scikit-learn-intelex 2025.0.0__py312-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,414 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+
19
+ from daal4py.sklearn._utils import daal_check_version
20
+
21
+ if daal_check_version((2024, "P", 100)):
22
+ import numbers
23
+ from math import sqrt
24
+ from warnings import warn
25
+
26
+ import numpy as np
27
+ from scipy.sparse import issparse
28
+ from sklearn.utils.validation import check_is_fitted
29
+
30
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
31
+ from daal4py.sklearn._utils import sklearn_check_version
32
+
33
+ from .._device_offload import dispatch, wrap_output_data
34
+ from .._utils import PatchingConditionsChain
35
+ from ..utils._array_api import get_namespace
36
+
37
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
38
+ from sklearn.utils import check_scalar
39
+
40
+ if sklearn_check_version("1.2"):
41
+ from sklearn.utils._param_validation import StrOptions
42
+
43
+ from sklearn.decomposition import PCA as sklearn_PCA
44
+
45
+ from onedal.decomposition import PCA as onedal_PCA
46
+
47
+ @control_n_jobs(decorated_methods=["fit", "transform", "fit_transform"])
48
+ class PCA(sklearn_PCA):
49
+ __doc__ = sklearn_PCA.__doc__
50
+
51
+ if sklearn_check_version("1.2"):
52
+ _parameter_constraints: dict = {**sklearn_PCA._parameter_constraints}
53
+ # "onedal_svd" solver uses oneDAL's PCA-SVD algorithm
54
+ # and required for testing purposes to fully enable it in future.
55
+ # "covariance_eigh" solver is added for ability to explicitly request
56
+ # oneDAL's PCA-Covariance algorithm using any sklearn version < 1.5.
57
+ _parameter_constraints["svd_solver"] = [
58
+ StrOptions(
59
+ _parameter_constraints["svd_solver"][0].options
60
+ | {"onedal_svd", "covariance_eigh"}
61
+ )
62
+ ]
63
+
64
+ if sklearn_check_version("1.1"):
65
+
66
+ def __init__(
67
+ self,
68
+ n_components=None,
69
+ *,
70
+ copy=True,
71
+ whiten=False,
72
+ svd_solver="auto",
73
+ tol=0.0,
74
+ iterated_power="auto",
75
+ n_oversamples=10,
76
+ power_iteration_normalizer="auto",
77
+ random_state=None,
78
+ ):
79
+ self.n_components = n_components
80
+ self.copy = copy
81
+ self.whiten = whiten
82
+ self.svd_solver = svd_solver
83
+ self.tol = tol
84
+ self.iterated_power = iterated_power
85
+ self.n_oversamples = n_oversamples
86
+ self.power_iteration_normalizer = power_iteration_normalizer
87
+ self.random_state = random_state
88
+
89
+ else:
90
+
91
+ def __init__(
92
+ self,
93
+ n_components=None,
94
+ copy=True,
95
+ whiten=False,
96
+ svd_solver="auto",
97
+ tol=0.0,
98
+ iterated_power="auto",
99
+ random_state=None,
100
+ ):
101
+ self.n_components = n_components
102
+ self.copy = copy
103
+ self.whiten = whiten
104
+ self.svd_solver = svd_solver
105
+ self.tol = tol
106
+ self.iterated_power = iterated_power
107
+ self.random_state = random_state
108
+
109
+ def fit(self, X, y=None):
110
+ self._fit(X)
111
+ return self
112
+
113
+ @wrap_output_data
114
+ def _fit(self, X):
115
+ if sklearn_check_version("1.2"):
116
+ self._validate_params()
117
+ elif sklearn_check_version("1.1"):
118
+ check_scalar(
119
+ self.n_oversamples,
120
+ "n_oversamples",
121
+ min_val=1,
122
+ target_type=numbers.Integral,
123
+ )
124
+
125
+ return dispatch(
126
+ self,
127
+ "fit",
128
+ {
129
+ "onedal": self.__class__._onedal_fit,
130
+ "sklearn": sklearn_PCA._fit,
131
+ },
132
+ X,
133
+ )
134
+
135
+ def _onedal_fit(self, X, queue=None):
136
+ X = self._validate_data(
137
+ X,
138
+ dtype=[np.float64, np.float32],
139
+ ensure_2d=True,
140
+ copy=self.copy,
141
+ )
142
+
143
+ onedal_params = {
144
+ "n_components": self.n_components,
145
+ "is_deterministic": True,
146
+ "method": "svd" if self._fit_svd_solver == "onedal_svd" else "cov",
