scikit-learn-intelex 2025.1.0__py39-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (280) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-39-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-39-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +248 -0
  10. daal4py/sklearn/_utils.py +245 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +54 -0
  61. onedal/_device_offload.py +222 -0
  62. onedal/_onedal_py_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-39-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +564 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +125 -0
  83. onedal/common/tests/test_policy.py +76 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +154 -0
  91. onedal/datatypes/tests/common.py +126 -0
  92. onedal/datatypes/tests/test_data.py +414 -0
  93. onedal/decomposition/__init__.py +20 -0
  94. onedal/decomposition/incremental_pca.py +204 -0
  95. onedal/decomposition/pca.py +186 -0
  96. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  97. onedal/ensemble/__init__.py +29 -0
  98. onedal/ensemble/forest.py +727 -0
  99. onedal/ensemble/tests/test_random_forest.py +97 -0
  100. onedal/linear_model/__init__.py +27 -0
  101. onedal/linear_model/incremental_linear_model.py +258 -0
  102. onedal/linear_model/linear_model.py +329 -0
  103. onedal/linear_model/logistic_regression.py +249 -0
  104. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  105. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  106. onedal/linear_model/tests/test_linear_regression.py +250 -0
  107. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  108. onedal/linear_model/tests/test_ridge.py +95 -0
  109. onedal/neighbors/__init__.py +19 -0
  110. onedal/neighbors/neighbors.py +767 -0
  111. onedal/neighbors/tests/test_knn_classification.py +49 -0
  112. onedal/primitives/__init__.py +27 -0
  113. onedal/primitives/get_tree.py +25 -0
  114. onedal/primitives/kernel_functions.py +153 -0
  115. onedal/primitives/tests/test_kernel_functions.py +159 -0
  116. onedal/spmd/__init__.py +25 -0
  117. onedal/spmd/_base.py +30 -0
  118. onedal/spmd/basic_statistics/__init__.py +20 -0
  119. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  120. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  121. onedal/spmd/cluster/__init__.py +28 -0
  122. onedal/spmd/cluster/dbscan.py +23 -0
  123. onedal/spmd/cluster/kmeans.py +56 -0
  124. onedal/spmd/covariance/__init__.py +20 -0
  125. onedal/spmd/covariance/covariance.py +26 -0
  126. onedal/spmd/covariance/incremental_covariance.py +82 -0
  127. onedal/spmd/decomposition/__init__.py +20 -0
  128. onedal/spmd/decomposition/incremental_pca.py +117 -0
  129. onedal/spmd/decomposition/pca.py +26 -0
  130. onedal/spmd/ensemble/__init__.py +19 -0
  131. onedal/spmd/ensemble/forest.py +28 -0
  132. onedal/spmd/linear_model/__init__.py +21 -0
  133. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  134. onedal/spmd/linear_model/linear_model.py +30 -0
  135. onedal/spmd/linear_model/logistic_regression.py +38 -0
  136. onedal/spmd/neighbors/__init__.py +19 -0
  137. onedal/spmd/neighbors/neighbors.py +75 -0
  138. onedal/svm/__init__.py +19 -0
  139. onedal/svm/svm.py +556 -0
  140. onedal/svm/tests/test_csr_svm.py +351 -0
  141. onedal/svm/tests/test_nusvc.py +204 -0
  142. onedal/svm/tests/test_nusvr.py +210 -0
  143. onedal/svm/tests/test_svc.py +176 -0
  144. onedal/svm/tests/test_svr.py +243 -0
  145. onedal/tests/test_common.py +57 -0
  146. onedal/tests/utils/_dataframes_support.py +162 -0
  147. onedal/tests/utils/_device_selection.py +102 -0
  148. onedal/utils/__init__.py +49 -0
  149. onedal/utils/_array_api.py +81 -0
  150. onedal/utils/_dpep_helpers.py +56 -0
  151. onedal/utils/validation.py +440 -0
  152. scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
  153. scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
  154. scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
  155. scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
  156. scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
  157. sklearnex/__init__.py +66 -0
  158. sklearnex/__main__.py +58 -0
  159. sklearnex/_config.py +116 -0
  160. sklearnex/_device_offload.py +126 -0
  161. sklearnex/_utils.py +132 -0
  162. sklearnex/basic_statistics/__init__.py +20 -0
