sciml 0.0.6__py3-none-any.whl → 0.0.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sciml/__init__.py +1 -1
- sciml/pipelines.py +173 -143
- sciml/utils.py +45 -45
- {sciml-0.0.6.dist-info → sciml-0.0.7.dist-info}/LICENSE +21 -21
- {sciml-0.0.6.dist-info → sciml-0.0.7.dist-info}/METADATA +13 -13
- sciml-0.0.7.dist-info/RECORD +8 -0
- {sciml-0.0.6.dist-info → sciml-0.0.7.dist-info}/WHEEL +1 -1
- sciml-0.0.6.dist-info/RECORD +0 -8
- {sciml-0.0.6.dist-info → sciml-0.0.7.dist-info}/top_level.txt +0 -0
sciml/__init__.py
CHANGED
@@ -1,2 +1,2 @@
|
|
1
|
-
# coding: utf-8
|
1
|
+
# coding: utf-8
|
2
2
|
__all__ = ["utils", "pipelines"]
|
sciml/pipelines.py
CHANGED
@@ -1,144 +1,174 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pandas as pd
|
3
|
-
from scipy import stats
|
4
|
-
from
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
'
|
23
|
-
'
|
24
|
-
'
|
25
|
-
'
|
26
|
-
'
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
'
|
52
|
-
'
|
53
|
-
'
|
54
|
-
'
|
55
|
-
'
|
56
|
-
'
|
57
|
-
'
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
'
|
76
|
-
'
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
'
|
87
|
-
'
|
88
|
-
'
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
from
|
97
|
-
regr =
|
98
|
-
elif model_name == "
|
99
|
-
from sklearn.
|
100
|
-
regr =
|
101
|
-
elif model_name == "
|
102
|
-
from sklearn.
|
103
|
-
regr =
|
104
|
-
elif model_name == "
|
105
|
-
from
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
from scipy import stats
|
4
|
+
from copy import deepcopy
|
5
|
+
from tqdm import tqdm
|
6
|
+
from sklearn.metrics import mean_squared_error
|
7
|
+
from xgboost import XGBRegressor
|
8
|
+
|
9
|
+
def get_metrics(df, truth = 'truth', pred = 'pred', return_dict = False):
|
10
|
+
'''
|
11
|
+
Calculate statistical measures between validation and prediction sequences
|
12
|
+
'''
|
13
|
+
df = df[[truth, pred]].copy().dropna()
|
14
|
+
slope, intercept, r_value, p_value, std_err = stats.linregress(df.dropna()[truth], df.dropna()[pred])
|
15
|
+
r2 = r_value**2
|
16
|
+
mse = mean_squared_error(df.dropna()[truth], df.dropna()[pred])
|
17
|
+
rmse = np.sqrt(mse)
|
18
|
+
mbe = np.mean(df.dropna()[pred] - df.dropna()[truth])
|
19
|
+
mae = (df.dropna()[pred] - df.dropna()[truth]).abs().mean()
|
20
|
+
if return_dict:
|
21
|
+
return pd.DataFrame.from_dict([{
|
22
|
+
'r2': r2,
|
23
|
+
'Slope': slope,
|
24
|
+
'RMSE': rmse,
|
25
|
+
'MBE': mbe,
|
26
|
+
'MAE': mae,
|
27
|
+
'Intercept': intercept,
|
28
|
+
'p-value': p_value,
|
29
|
+
'std_err': std_err
|
30
|
+
}])
|
31
|
+
else:
|
32
|
+
return r2, slope, rmse, mbe, mae, intercept, p_value, std_err
|
33
|
+
|
34
|
+
# ===============================================================================================================================
|
35
|
+
# Machine learning algorithms
|
36
|
+
def train_ml(
|
37
|
+
