scikit-learn-intelex 2025.1.0__py39-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-39-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-39-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +248 -0
- daal4py/sklearn/_utils.py +245 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +236 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +54 -0
- onedal/_device_offload.py +222 -0
- onedal/_onedal_py_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-39-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-39-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +564 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +125 -0
- onedal/common/tests/test_policy.py +76 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +154 -0
- onedal/datatypes/tests/common.py +126 -0
- onedal/datatypes/tests/test_data.py +414 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +727 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +250 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +767 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +176 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +57 -0
- onedal/tests/utils/_dataframes_support.py +162 -0
- onedal/tests/utils/_device_selection.py +102 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +81 -0
- onedal/utils/_dpep_helpers.py +56 -0
- onedal/utils/validation.py +440 -0
- scikit_learn_intelex-2025.1.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.1.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +280 -0
- scikit_learn_intelex-2025.1.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.1.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +66 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +116 -0
- sklearnex/_device_offload.py +126 -0
- sklearnex/_utils.py +132 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +230 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +197 -0
- sklearnex/cluster/k_means.py +395 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +159 -0
- sklearnex/conftest.py +82 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +398 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +425 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2029 -0
- sklearnex/ensemble/tests/test_forest.py +135 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +482 -0
- sklearnex/linear_model/incremental_ridge.py +425 -0
- sklearnex/linear_model/linear.py +341 -0
- sklearnex/linear_model/logistic_regression.py +413 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +167 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +236 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +231 -0
- sklearnex/neighbors/knn_regression.py +207 -0
- sklearnex/neighbors/knn_unsupervised.py +178 -0
- sklearnex/neighbors/tests/test_neighbors.py +82 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +138 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +233 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +424 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +339 -0
- sklearnex/svm/nusvc.py +371 -0
- sklearnex/svm/nusvr.py +170 -0
- sklearnex/svm/svc.py +399 -0
- sklearnex/svm/svr.py +167 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/test_common.py +390 -0
- sklearnex/tests/test_config.py +123 -0
- sklearnex/tests/test_memory_usage.py +379 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +108 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +321 -0
- sklearnex/tests/utils/__init__.py +44 -0
- sklearnex/tests/utils/base.py +371 -0
- sklearnex/tests/utils/spmd.py +198 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,145 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests.utils.spmd import (
|
|
26
|
+
_generate_regression_data,
|
|
27
|
+
_get_local_tensor,
|
|
28
|
+
_mpi_libs_and_gpu_available,
|
|
29
|
+
_spmd_assert_allclose,
|
|
30
|
+
)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@pytest.mark.skipif(
|
|
34
|
+
not _mpi_libs_and_gpu_available,
|
|
35
|
+
reason="GPU device and MPI libs required for test",
|
|
36
|
+
)
|
|
37
|
+
@pytest.mark.parametrize(
|
|
38
|
+
"dataframe,queue",
|
|
39
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
40
|
+
)
|
|
41
|
+
@pytest.mark.mpi
|
|
42
|
+
def test_linear_spmd_gold(dataframe, queue):
|
|
43
|
+
# Import spmd and batch algo
|
|
44
|
+
from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
|
|
45
|
+
from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
|
|
46
|
+
|
|
47
|
+
# Create gold data and convert to dataframe
|
|
48
|
+
X_train = np.array(
|
|
49
|
+
[
|
|
50
|
+
[0.0, 0.0],
|
|
51
|
+
[0.0, 1.0],
|
|
52
|
+
[1.0, 0.0],
|
|
53
|
+
[0.0, 2.0],
