scikit-network 0.32.1__cp39-cp39-win_amd64.whl → 0.33.0__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/AUTHORS.rst +0 -1
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/METADATA +9 -3
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/RECORD +60 -60
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/WHEEL +1 -1
- sknetwork/__init__.py +1 -1
- sknetwork/classification/diffusion.py +4 -3
- sknetwork/classification/knn.py +4 -3
- sknetwork/classification/metrics.py +3 -3
- sknetwork/classification/propagation.py +6 -5
- sknetwork/classification/vote.cp39-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +1 -1
- sknetwork/clustering/leiden.py +2 -1
- sknetwork/clustering/leiden_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +1 -1
- sknetwork/clustering/louvain.py +3 -3
- sknetwork/clustering/louvain_core.cp39-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +1 -1
- sknetwork/clustering/tests/test_kcenters.py +5 -37
- sknetwork/data/__init__.py +1 -1
- sknetwork/data/base.py +7 -2
- sknetwork/data/load.py +18 -21
- sknetwork/data/models.py +15 -15
- sknetwork/data/parse.py +19 -17
- sknetwork/data/tests/test_API.py +3 -3
- sknetwork/data/tests/test_base.py +2 -2
- sknetwork/data/tests/test_toy_graphs.py +33 -33
- sknetwork/data/toy_graphs.py +35 -43
- sknetwork/embedding/base.py +3 -0
- sknetwork/embedding/louvain_embedding.py +0 -26
- sknetwork/embedding/svd.py +0 -4
- sknetwork/embedding/tests/test_louvain_embedding.py +9 -4
- sknetwork/embedding/tests/test_svd.py +6 -0
- sknetwork/gnn/gnn_classifier.py +1 -1
- sknetwork/hierarchy/louvain_hierarchy.py +10 -6
- sknetwork/hierarchy/paris.cp39-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +757 -755
- sknetwork/hierarchy/paris.pyx +4 -3
- sknetwork/hierarchy/tests/test_metrics.py +4 -4
- sknetwork/linalg/diteration.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +1 -1
- sknetwork/linalg/push.cp39-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +123 -123
- sknetwork/ranking/betweenness.cp39-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +1 -1
- sknetwork/regression/diffusion.py +6 -4
- sknetwork/topology/cliques.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +123 -123
- sknetwork/topology/core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +123 -123
- sknetwork/topology/minheap.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +1 -1
- sknetwork/topology/triangles.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +1 -1
- sknetwork/topology/weisfeiler_lehman_core.cp39-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +1 -1
- sknetwork/utils/__init__.py +1 -1
- sknetwork/utils/values.py +5 -3
- sknetwork/visualization/graphs.py +1 -1
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/LICENSE +0 -0
- {scikit_network-0.32.1.dist-info → scikit_network-0.33.0.dist-info}/top_level.txt +0 -0
sknetwork/hierarchy/paris.pyx
CHANGED
|
@@ -212,13 +212,15 @@ class Paris(BaseHierarchy):
|
|
|
212
212
|
|
|
213
213
|
@cython.boundscheck(False)
|
|
214
214
|
@cython.wraparound(False)
|
|
215
|
-
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray]) -> 'Paris':
|
|
215
|
+
def fit(self, input_matrix: Union[sparse.csr_matrix, np.ndarray], force_bipartite: bool = False) -> 'Paris':
|
|
216
216
|
"""Agglomerative clustering using the nearest neighbor chain.
|
|
217
217
|
|
|
218
218
|
Parameters
|
|
219
219
|
----------
|
|
220
220
|
input_matrix : sparse.csr_matrix, np.ndarray
|
|
221
221
|
Adjacency matrix or biadjacency matrix of the graph.
|
|
222
|
+
force_bipartite :
|
|
223
|
+
If ``True``, force the input matrix to be considered as a biadjacency matrix.
|
|
222
224
|
|
|
223
225
|
Returns
|
|
224
226
|
-------
|
|
@@ -227,8 +229,7 @@ class Paris(BaseHierarchy):
|
|
|
227
229
|
self._init_vars()
|
|
228
230
|
|
|
229
231
|
# input
|
|
230
|
-
|
|
231
|
-
adjacency, self.bipartite = get_adjacency(input_matrix)
|
|
232
|
+
adjacency, self.bipartite = get_adjacency(input_matrix, force_bipartite=force_bipartite)
|
|
232
233
|
|
|
233
234
|
weights = self.weights
|
|
234
235
|
out_weights = get_probs(weights, adjacency)
|
|
@@ -17,7 +17,7 @@ class TestMetrics(unittest.TestCase):
|
|
|
17
17
|
|
|
18
18
|
def setUp(self):
|
|
19
19
|
self.paris = Paris()
|
|
20
|
-
self.
|
|
20
|
+
self.louvain_iteration = LouvainIteration()
|
|
21
21
|
|
|
22
22
|
def test_undirected(self):
|
|
23
23
|
adjacency = cyclic_graph(3)
|
|
@@ -31,7 +31,7 @@ class TestMetrics(unittest.TestCase):
|
|
|
31
31
|
self.assertAlmostEqual(dasgupta_cost(adjacency, dendrogram), 4.26, 2)
|
|
32
32
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.573, 2)
|
|
33
33
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.304, 2)
|
|
34
|
-
dendrogram = self.
|
|
34
|
+
dendrogram = self.louvain_iteration.fit_transform(adjacency)
|
|
35
35
|
self.assertAlmostEqual(dasgupta_cost(adjacency, dendrogram), 4.43, 2)
|
|
36
36
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.555, 2)
|
|
37
37
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.286, 2)
|
|
@@ -41,7 +41,7 @@ class TestMetrics(unittest.TestCase):
|
|
|
41
41
|
dendrogram = self.paris.fit_transform(adjacency)
|
|
42
42
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.566, 2)
|
|
43
43
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.318, 2)
|
|
44
|
-
dendrogram = self.
|
|
44
|
+
dendrogram = self.louvain_iteration.fit_transform(adjacency)
|
|
45
45
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.55, 2)
|
|
46
46
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.313, 2)
|
|
47
47
|
|
|
@@ -50,7 +50,7 @@ class TestMetrics(unittest.TestCase):
|
|
|
50
50
|
dendrogram = self.paris.fit_transform(adjacency)
|
|
51
51
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.682, 2)
|
|
52
52
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.464, 2)
|
|
53
|
-
dendrogram = self.
|
|
53
|
+
dendrogram = self.louvain_iteration.fit_transform(adjacency)
|
|
54
54
|
self.assertAlmostEqual(dasgupta_score(adjacency, dendrogram), 0.670, 2)
|
|
55
55
|
self.assertAlmostEqual(tree_sampling_divergence(adjacency, dendrogram), 0.594, 2)
|
|
56
56
|
|
|
Binary file
|
sknetwork/linalg/diteration.cpp
CHANGED
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
"/d2FH4-"
|
|
8
8
|
],
|
|
9
9
|
"include_dirs": [
|
|
10
|
-
"C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-
|
|
10
|
+
"C:\\Users\\runneradmin\\AppData\\Local\\Temp\\cibw-run-2jqincfh\\cp39-win_amd64\\build\\venv\\lib\\site-packages\\numpy\\core\\include"
|
|
11
11
|
],
|
|
12
12
|
"language": "c++",
|
|
13
13
|
"name": "sknetwork.linalg.diteration",
|
|
Binary file
|