  163. sklearnex/basic_statistics/basic_statistics.py +230 -0
  164. sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  165. sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  166. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  167. sklearnex/cluster/__init__.py +20 -0
  168. sklearnex/cluster/dbscan.py +197 -0
  169. sklearnex/cluster/k_means.py +395 -0
  170. sklearnex/cluster/tests/test_dbscan.py +38 -0
  171. sklearnex/cluster/tests/test_kmeans.py +159 -0
  172. sklearnex/conftest.py +82 -0
  173. sklearnex/covariance/__init__.py +19 -0
  174. sklearnex/covariance/incremental_covariance.py +398 -0
  175. sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  176. sklearnex/decomposition/__init__.py +19 -0
  177. sklearnex/decomposition/pca.py +425 -0
  178. sklearnex/decomposition/tests/test_pca.py +58 -0
  179. sklearnex/dispatcher.py +543 -0
  180. sklearnex/doc/third-party-programs.txt +424 -0
  181. sklearnex/ensemble/__init__.py +29 -0
  182. sklearnex/ensemble/_forest.py +2029 -0
  183. sklearnex/ensemble/tests/test_forest.py +135 -0
  184. sklearnex/glob/__main__.py +72 -0
  185. sklearnex/glob/dispatcher.py +101 -0
  186. sklearnex/linear_model/__init__.py +32 -0
  187. sklearnex/linear_model/coordinate_descent.py +30 -0
  188. sklearnex/linear_model/incremental_linear.py +482 -0
  189. sklearnex/linear_model/incremental_ridge.py +425 -0
  190. sklearnex/linear_model/linear.py +341 -0
  191. sklearnex/linear_model/logistic_regression.py +413 -0
  192. sklearnex/linear_model/ridge.py +24 -0
  193. sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  194. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  195. sklearnex/linear_model/tests/test_linear.py +167 -0
  196. sklearnex/linear_model/tests/test_logreg.py +134 -0
  197. sklearnex/manifold/__init__.py +19 -0
  198. sklearnex/manifold/t_sne.py +21 -0
  199. sklearnex/manifold/tests/test_tsne.py +26 -0
  200. sklearnex/metrics/__init__.py +23 -0
  201. sklearnex/metrics/pairwise.py +22 -0
  202. sklearnex/metrics/ranking.py +20 -0
  203. sklearnex/metrics/tests/test_metrics.py +39 -0
  204. sklearnex/model_selection/__init__.py +21 -0
  205. sklearnex/model_selection/split.py +22 -0
  206. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  207. sklearnex/neighbors/__init__.py +27 -0
  208. sklearnex/neighbors/_lof.py +236 -0
  209. sklearnex/neighbors/common.py +310 -0
  210. sklearnex/neighbors/knn_classification.py +231 -0
  211. sklearnex/neighbors/knn_regression.py +207 -0
  212. sklearnex/neighbors/knn_unsupervised.py +178 -0
  213. sklearnex/neighbors/tests/test_neighbors.py +82 -0
  214. sklearnex/preview/__init__.py +17 -0
  215. sklearnex/preview/covariance/__init__.py +19 -0
  216. sklearnex/preview/covariance/covariance.py +138 -0
  217. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  218. sklearnex/preview/decomposition/__init__.py +19 -0
  219. sklearnex/preview/decomposition/incremental_pca.py +233 -0
  220. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  221. sklearnex/preview/linear_model/__init__.py +19 -0
  222. sklearnex/preview/linear_model/ridge.py +424 -0
  223. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  224. sklearnex/spmd/__init__.py +25 -0
  225. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  226. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  227. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  228. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  229. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  230. sklearnex/spmd/cluster/__init__.py +30 -0
  231. sklearnex/spmd/cluster/dbscan.py +50 -0
  232. sklearnex/spmd/cluster/kmeans.py +21 -0
  233. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  234. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  235. sklearnex/spmd/covariance/__init__.py +20 -0
  236. sklearnex/spmd/covariance/covariance.py +21 -0
  237. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  238. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  239. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  240. sklearnex/spmd/decomposition/__init__.py +20 -0
  241. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  242. sklearnex/spmd/decomposition/pca.py +21 -0
