sciml 0.0.6__py3-none-any.whl → 0.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sciml/__init__.py CHANGED
@@ -1,2 +1,2 @@
1
- # coding: utf-8
1
+ # coding: utf-8
2
2
  __all__ = ["utils", "pipelines"]
sciml/pipelines.py CHANGED
@@ -1,144 +1,174 @@
1
- import numpy as np
2
- import pandas as pd
3
- from scipy import stats
4
- from sklearn.metrics import mean_squared_error
5
-
6
- def get_metrics(df, truth = 'truth', pred = 'pred', return_dict = False):
7
- '''
8
- Calculate statistical measures between validation and prediction sequences
9
- '''
10
- df = df[[truth, pred]].copy().dropna()
11
- slope, intercept, r_value, p_value, std_err = stats.linregress(df.dropna()[truth], df.dropna()[pred])
12
- r2 = r_value**2
13
- mse = mean_squared_error(df.dropna()[truth], df.dropna()[pred])
14
- rmse = np.sqrt(mse)
15
- mbe = np.mean(df.dropna()[pred] - df.dropna()[truth])
16
- mae = (df.dropna()[pred] - df.dropna()[truth]).abs().mean()
17
- if return_dict:
18
- return pd.DataFrame.from_dict([{
19
- 'R2': r2,
20
- 'Slope': slope,
21
- 'RMSE': rmse,
22
- 'MBE': mbe,
23
- 'MAE': mae,
24
- 'Intercept': intercept,
25
- 'p-value': p_value,
26
- 'std_err': std_err
27
- }])
28
- else:
29
- return r2, slope, rmse, mbe, mae, intercept, p_value, std_err
30
-
31
- # ===============================================================================================================================
32
- # Machine learning algorithms
33
- def train_ml(
34
- X_train, y_train, model_name = 'XGB',
35
- xgb_params_user = None, rfr_params_user = None,
36
- mlp_params_user = None, svr_params_user = None,
37
- df21_params_user = None,
38
- gpu = False, partial_mode = False
39
- ):
40
- # -------------------------------------------------------------------------
41
- # Setup parameters:
42
- if xgb_params_user:
43
- xgb_params = xgb_params_user
44
- else:
45
- xgb_params = {
46
- "objective": "reg:squarederror",
47
- "random_state": 0,
48
- 'seed': 0,
49
- 'n_estimators': 100,
50
- 'max_depth': 6,
51
- 'min_child_weight': 4,
52
- 'subsample': 0.8,
53
- 'colsample_bytree': 0.8,
54
- 'gamma': 0,
55
- 'reg_alpha': 0,
56
- 'reg_lambda': 1,
57
- 'learning_rate': 0.05,
58
- }
59
-
60
- xgb_gpu_params = {
61
- 'tree_method': 'gpu_hist',
62
- 'gpu_id': 0,
63
- # "n_gpus": 2,
64
- }
65
-
66
- if gpu: xgb_params.update(xgb_gpu_params)
67
-
68
- if rfr_params_user:
69
- rfr_params = rfr_params_user
70
- else:
71
- rfr_params = {
72
- 'max_depth': 20,
73
- 'min_samples_leaf': 3,
74
- 'min_samples_split': 12,
75
- 'n_estimators': 100,
76
- 'n_jobs': -1
77
- }
78
-
79
- if df21_params_user:
80
- df21_params = df21_params_user
81
- else:
82
- df21_params = {
83
- 'random_state': 1,
84
- 'verbose' : 0,
85
- 'predictor': "xgboost",
86
- 'n_jobs' : -1,
87
- 'predictor_kwargs' : xgb_params,
88
- 'partial_mode' : partial_mode
89
- }
90
- # -------------------------------------------------------------------------
91
- # Run:
92
- if model_name == "XGB":
93
- from xgboost import XGBRegressor
94
- regr = XGBRegressor(**xgb_params)
95
- elif model_name == "MLP":
96
- from sklearn.neural_network import MLPRegressor
97
- regr = MLPRegressor(**mlp_params_user)
98
- elif model_name == "RFR":
99
- from sklearn.ensemble import RandomForestRegressor
100
- regr = RandomForestRegressor(**rfr_params)
101
- elif model_name == "SVR":
102
- from sklearn.svm import SVR
103
- regr = SVR(**svr_params_user)
104
- elif model_name == "DF21":
105
- from deepforest import CascadeForestRegressor
106
- # https://deep-forest.readthedocs.io/en/latest/api_reference.html?highlight=CascadeForestRegressor#cascadeforestregressor
107
- # predictor: {"forest", "xgboost", "lightgbm"}
108
- # regr = CascadeForestRegressor(random_state = 1, verbose = 0, predictor = "xgboost", n_jobs = -1, predictor_kwargs = xgb_params, partial_mode = partial_mode)
109
- regr = CascadeForestRegressor(**df21_params)
110
- regr.fit(X_train, y_train)
111
- return regr
112
-
113
- def test_ml(X_test, y_test, regr):
114
- res = y_test.copy() # y_test is 2D pandas dataframe.
