scikit-network 0.31.0__cp311-cp311-win_amd64.whl → 0.32.1__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-network might be problematic. Click here for more details.
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/AUTHORS.rst +3 -0
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/METADATA +19 -3
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/RECORD +112 -105
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/WHEEL +1 -1
- sknetwork/__init__.py +1 -1
- sknetwork/classification/base.py +1 -1
- sknetwork/classification/base_rank.py +3 -3
- sknetwork/classification/diffusion.py +21 -13
- sknetwork/classification/knn.py +19 -13
- sknetwork/classification/metrics.py +1 -1
- sknetwork/classification/pagerank.py +12 -8
- sknetwork/classification/propagation.py +22 -15
- sknetwork/classification/tests/test_diffusion.py +10 -0
- sknetwork/classification/vote.cp311-win_amd64.pyd +0 -0
- sknetwork/classification/vote.cpp +14549 -8668
- sknetwork/clustering/__init__.py +3 -1
- sknetwork/clustering/base.py +1 -1
- sknetwork/clustering/kcenters.py +253 -0
- sknetwork/clustering/leiden.py +241 -0
- sknetwork/clustering/leiden_core.cp311-win_amd64.pyd +0 -0
- sknetwork/clustering/leiden_core.cpp +31564 -0
- sknetwork/clustering/leiden_core.pyx +124 -0
- sknetwork/clustering/louvain.py +118 -83
- sknetwork/clustering/louvain_core.cp311-win_amd64.pyd +0 -0
- sknetwork/clustering/louvain_core.cpp +21876 -16332
- sknetwork/clustering/louvain_core.pyx +86 -94
- sknetwork/clustering/postprocess.py +2 -2
- sknetwork/clustering/propagation_clustering.py +4 -4
- sknetwork/clustering/tests/test_API.py +7 -3
- sknetwork/clustering/tests/test_kcenters.py +92 -0
- sknetwork/clustering/tests/test_leiden.py +34 -0
- sknetwork/clustering/tests/test_louvain.py +2 -3
- sknetwork/data/load.py +2 -4
- sknetwork/data/parse.py +41 -20
- sknetwork/data/tests/test_parse.py +9 -12
- sknetwork/embedding/__init__.py +0 -1
- sknetwork/embedding/base.py +20 -19
- sknetwork/embedding/force_atlas.py +3 -2
- sknetwork/embedding/louvain_embedding.py +1 -1
- sknetwork/embedding/random_projection.py +5 -3
- sknetwork/embedding/spectral.py +0 -73
- sknetwork/embedding/tests/test_API.py +4 -28
- sknetwork/embedding/tests/test_louvain_embedding.py +4 -9
- sknetwork/embedding/tests/test_spectral.py +2 -5
- sknetwork/embedding/tests/test_svd.py +1 -1
- sknetwork/gnn/base_layer.py +3 -3
- sknetwork/gnn/gnn_classifier.py +40 -86
- sknetwork/gnn/layer.py +1 -1
- sknetwork/gnn/loss.py +1 -1
- sknetwork/gnn/optimizer.py +4 -3
- sknetwork/gnn/tests/test_base_layer.py +4 -4
- sknetwork/gnn/tests/test_gnn_classifier.py +12 -39
- sknetwork/gnn/utils.py +8 -8
- sknetwork/hierarchy/base.py +27 -0
- sknetwork/hierarchy/louvain_hierarchy.py +45 -41
- sknetwork/hierarchy/paris.cp311-win_amd64.pyd +0 -0
- sknetwork/hierarchy/paris.cpp +27521 -20771
- sknetwork/hierarchy/paris.pyx +7 -7
- sknetwork/hierarchy/postprocess.py +16 -16
- sknetwork/hierarchy/tests/test_algos.py +5 -0
- sknetwork/linalg/__init__.py +1 -1
- sknetwork/linalg/diteration.cp311-win_amd64.pyd +0 -0
- sknetwork/linalg/diteration.cpp +13916 -8050
- sknetwork/linalg/{normalization.py → normalizer.py} +17 -14
- sknetwork/linalg/operators.py +1 -1
- sknetwork/linalg/ppr_solver.py +1 -1
- sknetwork/linalg/push.cp311-win_amd64.pyd +0 -0
- sknetwork/linalg/push.cpp +23187 -16973
- sknetwork/linalg/tests/test_normalization.py +3 -7
- sknetwork/linalg/tests/test_operators.py +2 -6
- sknetwork/linalg/tests/test_ppr.py +1 -1
- sknetwork/linkpred/base.py +12 -1
- sknetwork/linkpred/nn.py +6 -6
- sknetwork/path/distances.py +11 -4
- sknetwork/path/shortest_path.py +1 -1
- sknetwork/path/tests/test_distances.py +7 -0
- sknetwork/path/tests/test_search.py +2 -2
- sknetwork/ranking/base.py +11 -6
- sknetwork/ranking/betweenness.cp311-win_amd64.pyd +0 -0
- sknetwork/ranking/betweenness.cpp +5256 -2190
- sknetwork/ranking/pagerank.py +13 -12
- sknetwork/ranking/tests/test_API.py +0 -2
- sknetwork/ranking/tests/test_betweenness.py +1 -1
- sknetwork/ranking/tests/test_pagerank.py +11 -5
- sknetwork/regression/base.py +18 -1
- sknetwork/regression/diffusion.py +24 -10
- sknetwork/regression/tests/test_diffusion.py +8 -0
- sknetwork/topology/__init__.py +3 -1
- sknetwork/topology/cliques.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/cliques.cpp +23528 -16848
- sknetwork/topology/core.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/core.cpp +22849 -16581
- sknetwork/topology/cycles.py +243 -0
- sknetwork/topology/minheap.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/minheap.cpp +19495 -13469
- sknetwork/topology/structure.py +2 -42
- sknetwork/topology/tests/test_cycles.py +65 -0
- sknetwork/topology/tests/test_structure.py +2 -16
- sknetwork/topology/triangles.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/triangles.cpp +5283 -1397
- sknetwork/topology/triangles.pyx +7 -4
- sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd +0 -0
- sknetwork/topology/weisfeiler_lehman_core.cpp +14781 -8915