|
|
54
|
+
[2.0, 0.0],
|
|
55
|
+
[1.0, 1.0],
|
|
56
|
+
[0.0, -1.0],
|
|
57
|
+
[-1.0, 0.0],
|
|
58
|
+
[-1.0, -1.0],
|
|
59
|
+
]
|
|
60
|
+
)
|
|
61
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
62
|
+
X_test = np.array(
|
|
63
|
+
[
|
|
64
|
+
[1.0, -1.0],
|
|
65
|
+
[-1.0, 1.0],
|
|
66
|
+
[0.0, 1.0],
|
|
67
|
+
[10.0, -10.0],
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
72
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
73
|
+
)
|
|
74
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
# ensure trained model of batch algo matches spmd
|
|
82
|
+
spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
|
|
83
|
+
batch_model = LinearRegression_Batch().fit(X_train, y_train)
|
|
84
|
+
|
|
85
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_)
|
|
86
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_)
|
|
87
|
+
|
|
88
|
+
# ensure predictions of batch algo match spmd
|
|
89
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
90
|
+
batch_result = batch_model.predict(X_test)
|
|
91
|
+
|
|
92
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@pytest.mark.skipif(
|
|
96
|
+
not _mpi_libs_and_gpu_available,
|
|
97
|
+
reason="GPU device and MPI libs required for test",
|
|
98
|
+
)
|
|
99
|
+
@pytest.mark.parametrize("n_samples", [100, 10000])
|
|
100
|
+
@pytest.mark.parametrize("n_features", [10, 100])
|
|
101
|
+
@pytest.mark.parametrize(
|
|
102
|
+
"dataframe,queue",
|
|
103
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
104
|
+
)
|
|
105
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
106
|
+
@pytest.mark.mpi
|
|
107
|
+
def test_linear_spmd_synthetic(n_samples, n_features, dataframe, queue, dtype):
|
|
108
|
+
# Import spmd and batch algo
|
|
109
|
+
from sklearnex.linear_model import LinearRegression as LinearRegression_Batch
|
|
110
|
+
from sklearnex.spmd.linear_model import LinearRegression as LinearRegression_SPMD
|
|
111
|
+
|
|
112
|
+
# Generate data and convert to dataframe
|
|
113
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
114
|
+
n_samples, n_features, dtype=dtype
|
|
115
|
+
)
|
|
116
|
+
|
|
117
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
118
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
119
|
+
)
|
|
120
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
121
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
124
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# TODO: support linear regression on wide datasets and remove this skip
|
|
128
|
+
if local_dpt_X_train.shape[0] < n_features:
|
|
129
|
+
pytest.skip(
|
|
130
|
+
"SPMD Linear Regression does not support cases where n_rows_rank < n_features"
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
# ensure trained model of batch algo matches spmd
|
|
134
|
+
spmd_model = LinearRegression_SPMD().fit(local_dpt_X_train, local_dpt_y_train)
|
|
135
|
+
batch_model = LinearRegression_Batch().fit(X_train, y_train)
|
|
136
|
+
|
|
137
|
+
tol = 1e-3 if dtype == np.float32 else 1e-7
|
|
138
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
|
|
139
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
|
|
140
|
+
|
|
141
|
+
# ensure predictions of batch algo match spmd
|
|
142
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
143
|
+
batch_result = batch_model.predict(X_test)
|
|
144
|
+
|
|
145
|
+
_spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.tests.utils.spmd import (
|
|
27
|
+
_generate_classification_data,
|
|
28
|
+
_get_local_tensor,
|
|
29
|
+
_mpi_libs_and_gpu_available,
|
|
30
|
+
_spmd_assert_allclose,
|
|
31
|
+
)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@pytest.mark.skipif(
|
|
35
|
+
not _mpi_libs_and_gpu_available,
|
|
36
|
+
reason="GPU device and MPI libs required for test",
|
|
37
|
+
)
|
|
38
|
+
@pytest.mark.parametrize(
|
|
39
|
+
"dataframe,queue",
|
|
40
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
41
|
+
)
|
|
42
|
+
@pytest.mark.mpi
|
|
43
|
+
def test_logistic_spmd_gold(dataframe, queue):
|
|
44
|
+
# Import spmd and batch algo
|
|
45
|
+
from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
|
|
46
|
+
from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
|
|
47
|
+
|
|
48
|
+
# Create gold data and convert to dataframe
|
|
49
|
+
X_train = np.array(
|
|
50
|
+
[
|
|
51
|
+
[0.0, 0.0],
|
|
52
|
+
[0.0, 1.0],
|
|
53
|
+
[1.0, 0.0],
|
|
54
|
+
[0.0, 2.0],
|
|
55
|
+
[2.0, 0.0],
|
|
56
|
+
[1.0, 1.0],
|
|
57
|
+
[0.0, -1.0],
|
|
58
|
+
[-1.0, 0.0],
|
|
59
|
+
[-1.0, -1.0],
|
|
60
|
+
]
|
|
61
|
+
)
|
|
62
|
+
y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
|
|
63
|
+
X_test = np.array(
|
|
64
|
+
[
|
|
65
|
+