115
- res.columns = ['truth']
116
- res['pred'] = regr.predict(X_test)
117
- return res
118
-
119
- # ===============================================================================================================================
120
- # Deep learning neural networks
121
-
122
- try:
123
- from tensorflow import keras
124
- from tensorflow.keras import layers
125
- from tensorflow.keras import models
126
- # from keras.layers import Dropout
127
- from keras.callbacks import EarlyStopping
128
- from scitbx.stutils import *
129
- except Exception as e:
130
- print(e)
131
-
132
- def train_lstm(X_train, y_train, nfeature, ntime, verbose = 2, epochs = 200, batch_size = 64):
133
- # create and fit the LSTM network
134
- model = models.Sequential()
135
- model.add(layers.LSTM(64, input_shape=(nfeature, ntime)))
136
- model.add(layers.Dropout(0.2))
137
- model.add(layers.Dense(16, activation='relu'))
138
- model.add(layers.Dropout(0.2))
139
- model.add(layers.Dense(1, activation='relu'))
140
- model.compile(loss='mean_squared_error', optimizer='adam')
141
- # es = EarlyStopping(monitor='loss', mode='min', verbose=1)
142
- # model.fit(X_train.reshape(-1, nsites, nfeats), y_train, epochs=100, batch_size=256, verbose=2, callbacks=[es])
143
- model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, verbose=verbose)
1
+ import numpy as np
2
+ import pandas as pd
3
+ from scipy import stats
4
+ from copy import deepcopy
5
+ from tqdm import tqdm
6
+ from sklearn.metrics import mean_squared_error
7
+ from xgboost import XGBRegressor
8
+
9
+ def get_metrics(df, truth = 'truth', pred = 'pred', return_dict = False):
10
+ '''
11
+ Calculate statistical measures between validation and prediction sequences
12
+ '''
13
+ df = df[[truth, pred]].copy().dropna()
14
+ slope, intercept, r_value, p_value, std_err = stats.linregress(df.dropna()[truth], df.dropna()[pred])
15
+ r2 = r_value**2
16
+ mse = mean_squared_error(df.dropna()[truth], df.dropna()[pred])
17
+ rmse = np.sqrt(mse)
18
+ mbe = np.mean(df.dropna()[pred] - df.dropna()[truth])
19
+ mae = (df.dropna()[pred] - df.dropna()[truth]).abs().mean()
20
+ if return_dict:
21
+ return pd.DataFrame.from_dict([{
22
+ 'r2': r2,
23
+ 'Slope': slope,
24
+ 'RMSE': rmse,
25
+ 'MBE': mbe,
26
+ 'MAE': mae,
27
+ 'Intercept': intercept,
28
+ 'p-value': p_value,
29
+ 'std_err': std_err
30
+ }])
31
+ else:
32
+ return r2, slope, rmse, mbe, mae, intercept, p_value, std_err
33
+
34
+ # ===============================================================================================================================
35
+ # Machine learning algorithms
36
+ def train_ml(
37
+ X_train, y_train, model_name = 'XGB',
38
+ xgb_params_user = None, rfr_params_user = None,
39
+ mlp_params_user = None, svr_params_user = None,
40
+ df21_params_user = None,
41
+ gpu = False, partial_mode = False
42
+ ):
43
+ # -------------------------------------------------------------------------
44
+ # Setup parameters:
45
+ if xgb_params_user:
46
+ xgb_params = xgb_params_user
47
+ else:
48
+ xgb_params = {
49
+ "objective": "reg:squarederror",
50
+ "random_state": 0,
51
+ 'seed': 0,
52
+ 'n_estimators': 100,
53
+ 'max_depth': 6,
54
+ 'min_child_weight': 4,
55
+ 'subsample': 0.8,
56
+ 'colsample_bytree': 0.8,
57
+ 'gamma': 0,
58
+ 'reg_alpha': 0,
59
+ 'reg_lambda': 1,
60
+ 'learning_rate': 0.05,
61
+ }
62
+
63
+ xgb_gpu_params = {
64
+ 'tree_method': 'gpu_hist',
65
+ 'gpu_id': 0,
66
+ # "n_gpus": 2,
67
+ }
68
+
69
+ if gpu: xgb_params.update(xgb_gpu_params)
70