- sknetwork/utils/format.py +1 -1
- sknetwork/utils/membership.py +2 -2
- sknetwork/visualization/__init__.py +2 -2
- sknetwork/visualization/dendrograms.py +55 -7
- sknetwork/visualization/graphs.py +261 -44
- sknetwork/visualization/tests/test_dendrograms.py +9 -9
- sknetwork/visualization/tests/test_graphs.py +63 -57
- sknetwork/embedding/louvain_hierarchy.py +0 -142
- sknetwork/embedding/tests/test_louvain_hierarchy.py +0 -19
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/LICENSE +0 -0
- {scikit_network-0.31.0.dist-info → scikit_network-0.32.1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-network
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.32.1
|
|
4
4
|
Summary: Graph algorithms
|
|
5
5
|
Home-page: https://github.com/sknetwork-team/scikit-network
|
|
6
6
|
Author: Scikit-network team
|
|
@@ -23,8 +23,8 @@ Requires-Python: >=3.8
|
|
|
23
23
|
Description-Content-Type: text/x-rst
|
|
24
24
|
License-File: LICENSE
|
|
25
25
|
License-File: AUTHORS.rst
|
|
26
|
-
Requires-Dist: numpy
|
|
27
|
-
Requires-Dist: scipy
|
|
26
|
+
Requires-Dist: numpy >=1.22.4
|
|
27
|
+
Requires-Dist: scipy >=1.7.3
|
|
28
28
|
|
|
29
29
|
.. image:: https://perso.telecom-paristech.fr/bonald/logo_sknetwork.png
|
|
30
30
|
:align: right
|
|
@@ -118,6 +118,22 @@ the `Journal of Machine Learning Research <https://jmlr.org>`_:
|
|
|
118
118
|
History
|
|
119
119
|
=======
|
|
120
120
|
|
|
121
|
+
0.32.1 (2024-04-02)
|
|
122
|
+
-------------------
|
|
123
|
+
|
|
124
|
+
* Fix documentation
|
|
125
|
+
* Fix wheel upload
|
|
126
|
+
|
|
127
|
+
0.32.0 (2024-03-29)
|
|
128
|
+
-------------------
|
|
129
|
+
|
|
130
|
+
* Add Leiden clustering algorithm
|
|
131
|
+
* Add k-center clustering algorithm
|
|
132
|
+
* Add functions to detect and break cycles
|
|
133
|
+
* Add damping factor in diffusion
|
|
134
|
+
* Fix F1 scores
|
|
135
|
+
* Remove hierarchical Louvain embedding
|
|
136
|
+
* Get clustering coefficient for directed graphs
|
|
121
137
|
|
|
122
138
|
0.31.0 (2023-05-22)
|
|
123
139
|
-------------------
|
|
@@ -1,46 +1,53 @@
|
|
|
1
|
-
sknetwork/__init__.py,sha256=
|
|
1
|
+
sknetwork/__init__.py,sha256=hbJ__5rv06WI2XnJW8lWLpJkXp3Ju9hyR0aGBzdG0IY,554
|
|
2
2
|
sknetwork/base.py,sha256=_63mkwqXFDke_0ve9DIZJiMHboMYqBONa7B08gao440,2018
|
|
3
3
|
sknetwork/log.py,sha256=qDR-dnlzJC0ETlotPAy_IbLiQPgu8Vn90mgkqfvT5W0,462
|
|
4
4
|
sknetwork/sknetwork.py,sha256=Qtq3EpSkdAFqQNQPDXTAouXS784LkR8Rh2D5s5w5_tc,47
|
|
5
5
|
sknetwork/test_base.py,sha256=hdbe2ldftbPp6Y0-bAWehKy9cyyd3Adj9UX6NgYq0QQ,947
|
|
6
6
|
sknetwork/test_log.py,sha256=ucX3w138eDyD0Wnpk9QEsPoQgAPTJNPy9twzMf5TjQ8,334
|
|
7
7
|
sknetwork/classification/__init__.py,sha256=QoS3fTnCZ0nFdlDkEphEYqj1NDEf23_aqsfP0G4zLMM,483
|
|
8
|
-
sknetwork/classification/base.py,sha256=
|
|
9
|
-
sknetwork/classification/base_rank.py,sha256=
|
|
10
|
-
sknetwork/classification/diffusion.py,sha256=
|
|
11
|
-
sknetwork/classification/knn.py,sha256
|
|
12
|
-
sknetwork/classification/metrics.py,sha256=
|
|
13
|
-
sknetwork/classification/pagerank.py,sha256=
|
|
14
|
-
sknetwork/classification/propagation.py,sha256=
|
|
15
|
-
sknetwork/classification/vote.cp311-win_amd64.pyd,sha256=
|
|
16
|
-
sknetwork/classification/vote.cpp,sha256=
|
|
8
|
+
sknetwork/classification/base.py,sha256=a6JczKf23arkC4Xx6rUEI0gLFAPoyPXKTXCdhV6_bWI,4432
|
|
9
|
+
sknetwork/classification/base_rank.py,sha256=BChHu6sDkdq_M6coJsC3hac3HWPE2lholi3g97J6lWw,4655
|
|
10
|
+
sknetwork/classification/diffusion.py,sha256=uliGned1_GGJLACzXMNFtkYbTyvHgfaUNgS535ZzreQ,5670
|
|
11
|
+
sknetwork/classification/knn.py,sha256=p9ZHNdaMOnrd6dmVNyieGBYrhFMrjXnkD8MFCxVmJqw,5444
|
|
12
|
+
sknetwork/classification/metrics.py,sha256=f66RlKyauNJFr8iuud4s9tntnEa4_Lp28zVWuwhUE44,7007
|
|
13
|
+
sknetwork/classification/pagerank.py,sha256=Nvmj-Y1YFXQxCZpcUhXfKlc6S5BebnIkJZ8DRsyzDTs,2652
|
|
14
|
+
sknetwork/classification/propagation.py,sha256=WkB4yG3V13a0d5yYuuecuHblQ2Z0L5PKLpL3gUgy8zs,5905
|
|
15
|
+
sknetwork/classification/vote.cp311-win_amd64.pyd,sha256=ePg6ahYduoLsckjvBNgqtfrmKexbywKjFHkxnNQ1kfI,155648
|
|
16
|
+
sknetwork/classification/vote.cpp,sha256=tkQ7miFAOTu6-9rDTRcRs48W3GAG798EE8WFZ2nHvP0,1023081
|
|
17
17
|
sknetwork/classification/vote.pyx,sha256=-mNsL96aaA1UL-qfeUgZlbdvKZUK9R4MLmq0BNFWVKA,1640
|
|
18
18
|
sknetwork/classification/tests/__init__.py,sha256=Per0oy1Frnm5jB7dnpod1g_xbgYhqkNteWQV5cemcH0,32
|
|
19
19
|
sknetwork/classification/tests/test_API.py,sha256=WV5cY8yhTHBHYRbDE3InZ4v-agymxLPMKxa2NqjbWZo,1154
|
|
20
|
-
sknetwork/classification/tests/test_diffusion.py,sha256=
|
|
20
|
+
sknetwork/classification/tests/test_diffusion.py,sha256=GuWNuE4PGZ4hqCLtRe-DfwjD3uUBFeHa0ByMEtsAUMM,3260
|
|
21
21
|
sknetwork/classification/tests/test_knn.py,sha256=EWuWiJJSsfthfvb3x0ejUjdccRBZIFpmG6nv7F8VkOk,807
|
|
22
22
|
sknetwork/classification/tests/test_metrics.py,sha256=9eqBvRiMdVUHf7WhjfwzMcUJFALt4Ufmx5LhBzou8Ww,2356
|
|
23
23
|
sknetwork/classification/tests/test_pagerank.py,sha256=8ywBVzfJOtz_gTIn7XYr0nvHlVwvmZERLrG3LkQHeTU,640
|
|
24
24
|
