predictive studies applied various Electroencephalogram based methodologies, only some have been used in medical devices, and none have been clinically applicable. Recent studies have shown that tracking and handling data changes with time, known as concept drifts is highly relevant in seizure prediction; therefore, it is essential to develop methods able to automatically detect and address changes in context without human intervention. In this work, we aimed to evaluate the impact of automatic concept drift adapting methods in seizure prediction. We tested approaches to predict seizures while adapting to concept drifts during the model’s learning process; for that, we proposed and compared to the Control three patient-specific seizure prediction approaches with a 10-minute seizure prediction horizon: a seizure prediction algorithm incorporating a window adjustment method by optimising performance with Support Vector Machines1 (Backwards-Landmark Window), a seizure prediction algorithm incorporating a data-batch (seizures)selection method using a logistic regression2 (Seizure-batch Regression), and a seizure prediction algorithm with a dynamicintegration of classifiers3 (Dynamic Weighted Ensemble). The proposed methodologies included a retraining process after eachseizure and combined a set of univariate linear features with classifiers based on Support Vector Machines. The Firing Power wasused as a post-processing technique to generate alarms before seizures. Considering a group of 37 patients with Temporal LobeEpilepsy from the EPILEPSIAE database, the best-performing approach (Backwards-Landmark Window) aimed to select datafrom the concept closest to the preictal period of the last training seizure; this led to results of 0.75 ± 0.33 for sensitivity and 1.03 ± 1.00 for false positive rate per hour. Even though the best-performing approach statistically validated 89% of the patients with the surrogate predictor, it is necessary to determine the maximum false positive rate appropriate for each intervention system.</jats:p>},
1957
- keywords = {Epileptic seizure},
1958
- doi = {10.21203/rs.3.rs-3917503/v1},
1959
- pmid = {38589379},
1960
- journal = {Scientific Reports},
1961
- volume = {14},
1962
- url = {https://www.ncbi.nlm.nih.gov/pubmed/38589379},
1963
- citation_count = {4},
1964
- journal_impact_factor = {3.8},
1965
- }
1966
-
1967
- @article{Hejazi2019PredictionOEBQ,
1968
- title = {Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using Granger causality and directed transfer function methods},
1969
- author = {Mona Hejazi and Ali Motie Nasrabadi},
1970
- year = {2019},
1971
- abstract = {Epilepsy is a chronic disorder, which causes strange perceptions, muscle spasms, sometimes seizures, and loss of awareness, associated with abnormal neuronal activity in the brain. The goal of this study is to investigate how effective connectivity (EC) changes effect on unexpected seizures prediction, as this will authorize the patients to play it safe and avoid risk. We approve the hypothesis that EC variables near seizure change significantly so seizure can be predicted in accordance with this variation. We introduce two time-variant coefficients based on standard deviation of EC on Freiburg EEG dataset by using directed transfer function and Granger causality methods and compare index changes over the course of time in five different frequency bands. Comparison of the multivariate and bivariate analysis of factors is implemented in this investigation. The performance based on the suggested methods shows the seizure occurrence period is approximately 50 min that is expected onset stated in, the maximum value of sensitivity approaching ~ 80%, and 0.33 FP/h is the false prediction rate. The findings revealed that greater accuracy and sensitivity are obtained by the designed system in comparison with the results of other works in the same condition. Even though these results still are not sufficient for clinical applications. Based on the conclusions, it can generally be observed that the greater results by DTF method are in the gamma and beta frequency bands.},
1972
- keywords = {Causality, Brain Function},
1973
- doi = {10.1007/s11571-019-09534-z},
1974
- pmid = {31565091},