+
71
+ if rfr_params_user:
72
+ rfr_params = rfr_params_user
73
+ else:
74
+ rfr_params = {
75
+ 'max_depth': 20,
76
+ 'min_samples_leaf': 3,
77
+ 'min_samples_split': 12,
78
+ 'n_estimators': 100,
79
+ 'n_jobs': -1
80
+ }
81
+
82
+ if df21_params_user:
83
+ df21_params = df21_params_user
84
+ else:
85
+ df21_params = {
86
+ 'random_state': 1,
87
+ 'verbose' : 0,
88
+ 'predictor': "xgboost",
89
+ 'n_jobs' : -1,
90
+ 'predictor_kwargs' : xgb_params,
91
+ 'partial_mode' : partial_mode
92
+ }
93
+ # -------------------------------------------------------------------------
94
+ # Run:
95
+ if model_name == "XGB":
96
+ from xgboost import XGBRegressor
97
+ regr = XGBRegressor(**xgb_params)
98
+ elif model_name == "MLP":
99
+ from sklearn.neural_network import MLPRegressor
100
+ regr = MLPRegressor(**mlp_params_user)
101
+ elif model_name == "RFR":
102
+ from sklearn.ensemble import RandomForestRegressor
103
+ regr = RandomForestRegressor(**rfr_params)
104
+ elif model_name == "SVR":
105
+ from sklearn.svm import SVR
106
+ regr = SVR(**svr_params_user)
107
+ elif model_name == "DF21":
108
+ from deepforest import CascadeForestRegressor
109
+ # https://deep-forest.readthedocs.io/en/latest/api_reference.html?highlight=CascadeForestRegressor#cascadeforestregressor
110
+ # predictor: {"forest", "xgboost", "lightgbm"}
111
+ # regr = CascadeForestRegressor(random_state = 1, verbose = 0, predictor = "xgboost", n_jobs = -1, predictor_kwargs = xgb_params, partial_mode = partial_mode)
112
+ regr = CascadeForestRegressor(**df21_params)
113
+ regr.fit(X_train, y_train)
114
+ return regr
115
+
116
+ def test_ml(X_test, y_test, regr):
117
+ res = y_test.copy() # y_test is 2D pandas dataframe.
118
+ res.columns = ['truth']
119
+ res['pred'] = regr.predict(X_test)
120
+ return res
121
+
122
+ def run_ensemble(X_train, y_train, n_models = 10, frac_sample = 0.8):
123
+ base_params_xgb = {
124
+ "objective": "reg:squarederror",
125
+ 'seed': 0,
126
+ "random_state": 0,
127
+ }
128
+ params_xgb = deepcopy(base_params_xgb)
129
+ # dropout-like regularization
130
+ params_xgb.update({
131
+ "subsample": 0.8, # Use 80% of the data for each tree
132
+ "colsample_bytree": 0.8, # Use 80% of the features for each tree
133
+ })
134
+
135
+ models = []
136
+ for i in tqdm(range(n_models)):
137
+ # Create a bootstrapped dataset
138
+ y_resampled = y_train.copy().sample(frac = frac_sample, random_state = i)
139
+ X_resampled = X_train.copy().loc[y_resampled.index]
140
+ # print(y_resampled.sort_index().index[0], y_resampled.sort_index().index[-1])
141
+
142
+ # Train the XGBoost model
143
+ params_xgb.update({'random_state': i})
144
+ model = XGBRegressor(**params_xgb)
145
+ model.fit(X_resampled, y_resampled)
146
+ models.append(model)
147
+ return models
148
+
149
+ # ===============================================================================================================================
150
+ # Deep learning neural networks
151
+
152
+ try:
153
+ from tensorflow import keras
154
+ from tensorflow.keras import layers
155
+ from tensorflow.keras import models
156
+ # from keras.layers import Dropout
157
+ from keras.callbacks import EarlyStopping
158
+ from scitbx.stutils import *
159
+ except Exception as e:
160
+ print(e)
161
+
162
+ def train_lstm(X_train, y_train, nfeature, ntime, verbose = 2, epochs = 200, batch_size = 64):
163
+ # create and fit the LSTM network
164
+ model = models.Sequential()
165
+ model.add(layers.LSTM(64, input_shape=(nfeature, ntime)))
166