  243. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  244. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  245. sklearnex/spmd/ensemble/__init__.py +19 -0
  246. sklearnex/spmd/ensemble/forest.py +71 -0
  247. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  248. sklearnex/spmd/linear_model/__init__.py +21 -0
  249. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  250. sklearnex/spmd/linear_model/linear_model.py +21 -0
  251. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  252. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  253. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  254. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  255. sklearnex/spmd/neighbors/__init__.py +19 -0
  256. sklearnex/spmd/neighbors/neighbors.py +25 -0
  257. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  258. sklearnex/svm/__init__.py +29 -0
  259. sklearnex/svm/_common.py +339 -0
  260. sklearnex/svm/nusvc.py +371 -0
  261. sklearnex/svm/nusvr.py +170 -0
  262. sklearnex/svm/svc.py +399 -0
  263. sklearnex/svm/svr.py +167 -0
  264. sklearnex/svm/tests/test_svm.py +93 -0
  265. sklearnex/tests/test_common.py +390 -0
  266. sklearnex/tests/test_config.py +123 -0
  267. sklearnex/tests/test_memory_usage.py +379 -0
  268. sklearnex/tests/test_monkeypatch.py +276 -0
  269. sklearnex/tests/test_n_jobs_support.py +108 -0
  270. sklearnex/tests/test_parallel.py +48 -0
  271. sklearnex/tests/test_patching.py +385 -0
  272. sklearnex/tests/test_run_to_run_stability.py +321 -0
  273. sklearnex/tests/utils/__init__.py +44 -0
  274. sklearnex/tests/utils/base.py +371 -0
  275. sklearnex/tests/utils/spmd.py +198 -0
  276. sklearnex/utils/__init__.py +19 -0
  277. sklearnex/utils/_array_api.py +82 -0
  278. sklearnex/utils/parallel.py +59 -0
  279. sklearnex/utils/tests/test_finite.py +89 -0
  280. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,321 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+ from collections.abc import Iterable
19
+ from functools import partial
20
+ from numbers import Number
21
+
22
+ import numpy as np
23
+ import pytest
24
+ from numpy.testing import assert_allclose
25
+ from scipy import sparse
26
+ from sklearn.datasets import (
27
+ load_breast_cancer,
28
+ load_diabetes,
29
+ load_iris,
30
+ make_classification,
31
+ make_regression,
32
+ )
33
+
34
+ import daal4py as d4p
35
+ from daal4py.sklearn._utils import daal_check_version
36
+ from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
37
+ from sklearnex.cluster import DBSCAN, KMeans
38
+ from sklearnex.decomposition import PCA
39
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
40
+ from sklearnex.model_selection import train_test_split
41
+ from sklearnex.neighbors import (
42
+ KNeighborsClassifier,
43
+ KNeighborsRegressor,
44
+ NearestNeighbors,
45
+ )
46
+ from sklearnex.svm import SVC
47
+ from sklearnex.tests.utils import (
48
+ _IS_INTEL,
49
+ PATCHED_MODELS,
50
+ SPECIAL_INSTANCES,
51
+ call_method,
52
+ gen_dataset,
53
+ gen_models_info,
54
+ sklearn_clone_dict,
55
+ )
56
+
57
+ # to reproduce errors even in CI
58
+ d4p.daalinit(nthreads=100)
59
+
60
+ _dataset_dict = {
61
+ "classification": [
62
+ partial(load_iris, return_X_y=True),
63
+ partial(load_breast_cancer, return_X_y=True),
64
+ ],
65
+ "regression": [
66
+ partial(load_diabetes, return_X_y=True),
67
+ partial(
68
+ make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
69
+ ),
70
+ ],
71
+ }
72
+
73
+
74
+ def eval_method(X, y, est, method):
75
+ res = []
76
+ est.fit(X, y)
77
+
78
+ if method:
79
+ res = call_method(est, method, X, y)
80
+
81
+ if not isinstance(res, Iterable):
82
+ results = [_as_numpy(res)] if res is not est else []
83
+ else:
84
+ results = [_as_numpy(i) for i in res]
85
+
86
+ attributes = [method] * len(results)
87
+
88
+ # if estimator follows sklearn design rules, then set attributes should have a
89
+ # trailing underscore
90
+ attributes += [
91
+ i
92
+ for i in dir(est)
93
+ if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
94
+ ]
95
+ results += [getattr(est, i) for i in attributes if i != method]
96
+ return results, attributes
97
+
98
+
99
+ def _run_test(estimator, method, datasets):
100
+
101
+ for X, y in datasets:
102
+ baseline, attributes = eval_method(X, y, estimator, method)
103
+
104
+ for i in range(10):
105