[1.0, -1.0],
|
|
66
|
+
[-1.0, 1.0],
|
|
67
|
+
[0.0, 1.0],
|
|
68
|
+
[10.0, -10.0],
|
|
69
|
+
]
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
73
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
74
|
+
)
|
|
75
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
76
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
77
|
+
)
|
|
78
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
79
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
80
|
+
)
|
|
81
|
+
dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
82
|
+
dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
83
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
84
|
+
|
|
85
|
+
# Ensure trained model of batch algo matches spmd
|
|
86
|
+
spmd_model = LogisticRegression_SPMD(random_state=0, solver="newton-cg").fit(
|
|
87
|
+
local_dpt_X_train, local_dpt_y_train
|
|
88
|
+
)
|
|
89
|
+
batch_model = LogisticRegression_Batch(random_state=0, solver="newton-cg").fit(
|
|
90
|
+
dpt_X_train, dpt_y_train
|
|
91
|
+
)
|
|
92
|
+
|
|
93
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=1e-2)
|
|
94
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=1e-2)
|
|
95
|
+
|
|
96
|
+
# Ensure predictions of batch algo match spmd
|
|
97
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
98
|
+
batch_result = batch_model.predict(dpt_X_test)
|
|
99
|
+
|
|
100
|
+
_spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
# parametrize max_iter, C, tol
|
|
104
|
+
@pytest.mark.skipif(
|
|
105
|
+
not _mpi_libs_and_gpu_available,
|
|
106
|
+
reason="GPU device and MPI libs required for test",
|
|
107
|
+
)
|
|
108
|
+
@pytest.mark.parametrize("n_samples", [100, 10000])
|
|
109
|
+
@pytest.mark.parametrize("n_features", [10, 100])
|
|
110
|
+
@pytest.mark.parametrize("C", [0.5, 1.0, 2.0])
|
|
111
|
+
@pytest.mark.parametrize("tol", [1e-2, 1e-4])
|
|
112
|
+
@pytest.mark.parametrize(
|
|
113
|
+
"dataframe,queue",
|
|
114
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
115
|
+
)
|
|
116
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
117
|
+
@pytest.mark.mpi
|
|
118
|
+
def test_logistic_spmd_synthetic(n_samples, n_features, C, tol, dataframe, queue, dtype):
|
|
119
|
+
# TODO: Resolve numerical issues when n_rows_rank < n_cols
|
|
120
|
+
if n_samples <= n_features:
|
|
121
|
+
pytest.skip("Numerical issues when rank rows < columns")
|
|
122
|
+
|
|
123
|
+
# Import spmd and batch algo
|
|
124
|
+
from sklearnex.linear_model import LogisticRegression as LogisticRegression_Batch
|
|
125
|
+
from sklearnex.spmd.linear_model import LogisticRegression as LogisticRegression_SPMD
|
|
126
|
+
|
|
127
|
+
# Generate data and convert to dataframe
|
|
128
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
129
|
+
n_samples, n_features, dtype=dtype
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
133
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
134
|
+
)
|
|
135
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
136
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
137
|
+
)
|
|
138
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
139
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
140
|
+
)
|
|
141
|
+
dpt_X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
142
|
+
dpt_y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
143
|
+
dpt_X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
144
|
+
|
|
145
|
+
# Ensure trained model of batch algo matches spmd
|
|
146
|
+
spmd_model = LogisticRegression_SPMD(
|
|
147
|
+
random_state=0, solver="newton-cg", C=C, tol=tol
|
|
148
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
149
|
+
batch_model = LogisticRegression_Batch(
|
|
150
|
+
random_state=0, solver="newton-cg", C=C, tol=tol
|
|
151
|
+
).fit(dpt_X_train, dpt_y_train)
|
|
152
|
+
|
|
153
|
+
# TODO: Logistic Regression coefficients do not align
|
|
154
|
+
tol = 1e-2
|
|
155
|
+
assert_allclose(spmd_model.coef_, batch_model.coef_, rtol=tol, atol=tol)
|
|
156
|
+
assert_allclose(spmd_model.intercept_, batch_model.intercept_, rtol=tol, atol=tol)
|
|
157
|
+
|
|
158
|
+
# Ensure predictions of batch algo match spmd
|
|
159
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
160
|
+
batch_result = batch_model.predict(dpt_X_test)
|
|
161
|
+
|
|
162
|
+
_spmd_assert_allclose(spmd_result, _as_numpy(batch_result))
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from .neighbors import KNeighborsClassifier, KNeighborsRegressor, NearestNeighbors
|
|
18
|
+
|
|
19
|
+
__all__ = ["KNeighborsClassifier", "KNeighborsRegressor", "NearestNeighbors"]
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from onedal.spmd.neighbors import (