1975
- journal = {Cognitive Neurodynamics},
1976
- volume = {13},
1977
- url = {https://doi.org/10.1007/s11571-019-09534-z},
1978
- citation_count = {37},
1979
- journal_impact_factor = {3.1},
1980
- pages = {461 - 473},
1981
- }
1982
-
1983
- @article{Boutkhil2023AnEEBR,
1984
- title = {An Efficient EEG Channels-Selection Approaches For Epilepsy Seizure Prediction},
1985
- author = {Sidaoui Boutkhil and Sadouni Kadour},
1986
- year = {2023},
1987
- abstract = {<jats:p>In this study, we are interested in the epilepsy seizures problem. Indeed, we used binary SVM to predict the ongoing seizures and multiclass SVM to predict different states of patients' epilepsy. Brain activity is used as an efficient source for predicting seizures, it's recorded in Electroencephalography (EEG) segments signal. We propose and compare in this paper, three ideas select channels: the highest frequency channels, the channels of the left part of the head, and the channels of the right part of the head. A features extraction stage is important to produce a rich and relevant dataset, in effect, 22 features are calculated for each segment of 5 min from EEG signal. A binary SVM is used to predict the ongoing seizures named pre-ictal, and a one-versus-all multi-class SVM is used to predict four classes (pre-ictal, ictal, inter-ictal, and post-ictal). A classification rate toward 97%, on the selected channels corpus, was achieved by SVM (binary and multiclass) with the majority of patients.</jats:p>},
1988
- doi = {10.47750/pnr.2023.14.03.406},
1989
- journal = {Journal of Pharmaceutical Negative Results},
1990
- url = {https://doi.org/10.47750/pnr.2023.14.03.406},
1991
- }
1992
-
1993
- @article{Cogun2021ACSBT,
1994
- title = {A Channel Selection Method for Epilepsy Seizure Prediction},
1995
- author = {Ercan Coşgun and A. Çelebi and M. G\{\"u\}ll\{\"u\}},
1996
- year = {2021},
1997
- abstract = {The development of systems that can predict epilepsy seizures in real time offers great hope for epilepsy patients. These systems aim to prevent accidents that patients may experience due to loss of consciousness during seizures. Therefore, systems that can predict epileptic seizures should both work in real time and be designed to maintain the daily activities of the patient. In this case, a system with as few electrodes as possible should be developed. In this study, it is aimed to choose the most appropriate electrode in predicting epileptic seizures. Channel selection is made according to two parameters and its effect on seizure prediction is examined. The first parameter is the difference in variance between preictal and interictal; The other parameter is the weighted average sensitivity (WAS). The Rusboosted Tree ensemble classification is used to calculate WAS. The prediction process is carried out with the method we proposed in the previous study. For performance evaluation, prediction accuracy, sensitivity (SEN) and false alarm rates per hour (FPR) are calculated. The prediction performance for the channel selected according to the variance difference results are 69%, 70.9% and 0.054 respectively and the for the channel selected according to WAS results are 69%, 71.8% and 0.031 respectively.},
1998
- keywords = {Epileptic seizure},
1999
- doi = {10.1109/inista52262.2021.9548583},
2000
- journal = {2021 International Conference on INnovations in Intelligent SysTems and Applications (INISTA)},
2001
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9548583},
2002
- citation_count = {3},
2003
- pages = {1-5},
2004
- }
2005
-
2006
- @article{Liu2009EpilepticSPBU,
2007
- title = {Epileptic Seizure Prediction by a System of Particle Filter Associated with a Neural Network},
2008
- author = {Derong Liu and Zhongyu Pang and Zhuo Wang},
2009
- year = {2009},
2010
