scikit-network 0.31.0__cp311-cp311-win_amd64.whl → 0.32.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-network might be problematic. Click here for more details.

Files changed (114) hide show
  1. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/AUTHORS.rst +3 -0
  2. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/METADATA +19 -3
  3. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/RECORD +112 -105
  4. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/WHEEL +1 -1
  5. sknetwork/__init__.py +1 -1
  6. sknetwork/classification/base.py +1 -1
  7. sknetwork/classification/base_rank.py +3 -3
  8. sknetwork/classification/diffusion.py +21 -13
  9. sknetwork/classification/knn.py +19 -13
  10. sknetwork/classification/metrics.py +1 -1
  11. sknetwork/classification/pagerank.py +12 -8
  12. sknetwork/classification/propagation.py +22 -15
  13. sknetwork/classification/tests/test_diffusion.py +10 -0
  14. sknetwork/classification/vote.cp311-win_amd64.pyd +0 -0
  15. sknetwork/classification/vote.cpp +14549 -8668
  16. sknetwork/clustering/__init__.py +3 -1
  17. sknetwork/clustering/base.py +1 -1
  18. sknetwork/clustering/kcenters.py +253 -0
  19. sknetwork/clustering/leiden.py +241 -0
  20. sknetwork/clustering/leiden_core.cp311-win_amd64.pyd +0 -0
  21. sknetwork/clustering/leiden_core.cpp +31564 -0
  22. sknetwork/clustering/leiden_core.pyx +124 -0
  23. sknetwork/clustering/louvain.py +118 -83
  24. sknetwork/clustering/louvain_core.cp311-win_amd64.pyd +0 -0
  25. sknetwork/clustering/louvain_core.cpp +21876 -16332
  26. sknetwork/clustering/louvain_core.pyx +86 -94
  27. sknetwork/clustering/postprocess.py +2 -2
  28. sknetwork/clustering/propagation_clustering.py +4 -4
  29. sknetwork/clustering/tests/test_API.py +7 -3
  30. sknetwork/clustering/tests/test_kcenters.py +92 -0
  31. sknetwork/clustering/tests/test_leiden.py +34 -0
  32. sknetwork/clustering/tests/test_louvain.py +2 -3
  33. sknetwork/data/load.py +2 -4
  34. sknetwork/data/parse.py +41 -20
  35. sknetwork/data/tests/test_parse.py +9 -12
  36. sknetwork/embedding/__init__.py +0 -1
  37. sknetwork/embedding/base.py +20 -19
  38. sknetwork/embedding/force_atlas.py +3 -2
  39. sknetwork/embedding/louvain_embedding.py +1 -1
  40. sknetwork/embedding/random_projection.py +5 -3
  41. sknetwork/embedding/spectral.py +0 -73
  42. sknetwork/embedding/tests/test_API.py +4 -28
  43. sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
  44. sknetwork/embedding/tests/test_spectral.py +2 -5
  45. sknetwork/embedding/tests/test_svd.py +1 -1
  46. sknetwork/gnn/base_layer.py +3 -3
  47. sknetwork/gnn/gnn_classifier.py +40 -86
  48. sknetwork/gnn/layer.py +1 -1
  49. sknetwork/gnn/loss.py +1 -1
  50. sknetwork/gnn/optimizer.py +4 -3
  51. sknetwork/gnn/tests/test_base_layer.py +4 -4
  52. sknetwork/gnn/tests/test_gnn_classifier.py +12 -39
  53. sknetwork/gnn/utils.py +8 -8
  54. sknetwork/hierarchy/base.py +27 -0
  55. sknetwork/hierarchy/louvain_hierarchy.py +45 -41
  56. sknetwork/hierarchy/paris.cp311-win_amd64.pyd +0 -0
  57. sknetwork/hierarchy/paris.cpp +27521 -20771
  58. sknetwork/hierarchy/paris.pyx +7 -7