sknetwork/classification/tests/test_propagation.py,sha256=GzhpCpg0ijLvXuWtABolq02k0-Yh3UHJ2rAKpdQlTxI,874
|
|
25
|
-
sknetwork/clustering/__init__.py,sha256=
|
|
26
|
-
sknetwork/clustering/base.py,sha256=
|
|
27
|
-
sknetwork/clustering/
|
|
28
|
-
sknetwork/clustering/
|
|
29
|
-
sknetwork/clustering/
|
|
30
|
-
sknetwork/clustering/
|
|
25
|
+
sknetwork/clustering/__init__.py,sha256=Ju06e1zwMUfOn_1soTOlxJJu1F5u9VNxFXWN8TTParo,443
|
|
26
|
+
sknetwork/clustering/base.py,sha256=LsH_wlP19lDnIZWVUXbKwSta05ii5dWMqS-J-AkY6HE,6104
|
|
27
|
+
sknetwork/clustering/kcenters.py,sha256=MKmsR7zWTITeEAqFyRDKpglU7yZZEjR8H0TLJXdDjtw,8942
|
|
28
|
+
sknetwork/clustering/leiden.py,sha256=x2M1tVMlupu3KK8D7RpfB0hzV5iwf0den1y9NwC1Jko,9921
|
|
29
|
+
sknetwork/clustering/leiden_core.cp311-win_amd64.pyd,sha256=Pvkg1Xl5f17gcpLA6PZQ6kCCQmk9aDwSo2j7dSqSQM4,201216
|
|
30
|
+
sknetwork/clustering/leiden_core.cpp,sha256=vpfrWRJT-0tFI8KSnyMmNAgqOIHCo-9ADhCGWykWVFE,1205017
|
|
31
|
+
sknetwork/clustering/leiden_core.pyx,sha256=kEppO0iSs0UqK3ybtSVIHRSojJ4KNfe6pUNo9sShh7E,4424
|
|
32
|
+
sknetwork/clustering/louvain.py,sha256=Em7A22oNamwBb0IAFySLa9HUmdu4LjAuo3XAtJqtHC0,11077
|
|
33
|
+
sknetwork/clustering/louvain_core.cp311-win_amd64.pyd,sha256=eJN_gLLHDt6ZDB-iWwatT83GlhLqqkrM0bsNdfQytoA,197120
|
|
34
|
+
sknetwork/clustering/louvain_core.cpp,sha256=msZERhRZoNax_N3rXGk_TR5nYFwzzRteZ3bdU3g2sbA,1185581
|
|
35
|
+
sknetwork/clustering/louvain_core.pyx,sha256=2KPnBhBeSlIxmoScZW7jwsmVxJyAyHQs3pcH9AfBM2Y,4213
|
|
31
36
|
sknetwork/clustering/metrics.py,sha256=ptLLtUpFtdKLZ4lcx_MN-PpOrzv--PWhAcEFoFghccM,3151
|
|
32
|
-
sknetwork/clustering/postprocess.py,sha256=
|
|
33
|
-
sknetwork/clustering/propagation_clustering.py,sha256=
|
|
37
|
+
sknetwork/clustering/postprocess.py,sha256=uynPXvjYXiFNShxGZyLkpIwRl5nIlIVEm-auMCNZA0o,2105
|
|
38
|
+
sknetwork/clustering/propagation_clustering.py,sha256=s-Y7EQEqGM2wdl1zAOQzfmy-8LGab1eB00u_AOkYzl0,3885
|
|
34
39
|
sknetwork/clustering/tests/__init__.py,sha256=tCA27jkL3pdstka9XWQEA1NbC6ZqL7Rf-1V1UcySCEE,28
|
|
35
|
-
sknetwork/clustering/tests/test_API.py,sha256=
|
|
36
|
-
sknetwork/clustering/tests/
|
|
40
|
+
sknetwork/clustering/tests/test_API.py,sha256=PKxuTh49IyKzwkLfgFAmJiuBhWJQBEYtNxzOEYgc5uE,1566
|
|
41
|
+
sknetwork/clustering/tests/test_kcenters.py,sha256=f2nBCcj4TRZ9FJVn7r60w1AI5gzDP1s70ve9aW1PbDs,3569
|
|
42
|
+
sknetwork/clustering/tests/test_leiden.py,sha256=oEN0Dz9popCEYE-qqEdmTEqqr3af9TB3WDmRNWYAidE,1189
|
|
43
|
+
sknetwork/clustering/tests/test_louvain.py,sha256=rYZLrb8Ld_F2KDCos5RP9-1szkVXHnXLWHd4SbOwvAY,4807
|
|
37
44
|
sknetwork/clustering/tests/test_metrics.py,sha256=ZTr4T-d-g6kQJinei9VH6Teb_rOScmj5XLG168EI5LQ,1868
|
|
38
45
|
sknetwork/clustering/tests/test_postprocess.py,sha256=41l4coS_1CHqGOCnnucqxU6UkXws89YVMjef162ZTEQ,1417
|
|
39
46
|
sknetwork/data/__init__.py,sha256=QScOMfOfm2j7rPaNLPGNc9TwHQGebWRZCBHHbmZarO8,265
|
|
40
47
|
sknetwork/data/base.py,sha256=O_EN3j1hoSbHc96qxx-dAe5SsLGdLE1cqiX9fl0xjAw,658
|
|
41
|
-
sknetwork/data/load.py,sha256=
|
|
48
|
+
sknetwork/data/load.py,sha256=AkFI4qdzP2mPd43Rm321NQa4uSERb5D4Hs2lciuyn-Y,14769
|
|
42
49
|
sknetwork/data/models.py,sha256=luDuvYYcruOEw94iXNEnl5IbYJCVGtxB6jhDWVBmJH0,13615
|
|
43
|
-
sknetwork/data/parse.py,sha256
|
|
50
|
+
sknetwork/data/parse.py,sha256=bmAM5LdMleZfYQ8hx1NEd3TIRjxwemoVOsNHEGv-0ss,27539
|
|
44
51
|
sknetwork/data/test_graphs.py,sha256=KRRok5ElYWh1NV3i_2enLLjdeKe8zBg_3xqFXgOOY6I,2568
|
|
45
52
|
sknetwork/data/timeout.py,sha256=mXSqgKFRc6AVZBlIobN2xPYJjAyQOClKH3KQJ5M_4Sw,1085
|
|
46
53
|
sknetwork/data/toy_graphs.py,sha256=xdgNQjzwswpkCVioUR0_EzoQiS6QbuOAD0mgTs3Fphg,25654
|
|
@@ -49,153 +56,153 @@ sknetwork/data/tests/test_API.py,sha256=aytP2cJV9px-d-SogJn4SYPnTFJ1Xt2coEW7-Eil
|
|
|
49
56
|
sknetwork/data/tests/test_base.py,sha256=h1-1fEyWuVpAOnZDFmkSuhngrQdv3N2vEMa_Wpt8dVU,322
|
|
50
57
|
sknetwork/data/tests/test_load.py,sha256=wuLVlJ-lquoIrsr0UBI-gakW7BjGBZaSyEPavxX0NVY,3645
|
|
51
58
|
sknetwork/data/tests/test_models.py,sha256=_2y5xZrWbE3XZltd4n-z84YwyJhPcpaBa2TxXMvhXF4,1967
|
|
52
|
-
sknetwork/data/tests/test_parse.py,sha256=
|
|
59
|
+
sknetwork/data/tests/test_parse.py,sha256=K_HTO7L5axpnt2Fs3hmOMudufZZ2shps94COEABcMx4,12967
|
|
53
60
|
sknetwork/data/tests/test_test_graphs.py,sha256=3QWshIikkBtRl3C7ATc_zO5UkwOh1wZwD7gYm0CEj8o,878
|
|
54
61
|
sknetwork/data/tests/test_toy_graphs.py,sha256=wQ2X-CVv9oycBUAaB68aJqg-0o3yMlaVtZ9D4thZJrc,2205
|
|
55
|
-
sknetwork/embedding/__init__.py,sha256=
|
|
56
|
-
sknetwork/embedding/base.py,sha256=
|
|
57
|
-
sknetwork/embedding/force_atlas.py,sha256=
|
|
58
|
-
sknetwork/embedding/louvain_embedding.py,sha256=
|
|
59
|
-
sknetwork/embedding/
|
|
60
|
-
sknetwork/embedding/
|
|
61
|
-
sknetwork/embedding/spectral.py,sha256=wZspZ9MvjwK9G-b3ys7gr8fD4goeWigYwd7mXMDcTUM,8335
|
|
62
|
+
sknetwork/embedding/__init__.py,sha256=hTtHHVXNdwdGSZuAmLvTm3yMmHWxYKrFwwo1MuOPTUI,418
|
|
63
|
+
sknetwork/embedding/base.py,sha256=YWKLjfChvWKWuD3FE5mlqtNVzczzvfojLQvvgV73ACM,2681
|
|
64
|
+