X_train, y_train, model_name = 'XGB',
|
38
|
+
xgb_params_user = None, rfr_params_user = None,
|
39
|
+
mlp_params_user = None, svr_params_user = None,
|
40
|
+
df21_params_user = None,
|
41
|
+
gpu = False, partial_mode = False
|
42
|
+
):
|
43
|
+
# -------------------------------------------------------------------------
|
44
|
+
# Setup parameters:
|
45
|
+
if xgb_params_user:
|
46
|
+
xgb_params = xgb_params_user
|
47
|
+
else:
|
48
|
+
xgb_params = {
|
49
|
+
"objective": "reg:squarederror",
|
50
|
+
"random_state": 0,
|
51
|
+
'seed': 0,
|
52
|
+
'n_estimators': 100,
|
53
|
+
'max_depth': 6,
|
54
|
+
'min_child_weight': 4,
|
55
|
+
'subsample': 0.8,
|
56
|
+
'colsample_bytree': 0.8,
|
57
|
+
'gamma': 0,
|
58
|
+
'reg_alpha': 0,
|
59
|
+
'reg_lambda': 1,
|
60
|
+
'learning_rate': 0.05,
|
61
|
+
}
|
62
|
+
|
63
|
+
xgb_gpu_params = {
|
64
|
+
'tree_method': 'gpu_hist',
|
65
|
+
'gpu_id': 0,
|
66
|
+
# "n_gpus": 2,
|
67
|
+
}
|
68
|
+
|
69
|
+
if gpu: xgb_params.update(xgb_gpu_params)
|
70
|
+
|
71
|
+
if rfr_params_user:
|
72
|
+
rfr_params = rfr_params_user
|
73
|
+
else:
|
74
|
+
rfr_params = {
|
75
|
+
'max_depth': 20,
|
76
|
+
'min_samples_leaf': 3,
|
77
|
+
'min_samples_split': 12,
|
78
|
+
'n_estimators': 100,
|
79
|
+
'n_jobs': -1
|
80
|
+
}
|
81
|
+
|
82
|
+
if df21_params_user:
|
83
|
+
df21_params = df21_params_user
|
84
|
+
else:
|
85
|
+
df21_params = {
|
86
|
+
'random_state': 1,
|
87
|
+
'verbose' : 0,
|
88
|
+
'predictor': "xgboost",
|
89
|
+
'n_jobs' : -1,
|
90
|
+
'predictor_kwargs' : xgb_params,
|
91
|
+
'partial_mode' : partial_mode
|
92
|
+
}
|
93
|
+
# -------------------------------------------------------------------------
|
94
|
+
# Run:
|
95
|
+
if model_name == "XGB":
|
96
|
+
from xgboost import XGBRegressor
|
97
|
+
regr = XGBRegressor(**xgb_params)
|
98
|
+
elif model_name == "MLP":
|
99
|
+
from sklearn.neural_network import MLPRegressor
|
100
|
+
regr = MLPRegressor(**mlp_params_user)
|
101
|
+
elif model_name == "RFR":
|
102
|
+
from sklearn.ensemble import RandomForestRegressor
|
103
|
+
regr = RandomForestRegressor(**rfr_params)
|
104
|
+
elif model_name == "SVR":
|
105
|
+
from sklearn.svm import SVR
|
106
|
+
regr = SVR(**svr_params_user)
|
107
|
+
elif model_name == "DF21":
|
108
|
+
from deepforest import CascadeForestRegressor
|
109
|
+
# https://deep-forest.readthedocs.io/en/latest/api_reference.html?highlight=CascadeForestRegressor#cascadeforestregressor
|
110
|
+
# predictor: {"forest", "xgboost", "lightgbm"}
|
111
|
+
# regr = CascadeForestRegressor(random_state = 1, verbose = 0, predictor = "xgboost", n_jobs = -1, predictor_kwargs = xgb_params, partial_mode = partial_mode)
|
112
|
+
regr = CascadeForestRegressor(**df21_params)
|
113
|
+
regr.fit(X_train, y_train)
|
114
|
+
return regr
|
115
|
+
|
116
|
+
def test_ml(X_test, y_test, regr):
|
117
|
+
res = y_test.copy() # y_test is 2D pandas dataframe.