  59. sknetwork/hierarchy/postprocess.py +16 -16
  60. sknetwork/hierarchy/tests/test_algos.py +5 -0
  61. sknetwork/linalg/__init__.py +1 -1
  62. sknetwork/linalg/diteration.cp311-win_amd64.pyd +0 -0
  63. sknetwork/linalg/diteration.cpp +13916 -8050
  64. sknetwork/linalg/{normalization.py → normalizer.py} +17 -14
  65. sknetwork/linalg/operators.py +1 -1
  66. sknetwork/linalg/ppr_solver.py +1 -1
  67. sknetwork/linalg/push.cp311-win_amd64.pyd +0 -0
  68. sknetwork/linalg/push.cpp +23187 -16973
  69. sknetwork/linalg/tests/test_normalization.py +3 -7
  70. sknetwork/linalg/tests/test_operators.py +2 -6
  71. sknetwork/linalg/tests/test_ppr.py +1 -1
  72. sknetwork/linkpred/base.py +12 -1
  73. sknetwork/linkpred/nn.py +6 -6
  74. sknetwork/path/distances.py +11 -4
  75. sknetwork/path/shortest_path.py +1 -1
  76. sknetwork/path/tests/test_distances.py +7 -0
  77. sknetwork/path/tests/test_search.py +2 -2
  78. sknetwork/ranking/base.py +11 -6
  79. sknetwork/ranking/betweenness.cp311-win_amd64.pyd +0 -0
  80. sknetwork/ranking/betweenness.cpp +5256 -2190
  81. sknetwork/ranking/pagerank.py +13 -12
  82. sknetwork/ranking/tests/test_API.py +0 -2
  83. sknetwork/ranking/tests/test_betweenness.py +1 -1
  84. sknetwork/ranking/tests/test_pagerank.py +11 -5
  85. sknetwork/regression/base.py +18 -1
  86. sknetwork/regression/diffusion.py +24 -10
  87. sknetwork/regression/tests/test_diffusion.py +8 -0
  88. sknetwork/topology/__init__.py +3 -1
  89. sknetwork/topology/cliques.cp311-win_amd64.pyd +0 -0
  90. sknetwork/topology/cliques.cpp +23528 -16848
  91. sknetwork/topology/core.cp311-win_amd64.pyd +0 -0
  92. sknetwork/topology/core.cpp +22849 -16581
  93. sknetwork/topology/cycles.py +243 -0
  94. sknetwork/topology/minheap.cp311-win_amd64.pyd +0 -0
  95. sknetwork/topology/minheap.cpp +19495 -13469
  96. sknetwork/topology/structure.py +2 -42
  97. sknetwork/topology/tests/test_cycles.py +65 -0
  98. sknetwork/topology/tests/test_structure.py +2 -16
  99. sknetwork/topology/triangles.cp311-win_amd64.pyd +0 -0
  100. sknetwork/topology/triangles.cpp +5283 -1397
  101. sknetwork/topology/triangles.pyx +7 -4
  102. sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd +0 -0
  103. sknetwork/topology/weisfeiler_lehman_core.cpp +14781 -8915
  104. sknetwork/utils/format.py +1 -1
  105. sknetwork/utils/membership.py +2 -2
  106. sknetwork/visualization/__init__.py +2 -2
  107. sknetwork/visualization/dendrograms.py +55 -7
  108. sknetwork/visualization/graphs.py +261 -44
  109. sknetwork/visualization/tests/test_dendrograms.py +9 -9
  110. sknetwork/visualization/tests/test_graphs.py +63 -57
  111. sknetwork/embedding/louvain_hierarchy.py +0 -142
  112. sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
  113. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/LICENSE +0 -0
  114. {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/top_level.txt +0 -0
@@ -6,13 +6,14 @@ Created in July 2019
6
6
  @author: Quentin Lutz <qlutz@enst.fr>
7
7
  @author: Thomas Bonald <tbonald@enst.fr>
8
8
  """
9
- from typing import Tuple, Optional, Union
9
+ from typing import Tuple, Optional, Union, List
10
10
 