|
|
18
|
+
KNeighborsClassifier,
|
|
19
|
+
KNeighborsRegressor,
|
|
20
|
+
NearestNeighbors,
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
# TODO:
|
|
24
|
+
# Currently it uses `onedal` module interface.
|
|
25
|
+
# Add sklearnex dispatching.
|
|
@@ -0,0 +1,288 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
from sklearnex.tests.utils.spmd import (
|
|
26
|
+
_assert_unordered_allclose,
|
|
27
|
+
_generate_classification_data,
|
|
28
|
+
_generate_regression_data,
|
|
29
|
+
_get_local_tensor,
|
|
30
|
+
_mpi_libs_and_gpu_available,
|
|
31
|
+
_spmd_assert_allclose,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.skipif(
|
|
36
|
+
not _mpi_libs_and_gpu_available,
|
|
37
|
+
reason="GPU device and MPI libs required for test",
|
|
38
|
+
)
|
|
39
|
+
@pytest.mark.parametrize(
|
|
40
|
+
"dataframe,queue",
|
|
41
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
42
|
+
)
|
|
43
|
+
@pytest.mark.mpi
|
|
44
|
+
def test_knncls_spmd_gold(dataframe, queue):
|
|
45
|
+
# Import spmd and batch algo
|
|
46
|
+
from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
|
|
47
|
+
from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
|
|
48
|
+
|
|
49
|
+
# Create gold data and convert to dataframe
|
|
50
|
+
X_train = np.array(
|
|
51
|
+
[
|
|
52
|
+
[0.0, 0.0],
|
|
53
|
+
[0.0, 1.0],
|
|
54
|
+
[1.0, 0.0],
|
|
55
|
+
[0.0, 2.0],
|
|
56
|
+
[2.0, 0.0],
|
|
57
|
+
[0.9, 1.0],
|
|
58
|
+
[0.0, -1.0],
|
|
59
|
+
[-1.0, 0.0],
|
|
60
|
+
[-1.0, -1.0],
|
|
61
|
+
]
|
|
62
|
+
)
|
|
63
|
+
# TODO: handle situations where not all classes are present on all ranks?
|
|
64
|
+
y_train = np.array([0, 1, 0, 1, 0, 1, 0, 1, 0])
|
|
65
|
+
X_test = np.array(
|
|
66
|
+
[
|
|
67
|
+
[1.0, -0.5],
|
|
68
|
+
[-5.0, 1.0],
|
|
69
|
+
[0.0, 1.0],
|
|
70
|
+
[10.0, -10.0],
|
|
71
|
+
]
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
75
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
76
|
+
)
|
|
77
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
78
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
79
|
+
)
|
|
80
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
81
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
# Ensure predictions of batch algo match spmd
|
|
85
|
+
spmd_model = KNeighborsClassifier_SPMD(n_neighbors=1, algorithm="brute").fit(
|
|
86
|
+
local_dpt_X_train, local_dpt_y_train
|
|
87
|
+
)
|
|
88
|
+
batch_model = KNeighborsClassifier_Batch(n_neighbors=1, algorithm="brute").fit(
|
|
89
|
+
X_train, y_train
|
|
90
|
+
)
|
|
91
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
92
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
93
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
94
|
+
batch_result = batch_model.predict(X_test)
|
|
95
|
+
|
|
96
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
97
|
+
_assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
|
|
98
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
@pytest.mark.skipif(
|
|
102
|
+
not _mpi_libs_and_gpu_available,
|
|
103
|
+
reason="GPU device and MPI libs required for test",
|
|
104
|
+
)
|
|
105
|
+
@pytest.mark.parametrize("n_samples", [200, 10000])
|
|
106
|
+
@pytest.mark.parametrize("n_features_and_classes", [(5, 2), (25, 2), (25, 10)])
|
|
107
|
+
@pytest.mark.parametrize("n_neighbors", [1, 5, 20])
|
|
108
|
+
@pytest.mark.parametrize("weights", ["uniform", "distance"])
|
|
109
|
+
@pytest.mark.parametrize(
|
|
110
|
+
"dataframe,queue",
|
|
111
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
112
|
+
)
|
|
113
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
114
|
+
@pytest.mark.mpi
|
|
115
|
+
def test_knncls_spmd_synthetic(
|
|
116
|
+
n_samples,
|
|
117
|
+
n_features_and_classes,
|
|
118
|
+
n_neighbors,
|
|
119
|
+
weights,
|
|
120
|
+
dataframe,
|
|
121
|
+
queue,