+ model.add(layers.Dropout(0.2))
167
+ model.add(layers.Dense(16, activation='relu'))
168
+ model.add(layers.Dropout(0.2))
169
+ model.add(layers.Dense(1, activation='relu'))
170
+ model.compile(loss='mean_squared_error', optimizer='adam')
171
+ # es = EarlyStopping(monitor='loss', mode='min', verbose=1)
172
+ # model.fit(X_train.reshape(-1, nsites, nfeats), y_train, epochs=100, batch_size=256, verbose=2, callbacks=[es])
173
+ model.fit(X_train, y_train, epochs = epochs, batch_size = batch_size, verbose=verbose)
144
174
  return model
sciml/utils.py CHANGED
@@ -1,46 +1,46 @@
1
- import numpy as np
2
- import pandas as pd
3
- from sklearn.model_selection import ShuffleSplit
4
- from sklearn.model_selection import train_test_split
5
-
6
- # randomly select sites
7
- def random_select(ds, count, num, random_state = 0):
8
- np.random.seed(random_state)
9
- idxs = np.random.choice(np.delete(np.arange(len(ds)), count), num, replace = False)
10
- return np.sort(idxs)
11
-
12
- def split(Xs, ys, return_index = False, test_size = 0.33, random_state = 42):
13
- if return_index:
14
- sss = ShuffleSplit(n_splits=1, test_size = test_size, random_state = random_state)
15
- sss.get_n_splits(Xs, ys)
16
- train_index, test_index = next(sss.split(Xs, ys))
17
- return (train_index, test_index)
18
- else:
19
- X_train, X_test, y_train, y_test = train_test_split(
20
- Xs, ys,
21
- test_size = test_size,
22
- random_state = random_state
23
- )
24
- return (X_train, X_test, y_train, y_test)
25
-
26
- def split_cut(Xs, ys, test_ratio = 0.33):
27
- assert ys.ndim == 2, 'ys must be 2D!'
28
- assert len(Xs) == len(ys), 'Xs and ys should be equally long!'
29
- assert type(Xs) == type(ys), 'Xs and ys should be the same data type!'
30
- if not type(Xs) in [pd.core.frame.DataFrame, np.ndarray]: raise Exception('Only accept numpy ndarray or pandas dataframe')
31
- anchor = int(np.floor(len(ys) * (1 - test_ratio)))
32
-
33
- if type(Xs) == pd.core.frame.DataFrame:
34
- X_train = Xs.iloc[0: anchor, :]
35
- X_test = Xs.iloc[anchor::, :]
36
- y_train = ys.iloc[0: anchor, :]
37
- y_test = ys.iloc[anchor::, :]
38
- else:
39
- X_train = Xs[0: anchor, :]
40
- X_test = Xs[anchor::, :]
41
- y_train = ys[0: anchor, :]
42
- y_test = ys[anchor::, :]
43
-
44
- assert len(X_train) + len(X_test) == len(Xs), 'The sum of train and test lengths must equal to Xs/ys!'
45
-
1
+ import numpy as np
2
+ import pandas as pd
3
+ from sklearn.model_selection import ShuffleSplit
4
+ from sklearn.model_selection import train_test_split
5
+
6
+ # randomly select sites
7
+ def random_select(ds, count, num, random_state = 0):
8
+ np.random.seed(random_state)
9
+ idxs = np.random.choice(np.delete(np.arange(len(ds)), count), num, replace = False)
10
+ return np.sort(idxs)
11
+
12
+ def split(Xs, ys, return_index = False, test_size = 0.33, random_state = 42):
13
+ if return_index:
14
+ sss = ShuffleSplit(n_splits=1, test_size = test_size, random_state = random_state)
15
+ sss.get_n_splits(Xs, ys)
16
+ train_index, test_index = next(sss.split(Xs, ys))
17
+ return (train_index, test_index)
18
+ else:
19
+ X_train, X_test, y_train, y_test = train_test_split(
20
+ Xs, ys,
21
+ test_size = test_size,
22
+ random_state = random_state
23
+ )
24
+ return (X_train, X_test, y_train, y_test)
25
+
26
+ def split_cut(Xs, ys, test_ratio = 0.33):
27
+ assert ys.ndim == 2, 'ys must be 2D!'
28
+ assert len(Xs) == len(ys), 'Xs and ys should be equally long!'
29
+ assert type(Xs) == type(ys), 'Xs and ys should be the same data type!'