11
11
  import numpy as np
12
12
  from scipy import sparse
13
13
 
14
14
  from sknetwork.utils.check import is_symmetric, check_format
15
15
  from sknetwork.utils.format import get_adjacency
16
+ from sknetwork.path import get_distances
16
17
 
17
18
 
18
19
  def get_connected_components(input_matrix: sparse.csr_matrix, connection: str = 'weak', force_bipartite: bool = False) \
@@ -191,44 +192,3 @@ def is_bipartite(adjacency: sparse.csr_matrix, return_biadjacency: bool = False)
191
192
  return True
192
193
 
193
194
 
194
- def is_acyclic(adjacency: sparse.csr_matrix, directed: Optional[bool] = None) -> bool:
195
- """Check whether a graph has no cycle.
196
-
197
- Parameters
198
- ----------
199
- adjacency:
200
- Adjacency matrix of the graph.
201
- directed:
202
- Whether to consider the graph as directed (inferred if not specified).
203
- Returns
204
- -------
205
- is_acyclic : bool
206
- A boolean with value True if the graph has no cycle and False otherwise.
207
-
208
- Example
209
- -------
210
- >>> from sknetwork.topology import is_acyclic
211
- >>> from sknetwork.data import star, grid
212
- >>> is_acyclic(star())
213
- True
214
- >>> is_acyclic(grid())
215
- False
216
- """
217
- if directed is False:
218
- # the graph must be undirected
219
- if not is_symmetric(adjacency):
220
- raise ValueError("The adjacency matrix is not symmetric. The parameter 'directed' must be True.")
221
- elif directed is None:
222
- # if not specified, infer from the graph
223
- directed = not is_symmetric(adjacency)
224
- has_loops = (adjacency.diagonal() > 0).any()
225
- if has_loops:
226
- return False
227
- else:
228
- n_cc = sparse.csgraph.connected_components(adjacency, directed, connection='strong', return_labels=False)
229
- n_nodes = adjacency.shape[0]
230
- if directed:
231
- return n_cc == n_nodes
232
- else:
233
- n_edges = adjacency.nnz // 2
234
- return n_cc == n_nodes - n_edges
@@ -0,0 +1,65 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ """"tests for cycles.py"""
4
+ import unittest
5
+
6
+ import numpy as np
7
+ from scipy import sparse
8
+
9
+ from sknetwork.data import star_wars, house, cyclic_digraph, cyclic_graph, linear_digraph, linear_graph
10
+ from sknetwork.topology import is_connected, is_acyclic, get_cycles, break_cycles
11
+ from sknetwork.utils.format import bipartite2undirected, directed2undirected
12
+
13
+
14
+ class TestCycle(unittest.TestCase):
15
+
16
+ def test_is_acyclic(self):
17
+ adjacency_with_self_loops = sparse.identity(2, format='csr')
18
+ self.assertFalse(is_acyclic(adjacency_with_self_loops))
19
+ self.assertFalse(is_acyclic(adjacency_with_self_loops, directed=True))
20
+ directed_cycle = cyclic_digraph(3)
21
+ self.assertFalse(is_acyclic(directed_cycle))
22
+ with self.assertRaises(ValueError):
23
+ is_acyclic(directed_cycle, directed=False)
24
+ undirected_line = linear_graph(2)
25
+ self.assertTrue(is_acyclic(undirected_line))
26
+ self.assertFalse(is_acyclic(undirected_line, directed=True))
27
+ acyclic_graph = linear_digraph(2)
28
+ self.assertTrue(is_acyclic(acyclic_graph))
29
+
30
+ def test_get_cycles(self):
31
+ adjacency_with_self_loops = sparse.identity(2, format='csr')
32
+ node_cycles = get_cycles(adjacency_with_self_loops, directed=True)
33
+ self.assertEqual(node_cycles, [[0], [1]])
34
+
35
+ cycle_adjacency = cyclic_digraph(4)
36
+ node_cycles = get_cycles(cycle_adjacency, directed=True)
37
+ self.assertEqual(sorted(node_cycles[0]), [0, 1, 2, 3])
38
+ adjacency_with_subcycles = cycle_adjacency + sparse.csr_matrix(([1], ([1], [3])), shape=cycle_adjacency.shape)
39
+ node_cycles = get_cycles(adjacency_with_subcycles, directed=True)
40
+ self.assertEqual(node_cycles, [[0, 1, 3], [0, 1, 2, 3]])
41
+
42
+ undirected_cycle = cyclic_graph(4)
43
+ node_cycles = get_cycles(undirected_cycle, directed=False)
44
+ self.assertEqual(sorted(node_cycles[0]), [0, 1, 2, 3])
45
+
46
+ disconnected_cycles = sparse.csr_matrix(([1, 1, 1], ([1, 2, 3], [2, 3, 1])), shape=(4, 4))
47
+ node_cycles = get_cycles(disconnected_cycles, directed=True)
48
+ self.assertEqual(sorted(node_cycles[0]), [1, 2, 3])
49
+
50
+ def test_break_cycles(self):
51
+ cycle_adjacency = cyclic_digraph(4)
52
+ acyclic_graph = break_cycles(cycle_adjacency, root=0, directed=True)
53
+ self.assertTrue(is_acyclic(acyclic_graph))
54
+ adjacency_with_subcycles = cycle_adjacency + sparse.csr_matrix(([1], ([1], [0])), shape=cycle_adjacency.shape)
55
+ acyclic_graph = break_cycles(adjacency_with_subcycles, root=0, directed=True)
56
+ self.assertTrue(is_acyclic(acyclic_graph))
57
+
58
+ undirected_cycle = house(metadata=False)
59
+ acyclic_graph = break_cycles(undirected_cycle, root=0, directed=False)
60
+ self.assertTrue(is_acyclic(acyclic_graph))
61
+
62
+ disconnected_cycles = sparse.csr_matrix(([1, 1, 1, 1, 1], ([0, 1, 2, 3, 4], [1, 0, 3, 4, 2])), shape=(5, 5))
63
+ self.assertFalse(is_connected(disconnected_cycles))
64
+ acyclic_graph = break_cycles(disconnected_cycles, root=[0, 2], directed=True)
65
+ self.assertTrue(is_acyclic(acyclic_graph))
@@ -6,9 +6,9 @@ import unittest
6
6
  import numpy as np
7
7
  from scipy import sparse
8
8
 