sknetwork/embedding/force_atlas.py,sha256=yjlL5Qfv19KJdwtziTDOklrW_HP5CkMJIoOL6t2cYsA,7650
|
|
65
|
+
sknetwork/embedding/louvain_embedding.py,sha256=3jSFxiWImFc1bUEY1ZXdbvslRxL9wl2CeERZFGF5qKM,7124
|
|
66
|
+
sknetwork/embedding/random_projection.py,sha256=b5zGehuWT-dpA1KSw5xv3UZXZGNcP8PalEjXYWfgPT8,5137
|
|
67
|
+
sknetwork/embedding/spectral.py,sha256=xN_5yxJV2KJ--DOpv7tyy5yU25BHVBWnXbywQ0L_6YE,5689
|
|
62
68
|
sknetwork/embedding/spring.py,sha256=Cl1airI_mSWmV1isKmcxqjY1uxw7NcH7xMwHc8ADmHA,7349
|
|
63
69
|
sknetwork/embedding/svd.py,sha256=isI2y9GfCGA5VJmogHrtq2MDVaxuWCZsEvh4YqgfB2k,15097
|
|
64
70
|
sknetwork/embedding/tests/__init__.py,sha256=PsZQYFNrSmRW_KIuNX3qVtxtZVn8yV18d0mk8Y6ieck,27
|
|
65
|
-
sknetwork/embedding/tests/test_API.py,sha256=
|
|
71
|
+
sknetwork/embedding/tests/test_API.py,sha256=0KKY3p_bF2f3QPsReW9IrAtC5KGw1Ok3J0kYUT1hrl8,1538
|
|
66
72
|
sknetwork/embedding/tests/test_force_atlas.py,sha256=dYiyWroqB7UKNW9MTYpGP6e7tF_qPWqVZNmZBndd_ks,1155
|
|
67
|
-
sknetwork/embedding/tests/test_louvain_embedding.py,sha256=
|
|
68
|
-
sknetwork/embedding/tests/test_louvain_hierarchy.py,sha256=QgOQRz0dkw-CesDk78wWKOD-bbR_tqHEBvitfn7POIY,753
|
|
73
|
+
sknetwork/embedding/tests/test_louvain_embedding.py,sha256=yPKM_JG2v_kzYkp4lZ7laalZNq0qhjM6pWmyGWecCkk,853
|
|
69
74
|
sknetwork/embedding/tests/test_random_projection.py,sha256=zz6q0G-pG-G2gOefhr-yuPBQhNDNtXB8jz7_dld1ZpE,1221
|
|
70
|
-
sknetwork/embedding/tests/test_spectral.py,sha256=
|
|
75
|
+
sknetwork/embedding/tests/test_spectral.py,sha256=w-gokQ_UgeXSQv69BB_Dk6shkWiO6iJbJGl5ih0JNRI,3978
|
|
71
76
|
sknetwork/embedding/tests/test_spring.py,sha256=z3eT-mFcfNSoMWPKQF-Dz_ZjAsJplQrx1yspiaeFRBw,1693
|
|
72
|
-
sknetwork/embedding/tests/test_svd.py,sha256=
|
|
77
|
+
sknetwork/embedding/tests/test_svd.py,sha256=OZTpXRemHEpGYSfYb2AosXhLgruaRpAhyQjNcqQhw0Y,1232
|
|
73
78
|
sknetwork/gnn/__init__.py,sha256=808PNZEYNHZrIBpKqPzAMKES8yhN6QXEVUWkZVJIJWI,529
|
|
74
79
|
sknetwork/gnn/activation.py,sha256=rhvEXgrIix4nZ9I3WYZ0e1MID_DESCCC_XlVcOa4Wpo,3677
|
|
75
80
|
sknetwork/gnn/base.py,sha256=qHnKsfsUW4LIdwm3vzfAahBjweCkIDRzk62i4piNBuc,5889
|
|
76
81
|
sknetwork/gnn/base_activation.py,sha256=Kxs_d4aPOpMRXZMBAW7WKkA_uWLXRM7XM-JqE4nFHhc,2395
|
|
77
|
-
sknetwork/gnn/base_layer.py,sha256=
|
|
78
|
-
sknetwork/gnn/gnn_classifier.py,sha256=
|
|
79
|
-
sknetwork/gnn/layer.py,sha256=
|
|
80
|
-
sknetwork/gnn/loss.py,sha256=
|
|
82
|
+
sknetwork/gnn/base_layer.py,sha256=_zL_SyVYvhxch9N1i44Qkgar_M5xVRz7JcxqUjVwDjY,4057
|
|
83
|
+
sknetwork/gnn/gnn_classifier.py,sha256=EyanIIdGfeshOU_3IwH90PX6GG5nCav6msQN9zfJixo,12918
|
|
84
|
+
sknetwork/gnn/layer.py,sha256=JBNFABBgGtMeXdQaS8wGnsSd7Jqs18jbIguITTOCQRE,5679
|
|
85
|
+
sknetwork/gnn/loss.py,sha256=FwULPjbUe3OFIhIBKJoNfdYX41ALckX2ANKvC69yyoI,5342
|
|
81
86
|
sknetwork/gnn/neighbor_sampler.py,sha256=l5OkylbRQsDpmkfeHAaSA7gHi5l7OUKtL4YvH-YTMWM,1929
|
|
82
|
-
sknetwork/gnn/optimizer.py,sha256=
|
|
83
|
-
sknetwork/gnn/utils.py,sha256=
|
|
87
|
+
sknetwork/gnn/optimizer.py,sha256=Ijtt0VhhD_pUI2Qk8u3GLuO2mQvfVkBqW0cYF-Zqo2I,5946
|
|
88
|
+
sknetwork/gnn/utils.py,sha256=7sNUhWyO_juS3Of67qSwbMThGH-C-Y3NzHxLq2x7S68,4476
|
|
84
89
|
sknetwork/gnn/tests/__init__.py,sha256=_q1IzwMWdNgX90qzdbVkr0LV4NTjFzXg81z4-TM93cw,21
|
|
85
90
|
sknetwork/gnn/tests/test_activation.py,sha256=UznwTCvOeCX80n5urtoDhnM8lskDM67AsVFiY-ViqzU,2543
|
|
86
91
|
sknetwork/gnn/tests/test_base.py,sha256=EN3QjzsSwzpOgyIYHwA6mgCDRBigx7YQ5iSQXQbw_pM,3468
|
|
87
|
-
sknetwork/gnn/tests/test_base_layer.py,sha256=
|
|
88
|
-
sknetwork/gnn/tests/test_gnn_classifier.py,sha256=
|
|
92
|
+
sknetwork/gnn/tests/test_base_layer.py,sha256=1TfVD7xaI6VUVWZuSmOwDR7Ct0iVFvpmcxUf8L6EaqY,1418
|
|
93
|
+
sknetwork/gnn/tests/test_gnn_classifier.py,sha256=MQYFGWQRF5bTzKB_td3wmtcUZvJl4uoc4pXmOHiutls,5873
|
|
89
94
|
sknetwork/gnn/tests/test_layers.py,sha256=6Rbz_jJm3m5e6XWZA3P8Bfzlss9nBoiE4rSz2Tc-QKo,3256
|
|
90
95
|
sknetwork/gnn/tests/test_loss.py,sha256=QvzXKW_xzirXUSkiDm9HgqJPHJdd55FOpuHWZzxyeKs,1078
|
|
91
96
|
sknetwork/gnn/tests/test_neigh_sampler.py,sha256=7yhKZSRg2sZd3kFNs-qdj1LKgM7X8xZBNoOYYkYRfek,721
|
|
92
97
|
sknetwork/gnn/tests/test_optimizer.py,sha256=OZnIeO__kNt8HXLHr-WHGzvDsTy4LvJ19p9jcFVzXME,1823
|
|
93
98
|
sknetwork/gnn/tests/test_utils.py,sha256=MJvOXEWouRiIVaPM76W0hizt3jFb-1_BXHLd1zkPzSg,1884
|
|
94
99
|
sknetwork/hierarchy/__init__.py,sha256=-2-y7iBVQRanXLSl9kY8VASJVqx37trYmVNcz74QsUc,418
|
|
95
|
-
sknetwork/hierarchy/base.py,sha256=
|
|
96
|
-
sknetwork/hierarchy/louvain_hierarchy.py,sha256=
|
|
100
|
+
sknetwork/hierarchy/base.py,sha256=DvVUNgJgfaFlWyl4QbdHmp-VldPMFLPx9irt74kpyrU,2789
|
|
101
|
+
sknetwork/hierarchy/louvain_hierarchy.py,sha256=MqIWRoqAl3ufgsV8r707T8qlwaqB_km_yczRcJWh_4w,9826
|
|
97
102
|
sknetwork/hierarchy/metrics.py,sha256=5WZLsSLYKifLIQ9aPrXyzvPtTFN5ROSlNivhV-n9VuY,8280
|
|
98
|
-
sknetwork/hierarchy/paris.cp311-win_amd64.pyd,sha256=
|
|
99
|
-
sknetwork/hierarchy/paris.cpp,sha256=
|
|
100
|
-
sknetwork/hierarchy/paris.pyx,sha256=
|
|
101
|
-
sknetwork/hierarchy/postprocess.py,sha256=
|
|
103
|