- abstract = {None of the current epileptic seizure prediction methods can widely be accepted, due to their poor consistency in performance. In this work, we have developed a novel approach to analyze intracranial EEG data. The energy of the frequency band of 4–12 Hz is obtained by wavelet transform. A dynamic model is introduced to describe the process and a hidden variable is included. The hidden variable can be considered as indicator of seizure activities. The method of particle filter associated with a neural network is used to calculate the hidden variable. Six patients' intracranial EEG data are used to test our algorithm including 39 hours of ictal EEG with 22 seizures and 70 hours of normal EEG recordings. The minimum least square error algorithm is applied to determine optimal parameters in the model adaptively. The results show that our algorithm can successfully predict 15 out of 16 seizures and the average prediction time is 38.5 minutes before seizure onset. The sensitivity is about 93.75% and the specificity (false prediction rate) is approximately 0.09 FP/h. A random predictor is used to calculate the sensitivity under significance level of 5%. Compared to the random predictor, our method achieved much better performance.},
2011
- keywords = {Epileptic seizure},
2012
- doi = {10.1155/2009/638534},
2013
- journal = {EURASIP Journal on Advances in Signal Processing},
2014
- volume = {2009},
2015
- url = {https://api.semanticscholar.org/CorpusId:14582646},
2016
- citation_count = {14},
2017
- journal_impact_factor = {1.7},
2018
- pages = {1-10},
2019
- }
2020
-
2021
- @article{Hashimoto2013HeartRVBV,
2022
- title = {Heart rate variability features for epilepsy seizure prediction},
2023
- author = {Hirotsugu Hashimoto and K. Fujiwara and Yoko Suzuki and M. Miyajima and T. Yamakawa and M. Kano and T. Maehara and K. Ohta and T. Sasano and M. Matsuura and E. Matsushima},
2024
- year = {2013},
2025
- keywords = {Epileptic seizure},
2026
- doi = {10.1109/apsipa.2013.6694240},
2027
- journal = {2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference},
2028
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6694240},
2029
- citation_count = {12},
2030
- pages = {1-4},
2031
- }
2032
-
2033
- @article{Haddad2014EpilepsySPBW,
2034
- title = {Epilepsy seizure prediction using graph theory},
2035
- author = {Tahar Haddad and Larbi Talbi and A. Lakhssassi and Naim Ben-Hamida and S. Aouini},
2036
- year = {2014},
2037
- keywords = {Seizure threshold},
2038
- doi = {10.1109/newcas.2014.6934040},
2039
- journal = {2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS)},
2040
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6934040},
2041
- citation_count = {5},
2042
- pages = {293-296},
2043
- }
2044
-
2045
-
2046
- % ============================================================
2047
- % Merged/Unassigned Entries
2048
- % Entries: 9
2049
- % ============================================================
2050
-
2051
- @article{Wodeyar2023DifferentMTG,
2052
- title = {Different methods to estimate the phase of neural rhythms agree, but only during times of low uncertainty},
2053
- author = {Anirudh Wodeyar and François A Marshall and C. Chu and Uri T. Eden and Mark A. Kramer},
2054
- year = {2023},
2055
- abstract = {<jats:p>Rhythms are a common feature of brain activity. Across different types of rhythms, the phase has been proposed to have functional consequences, thus requiring its accurate specification from noisy data. Phase is conventionally specified using techniques that presume a frequency band-limited rhythm. However, in practice, observed brain rhythms are typically non-sinusoidal and amplitude modulated. How these features impact methods to estimate phase remains unclear. To address this, we consider three phase estimation methods, each with different underlying assumptions about the rhythm. We apply these methods to rhythms simulated with different generative mechanisms and demonstrate inconsistency in phase estimates across the different methods. We propose two improvements to the practice of phase estimation: (1) estimating confidence in the phase estimate, and (2) examining the consistency of phase estimates between two (or more) methods.</jats:p>},
2056
- doi = {10.1523/ENEURO.0507-22.2023},
2057
- pmid = {37833061},
2058
- journal = {eNeuro},
2059
- volume = {10},
2060
- url = {https://api.semanticscholar.org/CorpusId:264098986},
2061
- journal_impact_factor = {2.7},
2062
- }
2063
-
2064
- @article{Formoso2021ModellingBCH,
2065
- title = {Modelling Brain Connectivity Networks by Graph Embedding for Dyslexia
2066
- Diagnosis},
2067
- author = {M. Formoso and A. Ortiz and F. J. Mart'inez-Murcia and N. Gallego-Molina and J. Luque},