9
- from sknetwork.data import star_wars, cyclic_digraph, linear_digraph, linear_graph
9
+ from sknetwork.data import star_wars, house, cyclic_digraph, cyclic_graph, linear_digraph, linear_graph
10
10
  from sknetwork.topology import get_connected_components, get_largest_connected_component
11
- from sknetwork.topology import is_connected, is_bipartite, is_acyclic
11
+ from sknetwork.topology import is_connected, is_bipartite
12
12
  from sknetwork.utils.format import bipartite2undirected, directed2undirected
13
13
 
14
14
 
@@ -83,17 +83,3 @@ class TestStructure(unittest.TestCase):
83
83
  adjacency = directed2undirected(cyclic_digraph(3))
84
84
  bipartite = is_bipartite(adjacency, return_biadjacency=False)
85
85
  self.assertEqual(bipartite, False)
86
-
87
- def test_is_acyclic(self):
88
- adjacency_with_self_loops = sparse.identity(2, format='csr')
89
- self.assertFalse(is_acyclic(adjacency_with_self_loops))
90
- self.assertFalse(is_acyclic(adjacency_with_self_loops, directed=True))
91
- directed_cycle = cyclic_digraph(3)
92
- self.assertFalse(is_acyclic(directed_cycle))
93
- with self.assertRaises(ValueError):
94
- is_acyclic(directed_cycle, directed=False)
95
- undirected_line = linear_graph(2)
96
- self.assertTrue(is_acyclic(undirected_line))
97
- self.assertFalse(is_acyclic(undirected_line, directed=True))
98
- acyclic_graph = linear_digraph(2)
99
- self.assertTrue(is_acyclic(acyclic_graph))