+ res, _ = eval_method(X, y, estimator, method)
106
+
107
+ for r, b, n in zip(res, baseline, attributes):
108
+ if (
109
+ isinstance(b, Number)
110
+ or hasattr(b, "__array__")
111
+ or hasattr(b, "__array_namespace__")
112
+ or hasattr(b, "__sycl_usm_ndarray__")
113
+ ):
114
+ assert_allclose(
115
+ r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
116
+ )
117
+
118
+
119
+ _sparse_instances = [SVC()]
120
+ if daal_check_version((2024, "P", 700)): # Test for > 2024.7.0
121
+ _sparse_instances.extend(
122
+ [
123
+ KMeans(),
124
+ KMeans(init="random"),
125
+ KMeans(init="k-means++"),
126
+ ]
127
+ )
128
+ SPARSE_INSTANCES = sklearn_clone_dict({str(i): i for i in _sparse_instances})
129
+
130
+ STABILITY_INSTANCES = sklearn_clone_dict(
131
+ {
132
+ str(i): i
133
+ for i in [
134
+ KNeighborsClassifier(algorithm="brute", weights="distance"),
135
+ KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
136
+ KNeighborsClassifier(algorithm="kd_tree"),
137
+ KNeighborsRegressor(algorithm="brute", weights="distance"),
138
+ KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
139
+ KNeighborsRegressor(algorithm="kd_tree"),
140
+ NearestNeighbors(algorithm="kd_tree"),
141
+ DBSCAN(algorithm="brute"),
142
+ PCA(n_components=0.5, svd_solver="covariance_eigh"),
143
+ KMeans(init="random"),
144
+ ]
145
+ }
146
+ )
147
+
148
+
149
+ def _skip_neighbors(estimator, method):
150
+ if (
151
+ not _IS_INTEL
152
+ and ("Neighbors" in estimator or "LocalOutlierFactor" in estimator)
153
+ and method
154
+ in ["score", "predict", "kneighbors", "kneighbors_graph", "predict_proba"]
155
+ ):
156
+ if daal_check_version((2025, "P", 200)):
157
+ pytest.fail("Re-verify failure of algorithms in oneDAL 2025.2")
158
+ pytest.skip(f"{estimator} shows instability on non-Intel(R) hardware")
159
+
160
+
161
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
162
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
163
+ def test_standard_estimator_stability(estimator, method, dataframe, queue):
164
+ if estimator in ["LogisticRegression", "TSNE"]:
165
+ pytest.skip(f"stability not guaranteed for {estimator}")
166
+ if estimator in ["KMeans", "PCA"] and "score" in method and queue == None:
167
+ pytest.skip(f"variation observed in {estimator}.score")
168
+ if estimator in ["IncrementalEmpiricalCovariance"] and method == "mahalanobis":
169
+ pytest.skip("allowed fallback to sklearn occurs")
170
+ _skip_neighbors(estimator, method)
171
+
172
+ if "NearestNeighbors" in estimator and "radius" in method:
173
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
174
+
175
+ est = PATCHED_MODELS[estimator]()
176
+
177
+ if method and not hasattr(est, method):
178
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
179
+
180
+ params = est.get_params().copy()
181
+ if "random_state" in params:
182
+ params["random_state"] = 0
183
+ est.set_params(**params)
184
+
185
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
186
+ _run_test(est, method, datasets)
187
+
188
+
189
+ @pytest.mark.allow_sklearn_fallback
190
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
191
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
192
+ def test_special_estimator_stability(estimator, method, dataframe, queue):
193
+ if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
194
+ pytest.skip(f"stability not guaranteed for {estimator}")
195
+ if "KMeans" in estimator and method == "score" and queue == None:
196
+ pytest.skip(f"variation observed in KMeans.score")
197
+ if estimator == "BasicStatistics()" and queue == None:
198
+ pytest.skip(f"BasicStatistics not deterministic")
199
+ if "NearestNeighbors" in estimator and "radius" in method:
200
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
201
+ _skip_neighbors(estimator, method)
202
+
203
+ est = SPECIAL_INSTANCES[estimator]
204
+
205
+ if method and not hasattr(est, method):
206
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
207
+
208
+ params = est.get_params().copy()
209
+ if "random_state" in params:
210
+ params["random_state"] = 0
211
+ est.set_params(**params)
212
+
213
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
214
+ _run_test(est, method, datasets)
215
+
216
+
217
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
218
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