2068
- year = {2021},
2069
- abstract = {Several methods have been developed to extract information from electroencephalograms (EEG). One of them is Phase-Amplitude Coupling (PAC) which is a type of Cross-Frequency Coupling (CFC) method, consisting in measure the synchronization of phase and amplitude for the different EEG bands and electrodes. This provides information regarding brain areas that are synchronously activated, and eventually, a marker of functional connectivity between these areas. In this work, intra and inter electrode PAC is computed obtaining the relationship among different electrodes used in EEG. The connectivity information is then treated as a graph in which the different nodes are the electrodes and the edges PAC values between them. These structures are embedded to create a feature vector that can be further used to classify multichannel EEG samples. The proposed method has been applied to classified EEG samples acquired using specific auditory stimuli in a task designed for dyslexia disorder diagnosis in seven years old children EEG's. The proposed method provides AUC values up to 0.73 and allows selecting the most discriminant electrodes and EEG bands.},
2070
- keywords = {Phase synchronization, Graph Embedding, Feature (linguistics)},
2071
- doi = {10.1007/978-3-030-88163-4_9},
2072
- eprint = {2104.05497},
2073
- journal = {ArXiv},
2074
- url = {https://api.semanticscholar.org/CorpusId:233209974},
2075
- citation_count = {4},
2076
- volume = {abs/2104.05497},
2077
- }
2078
-
2079
- @article{GallegoMolina2021ComplexNMU,
2080
- title = {Complex network modelling of EEG band coupling in dyslexia: an
2081
- exploratory analysis of auditory processing and diagnosis},
2082
- author = {N. Gallego-Molina and Andr\{\'e\}s Ortiz and Francisco J. Mart\{\'i\}nez-Murcia and M. Formoso and Almudena Gim\{\'e\}nez},
2083
- year = {2021},
2084
- abstract = {Complex network analysis has an increasing relevance in the study of neurological disorders, enhancing the knowledge of brain's structural and functional organization. Network structure and efficiency reveal different brain states along with different ways of processing the information. This work is structured around the exploratory analysis of the brain processes involved in low-level auditory processing. A complex network analysis was performed on the basis of brain coupling obtained from Electroencephalography (EEG) data, while different auditory stimuli were presented to the subjects. This coupling is inferred from the Phase-Amplitude coupling (PAC) from different EEG electrodes to explore differences between controls and dyslexic subjects. Coupling data allows the construction of a graph, and then, graph theory is used to study the characteristics of the complex networks throughout time for controls and dyslexics. This results in a set of metrics including clustering coefficient, path length and small-worldness. From this, different characteristics linked to the temporal evolution of networks and coupling are pointed out for dyslexics. Our study revealed patterns related to Dyslexia as losing the small-world topology. Finally, these graph-based features are used to classify between controls and dyslexic subjects by means of a Support Vector Machine (SVM).},
2085
- doi = {10.1016/j.knosys.2021.108098},
2086
- eprint = {2106.14675},
2087
- journal = {Knowledge-Based Systems},
2088
- url = {https://api.semanticscholar.org/CorpusId:263786486},
2089
- journal_impact_factor = {7.2},
2090
- }
2091
-
2092
- @article{Combrisson2020TensorpacAOAH,
2093
- title = {Tensorpac : an open-source Python toolbox for tensor-based Phase-Amplitude Coupling measurement in electrophysiological brain signals},
2094
- author = {Etienne Combrisson and T. Nest and A. Brovelli and Robin A. A. Ince and Juan L. P. Soto and A. Guillot and K. Jerbi},
2095
- year = {2020},
2096
- abstract = {<jats:title>Abstract</jats:title><jats:p>Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="https://github.com/EtienneCmb/tensorpac">https://github.com/EtienneCmb/tensorpac</jats:ext-link>). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience.</jats:p>},
2097
- keywords = {Python, Toolbox, Spurious relationship, Computational neuroscience},