|
118
|
+
res.columns = ['truth']
|
119
|
+
res['pred'] = regr.predict(X_test)
|
120
|
+
return res
|
121
|
+
|
122
|
+
def run_ensemble(X_train, y_train, n_models = 10, frac_sample = 0.8):
|
123
|
+
base_params_xgb = {
|
124
|
+
"objective": "reg:squarederror",
|
125
|
+
'seed': 0,
|
126
|
+
"random_state": 0,
|
127
|
+
}
|
128
|
+
params_xgb = deepcopy(base_params_xgb)
|
129
|
+
# dropout-like regularization
|
130
|
+
params_xgb.update({
|
131
|
+
"subsample": 0.8, # Use 80% of the data for each tree
|
132
|
+
"colsample_bytree": 0.8, # Use 80% of the features for each tree
|
133
|
+
})
|
134
|
+
|
135
|
+
models = []
|
136
|
+
for i in tqdm(range(n_models)):
|
137
|
+
# Create a bootstrapped dataset
|
138
|
+
y_resampled = y_train.copy().sample(frac = frac_sample, random_state = i)
|
139
|
+
X_resampled = X_train.copy().loc[y_resampled.index]
|
140
|
+
# print(y_resampled.sort_index().index[0], y_resampled.sort_index().index[-1])
|
141
|
+
|
142
|
+
# Train the XGBoost model
|
143
|
+
params_xgb.update({'random_state': i})
|
144
|
+
model = XGBRegressor(**params_xgb)
|
145
|
+
model.fit(X_resampled, y_resampled)
|
146
|
+
models.append(model)
|
147
|
+
return models
|
148
|
+
|
149
|
+
# ===============================================================================================================================
|
150
|
+
# Deep learning neural networks
|
151
|
+
|
152
|
+
try:
|
153
|
+
from tensorflow import keras
|
154
|
+
from tensorflow.keras import layers
|
155
|
+
from tensorflow.keras import models
|
156
|
+
# from keras.layers import Dropout
|
157
|
+
from keras.callbacks import EarlyStopping
|
158
|
+
from scitbx.stutils import *
|
159
|
+
except Exception as e:
|
160
|
+
print(e)
|
161
|
+
|
162
|
+
def train_lstm(X_train, y_train, nfeature, ntime, verbose = 2, epochs = 200, batch_size = 64):
|
163
|
+
# create and fit the LSTM network
|
164
|
+
model = models.Sequential()
|
165
|
+
model.add(layers.LSTM(64, input_shape=(nfeature, ntime)))
|
166
|
+
model.add(layers.Dropout(0.2))
|
167
|
+
model.add(layers.Dense(16, activation='relu'))
|
168
|
+
model.add(layers.Dropout(0.2))
|
169
|
+
model.add(layers.Dense(1, activation='relu'))
|
170
|
+
model.compile(loss='mean_squared_error', optimizer='adam')
|
171
|
+
# es = EarlyStopping(monitor='loss', mode='min', verbose=1)
|
172
|
+
# model.fit(X_train.reshape(-1, nsites, nfeats), y_train, epochs=100, batch_size=256, verbose=2, callbacks=[es])
|
173
|
+
model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, verbose=verbose)
|
144
174
|
return model
|
sciml/utils.py
CHANGED
@@ -1,46 +1,46 @@
|
|
1
|
-
import numpy as np
|
2
|
-
import pandas as pd
|
3
|
-
from sklearn.model_selection import ShuffleSplit
|
4
|
-
from sklearn.model_selection import train_test_split
|
5
|
-
|
6
|
-
# randomly select sites
|
7
|
-
def random_select(ds, count, num, random_state = 0):
|
8
|
-
np.random.seed(random_state)
|
9
|
-
idxs = np.random.choice(np.delete(np.arange(len(ds)), count), num, replace = False)
|
10
|
-
return np.sort(idxs)
|
11
|
-
|
12
|
-
def split(Xs, ys, return_index = False, test_size = 0.33, random_state = 42):
|
13
|
-
if return_index:
|
14
|
-
sss = ShuffleSplit(n_splits=1, test_size = test_size, random_state = random_state)
|
15
|
-
sss.get_n_splits(Xs, ys)
|
16
|
-
train_index, test_index = next(sss.split(Xs, ys))
|
17
|
-
return (train_index, test_index)
|
18
|
-
else:
|
19
|
-
X_train, X_test, y_train, y_test = train_test_split(
|
20
|
-
Xs, ys,
|
21
|
-
test_size = test_size,
|
22
|
-
random_state = random_state
|
23
|
-
)
|
24
|
-
return (X_train, X_test, y_train, y_test)
|
25
|
-
|
26
|
-
def split_cut(Xs, ys, test_ratio = 0.33):
|
27
|
-
assert ys.ndim == 2, 'ys must be 2D!'