219
+ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
220
+ if "KMeans" in estimator and method in "score" and queue == None:
221
+ pytest.skip(f"variation observed in KMeans.{method}")
222
+ if (
223
+ not daal_check_version((2025, "P", 0))
224
+ and "KMeans()" in estimator
225
+ and queue == None
226
+ ):
227
+ pytest.skip(f"variation observed in KMeans.{method} in 2024.7 oneDAL")
228
+ if "NearestNeighbors" in estimator and "radius" in method:
229
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
230
+ _skip_neighbors(estimator, method)
231
+
232
+ est = SPARSE_INSTANCES[estimator]
233
+
234
+ if method and not hasattr(est, method):
235
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
236
+
237
+ params = est.get_params().copy()
238
+ if "random_state" in params:
239
+ params["random_state"] = 0
240
+ est.set_params(**params)
241
+
242
+ datasets = gen_dataset(
243
+ est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
244
+ )
245
+ _run_test(est, method, datasets)
246
+
247
+
248
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
249
+ @pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
250
+ def test_other_estimator_stability(estimator, method, dataframe, queue):
251
+ if "KMeans" in estimator and method == "score" and queue == None:
252
+ pytest.skip(f"variation observed in KMeans.score")
253
+ if "NearestNeighbors" in estimator and "radius" in method:
254
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
255
+ _skip_neighbors(estimator, method)
256
+
257
+ est = STABILITY_INSTANCES[estimator]
258
+
259
+ if method and not hasattr(est, method):
260
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
261
+
262
+ params = est.get_params().copy()
263
+ if "random_state" in params:
264
+ params["random_state"] = 0
265
+ est.set_params(**params)
266
+
267
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
268
+ _run_test(est, method, datasets)
269
+
270
+
271
+ @pytest.mark.parametrize("features", range(5, 10))
272
+ def test_train_test_split(features):
273
+ X, y = make_classification(
274
+ n_samples=4000,
275
+ n_features=features,
276
+ n_informative=features,
277
+ n_redundant=0,
278
+ n_clusters_per_class=8,
279
+ random_state=0,
280
+ )
281
+ (
282
+ baseline_X_train,
283
+ baseline_X_test,
284
+ baseline_y_train,
285
+ baseline_y_test,
286
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
287
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
288
+ for _ in range(10):
289
+ X_train, X_test, y_train, y_test = train_test_split(
290
+ X, y, test_size=0.33, random_state=0
291
+ )
292
+ res = [X_train, X_test, y_train, y_test]
293
+ for a, b in zip(res, baseline):
294
+ np.testing.assert_allclose(
295
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
296
+ )
297
+
298
+
299
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
300
+ def test_pairwise_distances(metric):
301
+ X = np.random.rand(1000)
302
+ X = np.array(X, dtype=np.float64)
303
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
304
+ for _ in range(5):
305
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
306
+ for a, b in zip(res, baseline):
307
+ np.testing.assert_allclose(
308
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
309
+ )
310
+
311
+
312
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
313
+ def test_roc_auc(array_size):
314
+ a = [random.randint(0, 1) for i in range(array_size)]
315
+ b = [random.randint(0, 1) for i in range(array_size)]
316
+ baseline = roc_auc_score(a, b)
317
+ for _ in range(5):
318
+ res = roc_auc_score(a, b)
319
+ np.testing.assert_allclose(
320
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
321
+ )
@@ -0,0 +1,44 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ from .base import (
18
+ DTYPES,
19
+ PATCHED_FUNCTIONS,
20
+ PATCHED_MODELS,
21
+ SPECIAL_INSTANCES,
22
+ UNPATCHED_FUNCTIONS,
23
+ UNPATCHED_MODELS,
24
+ _get_processor_info,
25
+ call_method,
26
+ gen_dataset,
27
+ gen_models_info,
28
+ sklearn_clone_dict,
29
+ )
30
+
31
+ __all__ = [
32
+ "DTYPES",
33
+ "PATCHED_FUNCTIONS",
34
+ "PATCHED_MODELS",
35
+ "UNPATCHED_FUNCTIONS",
36
+ "UNPATCHED_MODELS",
37
+ "SPECIAL_INSTANCES",
38
+ "call_method",
39
+ "gen_models_info",
40
+ "gen_dataset",
41
+ "sklearn_clone_dict",
42
+ ]
43
+
44
+ _IS_INTEL = "GenuineIntel" in _get_processor_info()