2098
- doi = {10.1371/journal.pcbi.1008302},
2099
- pmid = {33119593},
2100
- journal = {PLoS Computational Biology},
2101
- volume = {16},
2102
- url = {https://www.ncbi.nlm.nih.gov/pubmed/33119593},
2103
- citation_count = {63},
2104
- journal_impact_factor = {3.8},
2105
- }
2106
-
2107
- @article{Lee2017ImplicitAOBS,
2108
- title = {Implicit Analysis of Perceptual Multimedia Experience Based on
2109
- Physiological Response: A Review},
2110
- author = {Jong-Seok Lee and Seong-eun Moon},
2111
- year = {2017},
2112
- abstract = {The exponential growth of popularity of multimedia has led to needs for user-centric adaptive applications that manage multimedia content more effectively. Implicit analysis, which examines users’ perceptual experience of multimedia by monit-oring physiological or behavioral cues, has potential to satisfy such demands. Particularly, physiological signals categorized into cerebral physiological signals (electroencephalography, functional magnetic resonance imaging, and functional near-infrared spectro-scopy) and peripheral physiological signals (heart rate, respiration, skin temperature, etc.) have recently received attention along with notable development of wearable physiological sensors. In this paper, we review existing studies on physiological signal analysis exploring perceptual experience of multimedia. Furthermore, we discuss current trends and challenges.},
2113
- doi = {10.48550/arXiv.1809.04254},
2114
- eprint = {1809.04254},
2115
- journal = {IEEE Transactions on Multimedia},
2116
- volume = {19},
2117
- url = {https://api.semanticscholar.org/CorpusId:25121813},
2118
- journal_impact_factor = {8.4},
2119
- pages = {340-353},
2120
- }
2121
-
2122
- @article{Usman2020PrincipleCAAB,
2123
- title = {Principle components analysis for seizures prediction using wavelet
2124
- transform},
2125
- author = {Syed Muhammad Usman and Shahzad Latif and Arshad Beg},
2126
- year = {2020},
2127
- abstract = {Epilepsy is a disease in which frequent seizures occur due to abnormal activity of neurons. Patients affected by this disease can be treated with the help of medicines or surgical procedures. However, both of these methods are not quite useful. The only method to treat epilepsy patients effectively is to predict the seizure before its onset. It has been observed that abnormal activity in the brain signals starts before the occurrence of seizure known as the preictal state. Many researchers have proposed machine learning models for prediction of epileptic seizures by detecting the start of preictal state. However, pre-processing, feature extraction and classification remains a great challenge in the prediction of preictal state. Therefore, we propose a model that uses common spatial pattern filtering and wavelet transform for preprocessing, principal component analysis for feature extraction and support vector machines for detecting preictal state. We have applied our model on 23 subjects and an average sensitivity of 93.1% has been observed for 84 seizures.},
2128
- doi = {10.48550/arxiv.2004.07937},
2129
- eprint = {2004.07937},
2130
- journal = {ArXiv},
2131
- url = {https://api.semanticscholar.org/CorpusId:86513612},
2132
- citation_count = {1},
2133
- volume = {abs/2004.07937},
2134
- }
2135
-
2136
- @article{Liu2019UsingDLAG,
2137
- title = {Using Deep Learning and Machine Learning to Detect Epileptic Seizure
2138
- with Electroencephalography (EEG) Data},
2139
- author = {Haotian Liu and Lin Xi and Ying Zhao and Zhixiang Li},
2140
- year = {2019},
2141
- abstract = {The prediction of epileptic seizure has always been extremely challenging in medical domain. However, as the development of computer technology, the application of machine learning introduced new ideas for seizure forecasting. Applying machine learning model onto the predication of epileptic seizure could help us obtain a better result and there have been plenty of scientists who have been doing such works so that there are sufficient medical data provided for researchers to do training of machine learning models.},
2142
- keywords = {Binary classification, Feature Engineering, Epileptic seizure, Gradient boosting, Feature (linguistics)},
2143