|
28
|
-
assert len(Xs) == len(ys), 'Xs and ys should be equally long!'
|
29
|
-
assert type(Xs) == type(ys), 'Xs and ys should be the same data type!'
|
30
|
-
if not type(Xs) in [pd.core.frame.DataFrame, np.ndarray]: raise Exception('Only accept numpy ndarray or pandas dataframe')
|
31
|
-
anchor = int(np.floor(len(ys) * (1 - test_ratio)))
|
32
|
-
|
33
|
-
if type(Xs) == pd.core.frame.DataFrame:
|
34
|
-
X_train = Xs.iloc[0: anchor, :]
|
35
|
-
X_test = Xs.iloc[anchor::, :]
|
36
|
-
y_train = ys.iloc[0: anchor, :]
|
37
|
-
y_test = ys.iloc[anchor::, :]
|
38
|
-
else:
|
39
|
-
X_train = Xs[0: anchor, :]
|
40
|
-
X_test = Xs[anchor::, :]
|
41
|
-
y_train = ys[0: anchor, :]
|
42
|
-
y_test = ys[anchor::, :]
|
43
|
-
|
44
|
-
assert len(X_train) + len(X_test) == len(Xs), 'The sum of train and test lengths must equal to Xs/ys!'
|
45
|
-
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
from sklearn.model_selection import ShuffleSplit
|
4
|
+
from sklearn.model_selection import train_test_split
|
5
|
+
|
6
|
+
# randomly select sites
|
7
|
+
def random_select(ds, count, num, random_state = 0):
|
8
|
+
np.random.seed(random_state)
|
9
|
+
idxs = np.random.choice(np.delete(np.arange(len(ds)), count), num, replace = False)
|
10
|
+
return np.sort(idxs)
|
11
|
+
|
12
|
+
def split(Xs, ys, return_index = False, test_size = 0.33, random_state = 42):
|
13
|
+
if return_index:
|
14
|
+
sss = ShuffleSplit(n_splits=1, test_size = test_size, random_state = random_state)
|
15
|
+
sss.get_n_splits(Xs, ys)
|
16
|
+
train_index, test_index = next(sss.split(Xs, ys))
|
17
|
+
return (train_index, test_index)
|
18
|
+
else:
|
19
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
20
|
+
Xs, ys,
|
21
|
+
test_size = test_size,
|
22
|
+
random_state = random_state
|
23
|
+
)
|
24
|
+
return (X_train, X_test, y_train, y_test)
|
25
|
+
|
26
|
+
def split_cut(Xs, ys, test_ratio = 0.33):
|
27
|
+
assert ys.ndim == 2, 'ys must be 2D!'
|
28
|
+
assert len(Xs) == len(ys), 'Xs and ys should be equally long!'
|
29
|
+
assert type(Xs) == type(ys), 'Xs and ys should be the same data type!'
|
30
|
+
if not type(Xs) in [pd.core.frame.DataFrame, np.ndarray]: raise Exception('Only accept numpy ndarray or pandas dataframe')
|
31
|
+
anchor = int(np.floor(len(ys) * (1 - test_ratio)))
|
32
|
+
|
33
|
+
if type(Xs) == pd.core.frame.DataFrame:
|
34
|
+
X_train = Xs.iloc[0: anchor, :]
|
35
|
+
X_test = Xs.iloc[anchor::, :]
|
36
|
+
y_train = ys.iloc[0: anchor, :]
|
37
|
+
y_test = ys.iloc[anchor::, :]
|
38
|
+
else:
|
39
|
+
X_train = Xs[0: anchor, :]
|
40
|
+
X_test = Xs[anchor::, :]
|
41
|
+
y_train = ys[0: anchor, :]
|
42
|
+
y_test = ys[anchor::, :]
|
43
|
+
|
44
|
+
assert len(X_train) + len(X_test) == len(Xs), 'The sum of train and test lengths must equal to Xs/ys!'
|
45
|
+
|
46
46
|
return (X_train, X_test, y_train, y_test)
|
@@ -1,21 +1,21 @@
|
|
1
|
-
MIT License
|
2
|
-
|
3
|
-
Copyright (c) 2021 Zhu
|
4
|
-
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
7
|
-
in the Software without restriction, including without limitation the rights
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
10
|
-
furnished to do so, subject to the following conditions:
|
11
|
-
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
13
|
-
copies or substantial portions of the Software.
|
14
|
-
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
-
SOFTWARE.