+
sknetwork/hierarchy/paris.cp311-win_amd64.pyd,sha256=f2oLb1J4RSCVOw-ycOKc5skpVepm5zcVFmiNmi5UO9U,226304
|
|
104
|
+
sknetwork/hierarchy/paris.cpp,sha256=xOAVXw-t84Q2iq47cCfuML4hVh6isX4zS4cCUc_Wqqo,1471055
|
|
105
|
+
sknetwork/hierarchy/paris.pyx,sha256=YfHQwrZx4ddzsKZ9K4yv1obIrZSVDzY0WjVhM5Qi8DI,11998
|
|
106
|
+
sknetwork/hierarchy/postprocess.py,sha256=81Hj7eCHvU_2mdq0FTeYuZAqk4FIudZfZbvU39_sqyM,12422
|
|
102
107
|
sknetwork/hierarchy/tests/__init__.py,sha256=jRlC4pbyKuxaiXvByYK-4ix7DwYWxpjwKNvSXZ7rQJE,27
|
|
103
108
|
sknetwork/hierarchy/tests/test_API.py,sha256=f0QtuCDA5dRwhPogtwbjsVlDRTpk84ewkXgc6rHCSWU,744
|
|
104
|
-
sknetwork/hierarchy/tests/test_algos.py,sha256=
|
|
109
|
+
sknetwork/hierarchy/tests/test_algos.py,sha256=HbF1QCFcpbrybRLrz7C0-2yY7s97vciWNiktbbvubwg,1395
|
|
105
110
|
sknetwork/hierarchy/tests/test_metrics.py,sha256=rcdFVeWf50bYnem55gmUaDfE6AmJuW8RtYEQcigqZ60,3222
|
|
106
111
|
sknetwork/hierarchy/tests/test_postprocess.py,sha256=Bm1_XU6OgwZr_1B28IA5m_HZRqI7GMwlTLpzkXux__Y,2266
|
|
107
|
-
sknetwork/linalg/__init__.py,sha256=
|
|
112
|
+
sknetwork/linalg/__init__.py,sha256=COkAHs_EsxWzd_tHl6qq8laEfSsjoMuWVx3VbNFEgzU,542
|
|
108
113
|
sknetwork/linalg/basics.py,sha256=WDlylrkBTCQpjXGtzs8kshJYfpo0h3uM8TMhHmnAnnM,1179
|
|
109
|
-
sknetwork/linalg/diteration.cp311-win_amd64.pyd,sha256=
|
|
110
|
-
sknetwork/linalg/diteration.cpp,sha256=
|
|
114
|
+
sknetwork/linalg/diteration.cp311-win_amd64.pyd,sha256=sYZc5HoSIb07-g2n6EYgl7_vtC4PZZSJHg3NenNDqQM,145920
|
|
115
|
+
sknetwork/linalg/diteration.cpp,sha256=KrRjV1TUFLHYHkHxOkWenscBuSl0LNFJtSNF2b8V7bc,1019891
|
|
111
116
|
sknetwork/linalg/diteration.pyx,sha256=1r7a1usqftiBNTPOAwHFQPK__nZ67J-87wQLM25GqEU,1431
|
|
112
117
|
sknetwork/linalg/eig_solver.py,sha256=lMqxTg66_T-LsgGqc9oo_ngxpTceekavnCFOANWEpPA,2793
|
|
113
118
|
sknetwork/linalg/laplacian.py,sha256=qifd-8iltcTKCQW-7fG5z3XfwVrrrCeaBqbViBQCLf0,416
|
|
114
|
-
sknetwork/linalg/
|
|
115
|
-
sknetwork/linalg/operators.py,sha256=
|
|
119
|
+
sknetwork/linalg/normalizer.py,sha256=Z0-paMHwp51aY_ssCP2RfXNVQqTFA9gsIHfy-fhG5QI,2559
|
|
120
|
+
sknetwork/linalg/operators.py,sha256=nNTtdI_I0HEhnpHOxUYRHmEzUDcz9CbwjDc5eEKzlNQ,7657
|
|
116
121
|
sknetwork/linalg/polynome.py,sha256=qnIhfpRk26JMinuNCrZO1EDj5ci65ZLxkKJyhO7HxpE,2201
|
|
117
|
-
sknetwork/linalg/ppr_solver.py,sha256=
|
|
118
|
-
sknetwork/linalg/push.cp311-win_amd64.pyd,sha256=
|
|
119
|
-
sknetwork/linalg/push.cpp,sha256=
|
|
122
|
+
sknetwork/linalg/ppr_solver.py,sha256=D7LUMQgFAtnGhh8pxpKrISH1H9d5MknFpHib8bPA5x4,6703
|
|
123
|
+
sknetwork/linalg/push.cp311-win_amd64.pyd,sha256=YbdvyzBDfow1zt3o_jni43ccgtEDeTkYA0szuXBqYRE,163840
|
|
124
|
+
sknetwork/linalg/push.cpp,sha256=LYf5Z_Jm62v7yY9hYmbqq7oMnzt9Ly9ClspfYoI23XY,1156910
|
|
120
125
|
sknetwork/linalg/push.pyx,sha256=79ycseJ1jOznzc1_KSexTGy_0dlX1jQVnf_WI8Ufvgc,2429
|
|
121
126
|
sknetwork/linalg/sparse_lowrank.py,sha256=-6-cNRs6tpiNqA8ah3mBKWap3Nh9GQHTFIarPjIiC7U,5170
|
|
122
127
|
sknetwork/linalg/svd_solver.py,sha256=XxP4AyKQInBQN3imcbtahXseZ4YyKj4ZI2UAJK1mDs4,2772
|
|
123
128
|
sknetwork/linalg/tests/__init__.py,sha256=i2cO6oXoryXdEJ-HdSFZsY7LZdNit7W3GC8J8LAUMU4,24
|
|
124
129
|
sknetwork/linalg/tests/test_eig.py,sha256=c_BpjP_S7xCwYgk2N7kaFfsjV1-nfUYCu3Rys07bPeo,1548
|
|
125
130
|
sknetwork/linalg/tests/test_laplacian.py,sha256=iGI4bFmYfhCbymlN4wcnE0tV9GmApC3g7bDL3Qx8dR0,452
|
|
126
|
-
sknetwork/linalg/tests/test_normalization.py,sha256=
|
|
127
|
-
sknetwork/linalg/tests/test_operators.py,sha256=
|
|
131
|
+
sknetwork/linalg/tests/test_normalization.py,sha256=tYw6JKDekgsNJEZDvxdtCSHoltvWAu7XgZ6BtVy85e0,921
|
|
132
|
+
sknetwork/linalg/tests/test_operators.py,sha256=AaOekSv0_mnt7KKs61gve4drT_I7PdG5CxLQSgUXYXQ,2985
|
|
128
133
|
sknetwork/linalg/tests/test_polynome.py,sha256=-F0iMhYd1lVFau6ILxq7Mr5BtJxJPB-TX3ya3tQwzOM,1015
|
|
129
|
-
sknetwork/linalg/tests/test_ppr.py,sha256=
|
|
134
|
+
sknetwork/linalg/tests/test_ppr.py,sha256=6FlYnOlpWw2A98iH2Xp45DjbtqB5pPfymVVKhNFmCws,2143
|
|
130
135
|
sknetwork/linalg/tests/test_sparse_lowrank.py,sha256=Vqeey1W8jB85zT0L4c5TEGTL0hyQ9zX4FQ6EEI4tmHE,2337
|
|
131
136
|
sknetwork/linalg/tests/test_svd.py,sha256=9Uu89-1vTlaJ_H82MUwzGz-iiYf_wFiZMyfelVBRHMI,1323
|
|
132
137
|
sknetwork/linkpred/__init__.py,sha256=a7t20Q3xpm1M5IXnyErmucoQuHnGwPTNKAD42oYHEWQ,74
|
|
133
|
-
sknetwork/linkpred/base.py,sha256=
|
|
134
|
-
sknetwork/linkpred/nn.py,sha256=
|
|
138
|
+
sknetwork/linkpred/base.py,sha256=hEImortSlZbfMav5uG8AR3ajKn9IXuookuIXhyBuvSw,1041
|
|
139
|
+
sknetwork/linkpred/nn.py,sha256=y0RB1rrKTr23PFklH2M2V7jcXfssl9SLdidtFozFxKg,4156
|
|
135
140
|
sknetwork/linkpred/tests/__init__.py,sha256=vghxhmK0F5SJOYIb9HZV0h3AVXsCVEPwkgfM7aPpV9M,33
|
|
136
141
|
sknetwork/linkpred/tests/test_nn.py,sha256=-1r8LyU34XXvhHnvJA53fGmOd6Ei2jGG6-LHtYvHYGc,1010
|
|
137
142
|
sknetwork/path/__init__.py,sha256=FU7sn-HrqXGbJQzCIlQgE95LGDwwMRzBe-qp4rTt-3A,227
|
|
138
143
|
sknetwork/path/dag.py,sha256=UAhn3uL2hlCybyOY0ZBnFh1aJnWwWpZ4pfhg-Ay2JKU,1722
|
|
139
|
-
sknetwork/path/distances.py,sha256=
|
|