|
|
122
|
+
dtype,
|
|
123
|
+
metric="euclidean",
|
|
124
|
+
):
|
|
125
|
+
n_features, n_classes = n_features_and_classes
|
|
126
|
+
# Import spmd and batch algo
|
|
127
|
+
from sklearnex.neighbors import KNeighborsClassifier as KNeighborsClassifier_Batch
|
|
128
|
+
from sklearnex.spmd.neighbors import KNeighborsClassifier as KNeighborsClassifier_SPMD
|
|
129
|
+
|
|
130
|
+
# Generate data and convert to dataframe
|
|
131
|
+
X_train, X_test, y_train, _ = _generate_classification_data(
|
|
132
|
+
n_samples, n_features, n_classes, dtype=dtype
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
136
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
137
|
+
)
|
|
138
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
139
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
140
|
+
)
|
|
141
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
142
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Ensure predictions of batch algo match spmd
|
|
146
|
+
spmd_model = KNeighborsClassifier_SPMD(
|
|
147
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
148
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
149
|
+
batch_model = KNeighborsClassifier_Batch(
|
|
150
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
151
|
+
).fit(X_train, y_train)
|
|
152
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
153
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
154
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
155
|
+
batch_result = batch_model.predict(X_test)
|
|
156
|
+
|
|
157
|
+
tol = 1e-4
|
|
158
|
+
if dtype == np.float64:
|
|
159
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
160
|
+
_assert_unordered_allclose(
|
|
161
|
+
spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
|
|
162
|
+
)
|
|
163
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
@pytest.mark.skipif(
|
|
167
|
+
not _mpi_libs_and_gpu_available,
|
|
168
|
+
reason="GPU device and MPI libs required for test",
|
|
169
|
+
)
|
|
170
|
+
@pytest.mark.parametrize(
|
|
171
|
+
"dataframe,queue",
|
|
172
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
173
|
+
)
|
|
174
|
+
@pytest.mark.mpi
|
|
175
|
+
def test_knnreg_spmd_gold(dataframe, queue):
|
|
176
|
+
# Import spmd and batch algo
|
|
177
|
+
from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
|
|
178
|
+
from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
|
|
179
|
+
|
|
180
|
+
# Create gold data and convert to dataframe
|
|
181
|
+
X_train = np.array(
|
|
182
|
+
[
|
|
183
|
+
[0.0, 0.0],
|
|
184
|
+
[0.0, 1.0],
|
|
185
|
+
[1.0, 0.0],
|
|
186
|
+
[0.0, 2.0],
|
|
187
|
+
[2.0, 0.0],
|
|
188
|
+
[1.0, 1.0],
|
|
189
|
+
[0.0, -1.0],
|
|
190
|
+
[-1.0, 0.0],
|
|
191
|
+
[-1.0, -1.0],
|
|
192
|
+
]
|
|
193
|
+
)
|
|
194
|
+
y_train = np.array([3.0, 5.0, 4.0, 7.0, 5.0, 6.0, 1.0, 2.0, 0.0])
|
|
195
|
+
X_test = np.array(
|
|
196
|
+
[
|
|
197
|
+
[1.0, -0.5],
|
|
198
|
+
[-5.0, 1.0],
|
|
199
|
+
[0.0, 1.0],
|
|
200
|
+
[10.0, -10.0],
|
|
201
|
+
]
|
|
202
|
+
)
|
|
203
|
+
|
|
204
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
205
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
206
|
+
)
|
|
207
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
208
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
209
|
+
)
|
|
210
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
211
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
# Ensure predictions of batch algo match spmd
|
|
215
|
+
spmd_model = KNeighborsRegressor_SPMD(n_neighbors=1, algorithm="brute").fit(
|
|
216
|
+
local_dpt_X_train, local_dpt_y_train
|
|
217
|
+
)
|
|
218
|
+
batch_model = KNeighborsRegressor_Batch(n_neighbors=1, algorithm="brute").fit(
|
|
219
|
+
X_train, y_train
|
|
220
|
+
)
|
|
221
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