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2021 Zhu
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -1,13 +1,13 @@
|
|
1
|
-
Metadata-Version: 2.1
|
2
|
-
Name: sciml
|
3
|
-
Version: 0.0.
|
4
|
-
Summary: draw and basic calculations/conversions
|
5
|
-
Home-page: https://github.com/soonyenju/sciml
|
6
|
-
Author: Songyan Zhu
|
7
|
-
Author-email: zhusy93@gmail.com
|
8
|
-
License: MIT Licence
|
9
|
-
Keywords: Scientific machine learning wrappers
|
10
|
-
Platform: any
|
11
|
-
License-File: LICENSE
|
12
|
-
|
13
|
-
coming soon
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: sciml
|
3
|
+
Version: 0.0.7
|
4
|
+
Summary: draw and basic calculations/conversions
|
5
|
+
Home-page: https://github.com/soonyenju/sciml
|
6
|
+
Author: Songyan Zhu
|
7
|
+
Author-email: zhusy93@gmail.com
|
8
|
+
License: MIT Licence
|
9
|
+
Keywords: Scientific machine learning wrappers
|
10
|
+
Platform: any
|
11
|
+
License-File: LICENSE
|
12
|
+
|
13
|
+
coming soon
|
@@ -0,0 +1,8 @@
|
|
1
|
+
sciml/__init__.py,sha256=Asqzx08kEOBLv_IRE20VlHxZu9XgydyrzIMUDRE-qiU,48
|
2
|
+
sciml/pipelines.py,sha256=5qfeHdxGhF-GMu-rTiInPv5metXiT32uSENIDFd2Ths,6333
|
3
|
+
sciml/utils.py,sha256=u5DzQJV4aCZ-p7sY56Fxzj8WDGYOgn1rOTeGzAw0vwY,1831
|
4
|
+
sciml-0.0.7.dist-info/LICENSE,sha256=dX4jBmkgQPWc_TfYkXtKQzVIgZQWFuHZ8vQjV4sEeV4,1060
|
5
|
+
sciml-0.0.7.dist-info/METADATA,sha256=363EbWoSVqR9qAdhOfeVD8RiP6DfcalvDiZECJ6LW3s,313
|
6
|
+
sciml-0.0.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
|
7
|
+
sciml-0.0.7.dist-info/top_level.txt,sha256=dS_7aBCZFKQE3myPy5sh4USjQZCZyGg382-YxUUYcdw,6
|
8
|
+
sciml-0.0.7.dist-info/RECORD,,
|
sciml-0.0.6.dist-info/RECORD
DELETED
@@ -1,8 +0,0 @@
|
|
1
|
-
sciml/__init__.py,sha256=9Yj8J5bW79Kb3JvoOG8k-AmMv-M5Mn8KLmf-wArsJdo,49
|
2
|
-
sciml/pipelines.py,sha256=lAGtLwp6JKO6aBUZ0ka8VrA013QVDRmAlHG9dQnxY88,5424
|
3
|
-
sciml/utils.py,sha256=qCdABaTUu3K0R269jI7D_8SO6AqEjphg03CzdxCJR2k,1876
|
4
|
-
sciml-0.0.6.dist-info/LICENSE,sha256=hcunSTJmVgRcUNOa1rKl8axtY3Jsy2B4wXDYtQsrAt0,1081
|
5
|
-
sciml-0.0.6.dist-info/METADATA,sha256=PHJ68gGZvR-leW-QCRW_-ZsnHNycM1Kvd4MA_YJKtsU,326
|
6
|
-
sciml-0.0.6.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
|
7
|
-
sciml-0.0.6.dist-info/top_level.txt,sha256=dS_7aBCZFKQE3myPy5sh4USjQZCZyGg382-YxUUYcdw,6
|
8
|
-
sciml-0.0.6.dist-info/RECORD,,
|
File without changes
|