144
|
+
sknetwork/path/distances.py,sha256=HsehKUOtoL8dCybTTm_mALTH9szOHkCRKkw3ref7-PA,3666
|
|
140
145
|
sknetwork/path/search.py,sha256=SD6iV6m_OdygudaJ3vaNyLQtlGZrHjfCvA0BIFPPAN0,807
|
|
141
|
-
sknetwork/path/shortest_path.py,sha256=
|
|
146
|
+
sknetwork/path/shortest_path.py,sha256=gr7nB8woh3xBrS0gybylpQ31uDYCE2N4WEi2vTpke2Y,2511
|
|
142
147
|
sknetwork/path/tests/__init__.py,sha256=ntNGJ8p6RZkIrYnePF-TESyoidEXx8fw6A9OBNAlIqo,29
|
|
143
148
|
sknetwork/path/tests/test_dag.py,sha256=lualgStm0Boqx88j38tNuRKrW7Ala5ZfIHzlKdFbVRM,975
|
|
144
|
-
sknetwork/path/tests/test_distances.py,sha256=
|
|
145
|
-
sknetwork/path/tests/test_search.py,sha256=
|
|
149
|
+
sknetwork/path/tests/test_distances.py,sha256=V9ZukcbwZ9HUDIg1-bKunkT4RHN94y2tkl0DRTKpefY,2757
|
|
150
|
+
sknetwork/path/tests/test_search.py,sha256=wJzwbbe86axJRmausJp-KcsNTB9n7kpo6YBd77SjV20,1239
|
|
146
151
|
sknetwork/path/tests/test_shortest_path.py,sha256=zeM-qgbTs3i29gvF568otKOKgv_pbryV_yGefThLEIY,1422
|
|
147
152
|
sknetwork/ranking/__init__.py,sha256=lbkUSZ3alkLK0xGiUx5ptPqhQKIjIKK80uPk0KymJPc,356
|
|
148
|
-
sknetwork/ranking/base.py,sha256=
|
|
149
|
-
sknetwork/ranking/betweenness.cp311-win_amd64.pyd,sha256=
|
|
150
|
-
sknetwork/ranking/betweenness.cpp,sha256=
|
|
153
|
+
sknetwork/ranking/base.py,sha256=W3gw9j_ikhyETr3dpEYo9RINUUHlSn8Dez_eAnlIsDg,1573
|
|
154
|
+
sknetwork/ranking/betweenness.cp311-win_amd64.pyd,sha256=b7SQHjCdtMTrHZGM-h33pA4LB80moBgJE_D9j4q1fM8,75264
|
|
155
|
+
sknetwork/ranking/betweenness.cpp,sha256=0QMMW5wbOyp48-I2dq6kde3Vdy4Vrj8cfrCHP-pS59Q,380617
|
|
151
156
|
sknetwork/ranking/betweenness.pyx,sha256=fe5_gwRQ0TaFi_0-vUGfy6XC5kW5un5xly7-xVDgxrU,3184
|
|
152
157
|
sknetwork/ranking/closeness.py,sha256=CvdAaqsM8HvAi6zGCuLcVF0BUu9n9UPBz_YxZhFF_sM,2932
|
|
153
158
|
sknetwork/ranking/hits.py,sha256=uhGJH2C0U9hLsVRutI6M1ulbEIM7L6dCeYqiAhtTD9A,2855
|
|
154
159
|
sknetwork/ranking/katz.py,sha256=WQpxJq_qqvjFm1ZG_P1ynfpzLlPu-dXCJ9luK-8sRjY,2618
|
|
155
|
-
sknetwork/ranking/pagerank.py,sha256
|
|
160
|
+
sknetwork/ranking/pagerank.py,sha256=jzh5dFuM4k5E6UknDFx6WVU2HA30enYbe95RUYmssi0,4859
|
|
156
161
|
sknetwork/ranking/postprocess.py,sha256=F2yP6AsaK9ylTzukLCdtJET7_KnprrxkyWTSKQOnODk,956
|
|
157
162
|
sknetwork/ranking/tests/__init__.py,sha256=46AJCs9irV6PtFg8CVH8TqpqHA6ajs29-3rsL3zxZQ8,25
|
|
158
|
-
sknetwork/ranking/tests/test_API.py,sha256=
|
|
159
|
-
sknetwork/ranking/tests/test_betweenness.py,sha256=
|
|
163
|
+
sknetwork/ranking/tests/test_API.py,sha256=wPRPjYGcyxEqRt7g4SH7FEZt1sFKBqo2LhCRq0g9pF4,1035
|
|
164
|
+
sknetwork/ranking/tests/test_betweenness.py,sha256=CEqRSOYOgnLUND54GBglDAUdzr6EGRxEPN3iMrYpE34,1173
|
|
160
165
|
sknetwork/ranking/tests/test_closeness.py,sha256=7LSiT-H5S1vuaOj4NHpotg0voIWjgJfVlgR96_V2ny8,853
|
|
161
166
|
sknetwork/ranking/tests/test_hits.py,sha256=aOPsAyU3GNyb_Mcujd7U_TLBtzWn91SuOPyZZRUF9MU,511
|
|
162
|
-
sknetwork/ranking/tests/test_pagerank.py,sha256=
|
|
167
|
+
sknetwork/ranking/tests/test_pagerank.py,sha256=LlRJLoq-By1WVOuY71OAh46vCIvERQ0qiIgOgpvw6aM,2305
|
|
163
168
|
sknetwork/ranking/tests/test_postprocess.py,sha256=TpyU3_DKbnSwuf0HEuEYMiNbdI6Z5oP1JNO6kWigFkc,729
|
|
164
169
|
sknetwork/regression/__init__.py,sha256=FYnlc-DKS1Mz2lKVCtKldjSgtvzxMmkd5kwKq2HdNmE,145
|
|
165
|
-
sknetwork/regression/base.py,sha256=
|
|
166
|
-
sknetwork/regression/diffusion.py,sha256=
|
|
170
|
+
sknetwork/regression/base.py,sha256=gTBqtaE-tMmtcnWh0pPsK9fg7eEUF1UaDdINE2nLNI8,1557
|
|
171
|
+
sknetwork/regression/diffusion.py,sha256=sUKbAf0VNmMHQmw_-Dba25omL4oEpWhyYU1qZJ_QA2E,8053
|
|
167
172
|
sknetwork/regression/tests/__init__.py,sha256=GvqvsSMbqMYwRmWw4VrZntwccz1jOPqrqufAZqw_NAc,28
|
|
168
173
|
sknetwork/regression/tests/test_API.py,sha256=7x_n8bG8hUcJVRYDbdC6GvPmwW5cE7HmASlu5SHnwFI,1056
|
|
169
|
-
sknetwork/regression/tests/test_diffusion.py,sha256=
|
|
170
|
-
sknetwork/topology/__init__.py,sha256=
|
|
171
|
-
sknetwork/topology/cliques.cp311-win_amd64.pyd,sha256=
|
|
172
|
-
sknetwork/topology/cliques.cpp,sha256=
|
|
174
|
+
sknetwork/regression/tests/test_diffusion.py,sha256=_ivBfsfmRQyiFChMS8N1J7HoJDhZtKdeydBIu7SuSvU,2117
|
|
175
|
+
sknetwork/topology/__init__.py,sha256=Ho06JPdSeiy5sq-Cv3e9y4AiFVMUQ_RUNUDDpKegWnM,542
|
|
176
|
+
sknetwork/topology/cliques.cp311-win_amd64.pyd,sha256=YvrBW64VE0VoLJo1Lv_iBzLyBF4S7oV6H64Y6A42lEg,185344
|
|
177
|
+
sknetwork/topology/cliques.cpp,sha256=UKpUEDIMMFhjqOnfzSE3jOksyGARj3VLxTJx2wC09xU,1223705
|
|
173
178
|
sknetwork/topology/cliques.pyx,sha256=y6Ee5oaX7IdVhXXjSOazqT5dYo4gSTQ8Mq0u1Abg0vw,4659
|
|
174
|
-
sknetwork/topology/core.cp311-win_amd64.pyd,sha256=
|
|
175
|
-
sknetwork/topology/core.cpp,sha256=
|
|
179
|
+
sknetwork/topology/core.cp311-win_amd64.pyd,sha256=ISBxqS1ctTgpvFLRN_15trXRvIHAFP0WcKcBm_ifu04,155648
|
|
180
|
+
sknetwork/topology/core.cpp,sha256=tXlE-MDH0BHikS0Sni3Nei2aCRYnDdLJyMx794GSFog,1132988
|
|
176
181
|
sknetwork/topology/core.pyx,sha256=0PO4HnOYivjrFY1NMlXHd7wscu0R5Fg-Toj3YVRwXDo,2555
|
|
177
|
-
sknetwork/topology/
|
|
178
|
-
sknetwork/topology/minheap.