- doi = {10.11648/j.mlr.20190403.11},
2144
- eprint = {1910.02544},
2145
- journal = {ArXiv},
2146
- volume = {4},
2147
- url = {https://api.semanticscholar.org/CorpusId:203836141},
2148
- citation_count = {13},
2149
- }
2150
-
2151
- @article{Hussein2019HumanIEAQ,
2152
- title = {Human Intracranial EEG Quantitative Analysis and Automatic Feature
2153
- Learning for Epileptic Seizure Prediction},
2154
- author = {Ramy Hussein and M. O. Ahmed and R. Ward and Z. J. Wang and L. Kuhlmann and Yi Guo},
2155
- year = {2019},
2156
- abstract = {Objective: The aim of this study is to develop an efficient and reliable epileptic seizure prediction system using intracranial EEG (iEEG) data, especially for people with drug-resistant epilepsy. The prediction procedure should yield accurate results in a fast enough fashion to alert patients of impending seizures. Methods: We quantitatively analyze the human iEEG data to obtain insights into how the human brain behaves before and between epileptic seizures. We then introduce an efficient pre-processing method for reducing the data size and converting the time-series iEEG data into an image-like format that can be used as inputs to convolutional neural networks (CNNs). Further, we propose a seizure prediction algorithm that uses cooperative multi-scale CNNs for automatic feature learning of iEEG data. Results: 1) iEEG channels contain complementary information and excluding individual channels is not advisable to retain the spatial information needed for accurate prediction of epileptic seizures. 2) The traditional PCA is not a reliable method for iEEG data reduction in seizure prediction. 3) Hand-crafted iEEG features may not be suitable for reliable seizure prediction performance as the iEEG data varies between patients and over time for the same patient. 4) Seizure prediction results show that our algorithm outperforms existing methods by achieving an average sensitivity of 87.85% and AUC score of 0.84. Conclusion: Understanding how the human brain behaves before seizure attacks and far from them facilitates better designs of epileptic seizure predictors. Significance: Accurate seizure prediction algorithms can warn patients about the next seizure attack so they could avoid dangerous activities. Medications could then be administered to abort the impending seizure and minimize the risk of injury.},
2157
- keywords = {Epileptic seizure, Feature (linguistics)},
2158
- doi = {10.48550/arxiv.1904.03603},
2159
- eprint = {1904.03603},
2160
- journal = {ArXiv},
2161
- url = {https://api.semanticscholar.org/CorpusId:102352588},
2162
- citation_count = {39},
2163
- volume = {abs/1904.03603},
2164
- }
2165
-
2166
- @article{Chen2024EpilepsySDBL,
2167
- title = {Epilepsy Seizure Detection and Prediction using an Approximate Spiking
2168
- Convolutional Transformer},
2169
- author = {Qinyu Chen and Congyi Sun and Chang Gao and Shih-Chii Liu},
2170
- year = {2024},
2171
- abstract = {Epilepsy is a common disease of the nervous system. Timely prediction of seizures and intervention treatment can significantly reduce the accidental injury of patients and protect the life and health of patients. This paper presents a tiny neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments from scalped long-term electroencephalogram (EEG) recordings. We report evaluation results from the Spiking Conformer model using the Boston Children’s Hospital-MIT (CHB-MIT) EEG dataset. By leveraging spike-based addition operations, the Spiking Conformer significantly reduces the classification computational cost compared to the non-spiking model. Additionally, we introduce an approximate spiking neuron layer to further reduce spike-triggered neuron updates by nearly 38% without sacrificing accuracy. Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task, and 96.8%, 89.5% for the seizure prediction task, and needs >10x fewer operations compared to the non-spiking equivalent model.},
2172
- doi = {10.1109/iscas58744.2024.10558341},
2173
- eprint = {2402.09424},
2174
- journal = {2024 IEEE International Symposium on Circuits and Systems (ISCAS)},
2175
- url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10558341},
2176
- citation_count = {6},
2177
- pages = {1-5},
2178
- }