222
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
223
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
224
|
+
batch_result = batch_model.predict(X_test)
|
|
225
|
+
|
|
226
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
227
|
+
_assert_unordered_allclose(spmd_dists, batch_dists, localize=True)
|
|
228
|
+
_spmd_assert_allclose(spmd_result, batch_result)
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
@pytest.mark.skipif(
|
|
232
|
+
not _mpi_libs_and_gpu_available,
|
|
233
|
+
reason="GPU device and MPI libs required for test",
|
|
234
|
+
)
|
|
235
|
+
@pytest.mark.parametrize("n_samples", [200, 10000])
|
|
236
|
+
@pytest.mark.parametrize("n_features", [5, 25])
|
|
237
|
+
@pytest.mark.parametrize("n_neighbors", [1, 5, 20])
|
|
238
|
+
@pytest.mark.parametrize("weights", ["uniform", "distance"])
|
|
239
|
+
@pytest.mark.parametrize(
|
|
240
|
+
"metric", ["euclidean", "manhattan", "minkowski", "chebyshev", "cosine"]
|
|
241
|
+
)
|
|
242
|
+
@pytest.mark.parametrize(
|
|
243
|
+
"dataframe,queue",
|
|
244
|
+
get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
|
|
245
|
+
)
|
|
246
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
247
|
+
@pytest.mark.mpi
|
|
248
|
+
def test_knnreg_spmd_synthetic(
|
|
249
|
+
n_samples, n_features, n_neighbors, weights, metric, dataframe, queue, dtype
|
|
250
|
+
):
|
|
251
|
+
# Import spmd and batch algo
|
|
252
|
+
from sklearnex.neighbors import KNeighborsRegressor as KNeighborsRegressor_Batch
|
|
253
|
+
from sklearnex.spmd.neighbors import KNeighborsRegressor as KNeighborsRegressor_SPMD
|
|
254
|
+
|
|
255
|
+
# Generate data and convert to dataframe
|
|
256
|
+
X_train, X_test, y_train, _ = _generate_regression_data(
|
|
257
|
+
n_samples, n_features, dtype=dtype
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
local_dpt_X_train = _convert_to_dataframe(
|
|
261
|
+
_get_local_tensor(X_train), sycl_queue=queue, target_df=dataframe
|
|
262
|
+
)
|
|
263
|
+
local_dpt_y_train = _convert_to_dataframe(
|
|
264
|
+
_get_local_tensor(y_train), sycl_queue=queue, target_df=dataframe
|
|
265
|
+
)
|
|
266
|
+
local_dpt_X_test = _convert_to_dataframe(
|
|
267
|
+
_get_local_tensor(X_test), sycl_queue=queue, target_df=dataframe
|
|
268
|
+
)
|
|
269
|
+
|
|
270
|
+
# Ensure predictions of batch algo match spmd
|
|
271
|
+
spmd_model = KNeighborsRegressor_SPMD(
|
|
272
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
273
|
+
).fit(local_dpt_X_train, local_dpt_y_train)
|
|
274
|
+
batch_model = KNeighborsRegressor_Batch(
|
|
275
|
+
n_neighbors=n_neighbors, weights=weights, metric=metric, algorithm="brute"
|
|
276
|
+
).fit(X_train, y_train)
|
|
277
|
+
spmd_dists, spmd_indcs = spmd_model.kneighbors(local_dpt_X_test)
|
|
278
|
+
batch_dists, batch_indcs = batch_model.kneighbors(X_test)
|
|
279
|
+
spmd_result = spmd_model.predict(local_dpt_X_test)
|
|
280
|
+
batch_result = batch_model.predict(X_test)
|
|
281
|
+
|
|
282
|
+
tol = 0.005 if dtype == np.float32 else 1e-4
|
|
283
|
+
if dtype == np.float64:
|
|
284
|
+
_assert_unordered_allclose(spmd_indcs, batch_indcs, localize=True)
|
|
285
|
+
_assert_unordered_allclose(
|
|
286
|
+
spmd_dists, batch_dists, localize=True, rtol=tol, atol=tol
|
|
287
|
+
)
|
|
288
|
+
_spmd_assert_allclose(spmd_result, batch_result, rtol=tol, atol=tol)
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from .._utils import get_sklearnex_version
|
|
18
|
+
|
|
19
|
+
if get_sklearnex_version((2021, "P", 300)):
|
|
20
|
+
from .nusvc import NuSVC
|
|
21
|
+
from .nusvr import NuSVR
|
|
22
|
+
from .svc import SVC
|
|
23
|
+
from .svr import SVR
|
|
24
|
+
|
|
25
|
+
__all__ = ["SVR", "SVC", "NuSVC", "NuSVR"]
|
|
26
|
+
else:
|
|
27
|
+
from daal4py.sklearn.svm import SVC
|
|
28
|
+
|
|
29
|
+
__all__ = ["SVC"]
|