|
|
182
|
+
sknetwork/topology/cycles.py,sha256=EgVtANHvY-MBcIe3yRVaBYzz1amsiV6GfuDEMIO3Kl0,9246
|
|
183
|
+
sknetwork/topology/minheap.cp311-win_amd64.pyd,sha256=kYGqmbqLU0WyXycOpNPFt9ORIDrLS_qCf-sQ2p-ox7s,133632
|
|
184
|
+
sknetwork/topology/minheap.cpp,sha256=UYZFkFrVP_jNOi5DdQZVW52brBtIhepAl4Pm5St2lsU,1016263
|
|
179
185
|
sknetwork/topology/minheap.pxd,sha256=AHeBNN8wGzT429K6AyhbrFUoBkWVwbkyUIY6TkeJ80g,584
|
|
180
186
|
sknetwork/topology/minheap.pyx,sha256=KOmjjlljgkGUJNL8PQ6WaNzx-Ro84QoSve_8baDN1B0,3419
|
|
181
|
-
sknetwork/topology/structure.py,sha256=
|
|
182
|
-
sknetwork/topology/triangles.cp311-win_amd64.pyd,sha256=
|
|
183
|
-
sknetwork/topology/triangles.cpp,sha256=
|
|
184
|
-
sknetwork/topology/triangles.pyx,sha256=
|
|
187
|
+
sknetwork/topology/structure.py,sha256=28mSnrukLU_GDil8e5ouLZ9PuoQyJ0UmQ4WgMu9Wzew,7479
|
|
188
|
+
sknetwork/topology/triangles.cp311-win_amd64.pyd,sha256=t5k6pL3FiT8zCPHCZDYVSvrOtlZyXWDe753Rcp4RvSo,59904
|
|
189
|
+
sknetwork/topology/triangles.cpp,sha256=PsY5jSVolvYOvToikImbfwyPN8A2uOHMGNcb7jrE_-w,354317
|
|
190
|
+
sknetwork/topology/triangles.pyx,sha256=q_f23ZidyizvR9P4X4OIX8o8bAZZTtV7tnjXqmyYZuY,4500
|
|
185
191
|
sknetwork/topology/weisfeiler_lehman.py,sha256=U5b5RoTFtqBeFwkuBXs4g0Px2UWRFePyneu-tfgnY_I,4441
|
|
186
|
-
sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd,sha256=
|
|
187
|
-
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=
|
|
192
|
+
sknetwork/topology/weisfeiler_lehman_core.cp311-win_amd64.pyd,sha256=fhyw6r2yw0sevpWKnezyc9OWSW-yzXYoaLRd5hgFuOU,155648
|
|
193
|
+
sknetwork/topology/weisfeiler_lehman_core.cpp,sha256=Azv3YIu4Y5tC6ghZ6oqb2itJC0_7n2RUXxbY9uLCINk,1027133
|
|
188
194
|
sknetwork/topology/weisfeiler_lehman_core.pyx,sha256=lpUV1BpxtedsGBfOl19b8OFXCIbyaAA4ZYlW6BzSxbw,3148
|
|
189
195
|
sknetwork/topology/tests/__init__.py,sha256=84T-xv8JCFeA9D7Rxw9gy3_dNAoE8CY1k1pYcuG8K3s,26
|
|
190
196
|
sknetwork/topology/tests/test_cliques.py,sha256=vdRMDmF8AKkIWE-LnU2yGzk1wzwzq9PdggpeS-8wfRw,866
|
|
191
197
|
sknetwork/topology/tests/test_core.py,sha256=7w9lrzsQ5Pn7QzxA0F_L58cXCABFir7rtLn2DZdPKsk,570
|
|
192
|
-
sknetwork/topology/tests/
|
|
198
|
+
sknetwork/topology/tests/test_cycles.py,sha256=iKhfvZf-GjlcVCFwRzo9OkxPfnT_pM-eLKW72VIvRy0,3215
|
|
199
|
+
sknetwork/topology/tests/test_structure.py,sha256=BIJuO39ROQRA-xipUfk8PajHQ0Uk9EY6C-c3JYkmBSg,4033
|
|
193
200
|
sknetwork/topology/tests/test_triangles.py,sha256=5AYxNQ8DkKTvpShWEWV-v1r7WZx1DuylChcEmVF0yTk,1313
|
|
194
201
|
sknetwork/topology/tests/test_wl.py,sha256=vesYcnlJHPphk2RJLzKJH9N6aYpPeKLFJko1E8kBdtc,2290
|
|
195
202
|
sknetwork/utils/__init__.py,sha256=ceT5UU4JRxCqpDlPj84gPBaKMRsI6b_YfaBzkK67Qo4,336
|
|
196
203
|
sknetwork/utils/check.py,sha256=LWUkHwDzr9Z9IyT7AIsrQyDrRAMjO2bzWyFsv_P9Ask,13295
|
|
197
|
-
sknetwork/utils/format.py,sha256=
|
|
198
|
-
sknetwork/utils/membership.py,sha256=
|
|
204
|
+
sknetwork/utils/format.py,sha256=g_cfUlETJp7AppCiVKG2VZPexH-H9rVNGF4hXh2rshM,8987
|
|
205
|
+
sknetwork/utils/membership.py,sha256=kan9WuytJCyBAZi0CfM0SJEf527XB4WAYMkIctD5D9w,2244
|
|
199
206
|
sknetwork/utils/neighbors.py,sha256=-EwBXigM3mn2qvVTi_aPmG0XifDMojZgsMQ9_A8cLkk,3466
|
|
200
207
|
sknetwork/utils/tfidf.py,sha256=vvISEaZJa7RZrNNgQEAHgMH2rJToARuNWcVjnA8u7po,993
|
|
201
208
|
sknetwork/utils/values.py,sha256=aUc2fuI56J78_6P-S2mT4NhHgiiIZp6D2feNKcsQmG4,2584
|
|
@@ -206,16 +213,16 @@ sknetwork/utils/tests/test_membership.py,sha256=d_TobwpRl2K3qCcFBDQV1bGCSmF7Ls3r
|
|
|
206
213
|
sknetwork/utils/tests/test_neighbors.py,sha256=Q7-Y23CcF4vn5lcyEqjaojEAk7-pG03Mf59O1Rz3IUs,1467
|
|
207
214
|
sknetwork/utils/tests/test_tfidf.py,sha256=KYz_LSxi625kKL-v5-uA1-YQOliIfgXCmNXTAZtgpmw,463
|
|
208
215
|
sknetwork/utils/tests/test_values.py,sha256=K3ctTXpSy9fwiHnpFVlHX5KeTd2wNF4kbFiTXe_gQq8,2334
|
|
209
|
-
sknetwork/visualization/__init__.py,sha256=
|
|
216
|
+
sknetwork/visualization/__init__.py,sha256=Ww8O1hby1xf_mtRgFftc9srMzvbFgWOzj_khKkqq9Mg,220
|
|
210
217
|
sknetwork/visualization/colors.py,sha256=NhyMQeetfH16khnJD2gD_uZJkBD3JQDV0K3Jzacamqw,2543
|
|
211
|
-
sknetwork/visualization/dendrograms.py,sha256
|
|
212
|
-
sknetwork/visualization/graphs.py,sha256=
|
|
218
|
+
sknetwork/visualization/dendrograms.py,sha256=HtubynuGsJ5b7bD5I8dIKL5UqhqynmqOhw_wJt6VGUA,10178
|
|
219
|
+
sknetwork/visualization/graphs.py,sha256=SJDta3IUolBDI69kFdF7WGmjcLsfqkQNw5ixvJwoNuk,42214
|
|
213
220
|
sknetwork/visualization/tests/__init__.py,sha256=hrso2pNVzMWn4D2pRyWA_xAMib-xacKjm-rf91MyGGk,31
|
|
214
|
-
sknetwork/visualization/tests/test_dendrograms.py,sha256=
|
|
215
|
-
sknetwork/visualization/tests/test_graphs.py,sha256=
|
|
216
|
-
scikit_network-0.
|
|
217
|
-
scikit_network-0.
|
|
218
|
-
scikit_network-0.
|
|
219
|
-
scikit_network-0.
|
|
220
|
-
scikit_network-0.
|
|
221
|
-
scikit_network-0.
|
|
221
|
+
sknetwork/visualization/tests/test_dendrograms.py,sha256=e0u3qL9SlWlrQiVAeCVXxq7P6-mU0GaCz3FBu6cm_HA,2519
|
|
222
|
+
sknetwork/visualization/tests/test_graphs.py,sha256=FPZcgGj9asTjOvtkXpENYjeE8xtwh1ES4XYWcYe56Jo,9597
|
|
223
|
+
scikit_network-0.32.1.dist-info/AUTHORS.rst,sha256=t2CJQFYm_OvWod1zQx4Tw-BeKLVlpQjQ0APBIOnYRPE,968
|
|
224
|
+
scikit_network-0.32.1.dist-info/LICENSE,sha256=BJ1Hth1QjBmjIfHcp1sVxlkEqHYM58Vn5bcpYcggMZE,1656
|
|
225
|
+
scikit_network-0.32.1.dist-info/METADATA,sha256=cmHp6cheSqpUDU3TEOHmo-VKw-6fBXvAw2U5SewlIFQ,14907
|
|
226
|
+
scikit_network-0.32.1.dist-info/WHEEL,sha256=ircjsfhzblqgSzO8ow7-0pXK-RVqDqNRGQ8F650AUNM,102
|
|
227
|
+
scikit_network-0.32.1.dist-info/top_level.txt,sha256=fkwspWQ9B3csqb5ENEOoVciRY6XftnMuz4MvTDQeSsg,10
|
|
228
|
+
scikit_network-0.32.1.dist-info/RECORD,,
|
sknetwork/__init__.py
CHANGED
sknetwork/classification/base.py
CHANGED
|
@@ -38,7 +38,7 @@ class BaseClassifier(Algorithm, ABC):
|
|
|
38
38
|
self.probs_row_ = None
|
|
39
39
|
self.probs_col_ = None
|
|
40
40
|
|
|
41
|
-
def predict(self, columns=False) -> np.ndarray:
|
|
41
|
+
def predict(self, columns: bool = False) -> np.ndarray:
|
|
42
42
|
"""Return the labels predicted by the algorithm.
|
|
43
43
|
|
|
44
44
|
Parameters
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
#!/usr/bin/env python3
|
|
2
2
|
# -*- coding: utf-8 -*-
|
|
3
3
|
"""
|
|
4
|
-
Created
|
|
4
|
+
Created in March 2020
|
|
5
5
|
@author: Nathan de Lara <nathan.delara@polytechnique.org>
|
|
6
6
|
"""
|
|
7
7
|
from functools import partial
|
|
@@ -12,7 +12,7 @@ import numpy as np
|
|
|
12
12
|
from scipy import sparse
|
|
13
13
|
|
|
14
14
|
from sknetwork.classification.base import BaseClassifier
|
|
15
|
-
from sknetwork.linalg.