30
+ if not type(Xs) in [pd.core.frame.DataFrame, np.ndarray]: raise Exception('Only accept numpy ndarray or pandas dataframe')
31
+ anchor = int(np.floor(len(ys) * (1 - test_ratio)))
32
+
33
+ if type(Xs) == pd.core.frame.DataFrame:
34
+ X_train = Xs.iloc[0: anchor, :]
35
+ X_test = Xs.iloc[anchor::, :]
36
+ y_train = ys.iloc[0: anchor, :]
37
+ y_test = ys.iloc[anchor::, :]
38
+ else:
39
+ X_train = Xs[0: anchor, :]
40
+ X_test = Xs[anchor::, :]
41
+ y_train = ys[0: anchor, :]
42
+ y_test = ys[anchor::, :]
43
+
44
+ assert len(X_train) + len(X_test) == len(Xs), 'The sum of train and test lengths must equal to Xs/ys!'
45
+
46
46
  return (X_train, X_test, y_train, y_test)
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2021 Zhu
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Zhu
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -1,13 +1,13 @@
1
- Metadata-Version: 2.1
2
- Name: sciml
3
- Version: 0.0.6
4
- Summary: draw and basic calculations/conversions
5
- Home-page: https://github.com/soonyenju/sciml
6
- Author: Songyan Zhu
7
- Author-email: zhusy93@gmail.com
8
- License: MIT Licence
9
- Keywords: Scientific machine learning wrappers
10
- Platform: any
11
- License-File: LICENSE
12
-
13
- coming soon
1
+ Metadata-Version: 2.1
2
+ Name: sciml
3
+ Version: 0.0.7
4
+ Summary: draw and basic calculations/conversions
5
+ Home-page: https://github.com/soonyenju/sciml
6
+ Author: Songyan Zhu
7
+ Author-email: zhusy93@gmail.com
8
+ License: MIT Licence
9
+ Keywords: Scientific machine learning wrappers
10
+ Platform: any
11
+ License-File: LICENSE
12
+
13
+ coming soon
@@ -0,0 +1,8 @@
1
+ sciml/__init__.py,sha256=Asqzx08kEOBLv_IRE20VlHxZu9XgydyrzIMUDRE-qiU,48
2
+ sciml/pipelines.py,sha256=5qfeHdxGhF-GMu-rTiInPv5metXiT32uSENIDFd2Ths,6333
3
+ sciml/utils.py,sha256=u5DzQJV4aCZ-p7sY56Fxzj8WDGYOgn1rOTeGzAw0vwY,1831
4
+ sciml-0.0.7.dist-info/LICENSE,sha256=dX4jBmkgQPWc_TfYkXtKQzVIgZQWFuHZ8vQjV4sEeV4,1060
5
+ sciml-0.0.7.dist-info/METADATA,sha256=363EbWoSVqR9qAdhOfeVD8RiP6DfcalvDiZECJ6LW3s,313
6
+ sciml-0.0.7.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
7
+ sciml-0.0.7.dist-info/top_level.txt,sha256=dS_7aBCZFKQE3myPy5sh4USjQZCZyGg382-YxUUYcdw,6
8
+ sciml-0.0.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.41.2)
2
+ Generator: bdist_wheel (0.38.4)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,8 +0,0 @@
1
- sciml/__init__.py,sha256=9Yj8J5bW79Kb3JvoOG8k-AmMv-M5Mn8KLmf-wArsJdo,49
2
- sciml/pipelines.py,sha256=lAGtLwp6JKO6aBUZ0ka8VrA013QVDRmAlHG9dQnxY88,5424
3
- sciml/utils.py,sha256=qCdABaTUu3K0R269jI7D_8SO6AqEjphg03CzdxCJR2k,1876
4
- sciml-0.0.6.dist-info/LICENSE,sha256=hcunSTJmVgRcUNOa1rKl8axtY3Jsy2B4wXDYtQsrAt0,1081
5
- sciml-0.0.6.dist-info/METADATA,sha256=PHJ68gGZvR-leW-QCRW_-ZsnHNycM1Kvd4MA_YJKtsU,326
6
- sciml-0.0.6.dist-info/WHEEL,sha256=yQN5g4mg4AybRjkgi-9yy4iQEFibGQmlz78Pik5Or-A,92
7
- sciml-0.0.6.dist-info/top_level.txt,sha256=dS_7aBCZFKQE3myPy5sh4USjQZCZyGg382-YxUUYcdw,6
8
- sciml-0.0.6.dist-info/RECORD,,