|
|
15
|
+
from sknetwork.linalg.normalizer import normalize
|
|
16
16
|
from sknetwork.ranking.base import BaseRanking
|
|
17
17
|
from sknetwork.utils.check import check_labels, check_n_jobs
|
|
18
18
|
from sknetwork.utils.format import get_adjacency_values
|
|
@@ -114,7 +114,7 @@ class RankClassifier(BaseClassifier):
|
|
|
114
114
|
seeds_labels = seeds_labels.astype(int)
|
|
115
115
|
labels_unique, n_classes = check_labels(seeds_labels)
|
|
116
116
|
seeds_all = self._process_labels(seeds_labels)
|
|
117
|
-
local_function = partial(self.algorithm.
|
|
117
|
+
local_function = partial(self.algorithm.fit_predict, adjacency)
|
|
118
118
|
with Pool(self.n_jobs) as pool:
|
|
119
119
|
scores = np.array(pool.map(local_function, seeds_all))
|
|
120
120
|
scores = scores.T
|
|
@@ -11,7 +11,7 @@ from scipy import sparse
|
|
|
11
11
|
|
|
12
12
|
from sknetwork.classification.base import BaseClassifier
|
|
13
13
|
from sknetwork.path.distances import get_distances
|
|
14
|
-
from sknetwork.linalg.
|
|
14
|
+
from sknetwork.linalg.normalizer import normalize
|
|
15
15
|
from sknetwork.utils.format import get_adjacency_values
|
|
16
16
|
from sknetwork.utils.membership import get_membership
|
|
17
17
|
from sknetwork.utils.neighbors import get_degrees
|
|
@@ -38,11 +38,14 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
38
38
|
Labels of nodes.
|
|
39
39
|
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
40
40
|
Probability distribution over labels.
|
|
41
|
-
labels_row_
|
|
42
|
-
Labels of rows
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
41
|
+
labels_row_ : np.ndarray
|
|
42
|
+
Labels of rows, for bipartite graphs.
|
|
43
|
+
labels_col_ : np.ndarray
|
|
44
|
+
Labels of columns, for bipartite graphs.
|
|
45
|
+
probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
46
|
+
Probability distributions over labels of rows, for bipartite graphs.
|
|
47
|
+
probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
|
|
48
|
+
Probability distributions over labels of columns, for bipartite graphs.
|
|
46
49
|
Example
|
|
47
50
|
-------
|
|
48
51
|
>>> from sknetwork.data import karate_club
|
|
@@ -78,13 +81,15 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
78
81
|
|
|
79
82
|
Parameters
|
|
80
83
|
----------
|
|
81
|
-
input_matrix :
|
|
84
|
+
input_matrix : sparse.csr_matrix, np.ndarray
|
|
82
85
|
Adjacency matrix or biadjacency matrix of the graph.
|
|
83
|
-
labels :
|
|
86
|
+
labels : dict, np.ndarray
|
|
84
87
|
Known labels (dictionary or vector of int). Negative values ignored.
|
|
85
|
-
labels_row,
|
|
86
|
-
Labels of rows
|
|
87
|
-
|
|
88
|
+
labels_row : dict, np.ndarray
|
|
89
|
+
Labels of rows for bipartite graphs. Negative values ignored.
|
|
90
|
+
labels_col : dict, np.ndarray
|
|
91
|
+
Labels of columns for bipartite graphs. Negative values ignored.
|
|
92
|
+
force_bipartite : bool
|
|
88
93
|
If ``True``, consider the input matrix as a biadjacency matrix (default = ``False``).
|
|
89
94
|
|
|
90
95
|
Returns
|
|
@@ -98,7 +103,10 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
98
103
|
labels = values.astype(int)
|
|
99
104
|
if (labels < 0).all():
|
|
100
105
|
raise ValueError('At least one node must be given a non-negative label.')
|
|
101
|
-
|
|
106
|
+
labels_reindex = labels.copy()
|
|
107
|
+
labels_unique, inverse = np.unique(labels[labels >= 0], return_inverse=True)
|
|
108
|
+
labels_reindex[labels >= 0] = inverse
|
|
109
|
+
temperatures = get_membership(labels_reindex).toarray()
|
|
102
110
|
temperatures_seeds = temperatures[labels >= 0]
|
|
103
111
|
temperatures[labels < 0] = 0.5
|
|
104
112
|
diffusion = normalize(adjacency)
|
|
@@ -107,7 +115,7 @@ class DiffusionClassifier(BaseClassifier):
|
|
|
107
115
|
temperatures[labels >= 0] = temperatures_seeds
|
|
108
116
|
if self.centering:
|
|
109
117
|
temperatures -= temperatures.mean(axis=0)
|
|
110
|
-
labels_ = temperatures.argmax(axis=1)
|
|
118
|
+
labels_ = labels_unique[temperatures.argmax(axis=1)]
|
|
111
119
|
|
|
112
120
|
# softmax
|
|
113
121
|
if self.centering:
|
sknetwork/classification/knn.py
CHANGED
|
@@ -12,7 +12,7 @@ from scipy import sparse
|
|
|
12
12
|
|
|
13
13
|
from sknetwork.classification.base import BaseClassifier
|
|
14
14
|
from sknetwork.embedding.base import BaseEmbedding
|
|
15
|
-
from sknetwork.linalg.
|
|
15
|
+
from sknetwork.linalg.normalizer import get_norms, normalize
|
|
16
16
|
from sknetwork.utils.check import check_n_neighbors
|
|
17
17
|
from sknetwork.utils.format import get_adjacency_values
|
|
18
18
|
|
|
@@ -22,12 +22,12 @@ class NNClassifier(BaseClassifier):
|
|
|
22
22
|
|
|
23
23
|
Parameters
|
|
24
24
|
----------
|
|
25
|
-
n_neighbors :
|
|
25
|
+
n_neighbors : int
|
|
26
26
|
Number of nearest neighbors .
|
|
27
|
-
embedding_method :
|
|
27
|
+
embedding_method : :class:`BaseEmbedding`
|
|
28
28
|
Embedding method used to represent nodes in vector space.
|
|
29
29
|
If ``None`` (default), use identity.
|
|
30
|
-
normalize :
|
|
30
|
+
normalize : bool
|
|
31
31
|
If ``True``, apply normalization so that all vectors have norm 1 in the embedding space.
|
|
32
32
|
|
|
33
33
|
Attributes
|
|
@@ -36,10 +36,14 @@ class NNClassifier(BaseClassifier):
|
|
|
36
36
|
Labels of nodes.
|
|
37
37
|
probs_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
38
38
|
Probability distribution over labels.
|
|
39
|
-
labels_row_
|
|
40
|
-
Labels of rows
|
|
41
|
-
|
|
42
|
-
|
|
39
|
+
labels_row_ : np.ndarray
|
|
40
|
+
Labels of rows, for bipartite graphs.
|
|
41
|
+
labels_col_ : np.ndarray
|
|
42
|
+
Labels of columns, for bipartite graphs.
|
|
43
|
+
probs_row_ : sparse.csr_matrix, shape (n_row, n_labels)
|
|
44
|
+
Probability distributions over labels of rows, for bipartite graphs.
|
|
45
|
+
probs_col_ : sparse.csr_matrix, shape (n_col, n_labels)
|
|
46
|
+
Probability distributions over labels of columns, for bipartite graphs.
|
|
43
47
|
|
|
44
48
|
Example
|
|
45
49
|
-------
|
|
@@ -99,12 +103,14 @@ class NNClassifier(BaseClassifier):
|
|
|
99
103
|
|
|
100
104
|
Parameters
|
|
101
105
|
----------
|
|
102
|
-
input_matrix :
|
|
106
|
+
input_matrix : sparse.csr_matrix, np.ndarray
|
|
103
107
|
Adjacency matrix or biadjacency matrix of the graph.
|
|
104
|
-
labels :
|
|
105
|
-
Known labels
|
|
106
|
-
labels_row,
|
|
107
|
-
Known labels of rows
|
|
108
|
+
labels : np.ndarray, dict
|
|
109
|
+
Known labels. Negative values ignored.
|
|
110
|
+
labels_row : np.ndarray, dict
|
|
111
|
+
Known labels of rows, for bipartite graphs.
|
|
112
|
+
labels_col : np.ndarray, dict
|
|
113
|
+
Known labels of columns, for bipartite graphs.
|
|
108
114
|
|
|
109
115
|
Returns
|
|
110
116
|
-------
|
|
@@ -158,7 +158,7 @@ def get_f1_scores(labels_true: np.ndarray, labels_pred: np.ndarray, return_preci
|
|
|
158
158
|
mask = counts_pred > 0
|
|
159
159
|
precisions[mask] = counts_correct[mask] / counts_pred[mask]
|
|
160
160
|
f1_scores = np.zeros(n_labels)
|
|
161
|
-
mask = (
|
|
161
|
+
mask = (precisions > 0) & (recalls > 0)
|
|
162
162
|
f1_scores[mask] = 2 / (1 / precisions[mask] + 1 / recalls[mask])
|
|
163
163
|
if return_precision_recall:
|
|
164
164
|
return f1_scores, precisions, recalls
|