147
+ "whiten": self.whiten,
148
+ }
149
+ self._onedal_estimator = onedal_PCA(**onedal_params)
150
+ self._onedal_estimator.fit(X, queue=queue)
151
+ self._save_attributes()
152
+
153
+ U = None
154
+ S = self.singular_values_
155
+ Vt = self.components_
156
+
157
+ if sklearn_check_version("1.5"):
158
+ xp, _ = get_namespace(X)
159
+ x_is_centered = not self.copy
160
+
161
+ return U, S, Vt, X, x_is_centered, xp
162
+ else:
163
+ return U, S, Vt
164
+
165
+ @wrap_output_data
166
+ def transform(self, X):
167
+ return dispatch(
168
+ self,
169
+ "transform",
170
+ {
171
+ "onedal": self.__class__._onedal_transform,
172
+ "sklearn": sklearn_PCA.transform,
173
+ },
174
+ X,
175
+ )
176
+
177
+ def _onedal_transform(self, X, queue=None):
178
+ check_is_fitted(self)
179
+ if sklearn_check_version("1.0"):
180
+ self._check_feature_names(X, reset=False)
181
+ X = self._validate_data(
182
+ X,
183
+ dtype=[np.float64, np.float32],
184
+ reset=False,
185
+ )
186
+ self._validate_n_features_in_after_fitting(X)
187
+
188
+ return self._onedal_estimator.predict(X, queue=queue)
189
+
190
+ def fit_transform(self, X, y=None):
191
+ if sklearn_check_version("1.5"):
192
+ U, S, Vt, X_fit, x_is_centered, xp = self._fit(X)
193
+ else:
194
+ U, S, Vt = self._fit(X)
195
+ X_fit = X
196
+ if hasattr(self, "_onedal_estimator"):
197
+ # oneDAL PCA was fit
198
+ return self.transform(X)
199
+ elif U is not None:
200
+ # Scikit-learn PCA was fit
201
+ U = U[:, : self.n_components_]
202
+
203
+ if self.whiten:
204
+ U *= sqrt(X_fit.shape[0] - 1)
205
+ else:
206
+ U *= S[: self.n_components_]
207
+
208
+ return U
209
+ else:
210
+ # Scikit-learn PCA["covariance_eigh"] was fit
211
+ return self._transform(X_fit, xp, x_is_centered=x_is_centered)
212
+
213
+ @wrap_output_data
214
+ def inverse_transform(self, X):
215
+ xp, _ = get_namespace(X)
216
+
217
+ mean = self.mean_
218
+ if self.whiten:
219
+ components = (
220
+ xp.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_
221
+ )
222
+ else:
223
+ components = self.components_
224
+
225
+ if "numpy" not in xp.__name__:
226
+ # DPCtl and dpnp require inputs to be on the same device for
227
+ # matrix multiplication and division. The type and location
228
+ # of the components and mean are dependent on the sklearn
229
+ # version, this makes sure it is of the same type and on the
230
+ # same device as the data (compute follows data).
231
+ components = xp.asarray(components, device=X.device)
232
+ mean = xp.asarray(mean, device=X.device)
233
+
234
+ return X @ components + mean
235
+
236
+ def _onedal_supported(self, method_name, X):
237
+ class_name = self.__class__.__name__
238
+ patching_status = PatchingConditionsChain(
239
+ f"sklearn.decomposition.{class_name}.{method_name}"
240
+ )
241
+
242
+ if method_name == "fit":
243
+ shape_tuple, _is_shape_compatible = self._get_shape_compatibility(X)
244
+ patching_status.and_conditions(
245
+ [
246
+ (
247
+ _is_shape_compatible,
248
+ "Data shape is not compatible.",
249
+ ),
250
+ (
251
+ self._is_solver_compatible_with_onedal(shape_tuple),
252
+ (
253
+ "Only 'covariance_eigh' and 'onedal_svd' "
254
+ "solvers are supported."
255
+ if sklearn_check_version("1.5")
256
+ else "Only 'full', 'covariance_eigh' and 'onedal_svd' "
257
+ "solvers are supported."
258
+ ),
259
+ ),
260
+ (not issparse(X), "oneDAL PCA does not support sparse data"),
261
+ ]
262
+ )
263
+ return patching_status
264
+
265
+ if method_name == "transform":
266
+ patching_status.and_conditions(
267
+ [
268
+ (
269
+ hasattr(self, "_onedal_estimator"),
270
+ "oneDAL model was not trained",
271
+ ),
272
+ ]
273
+ )
274
+ return patching_status
275
+
276
+ raise RuntimeError(
277
+ f"Unknown method {method_name} in {self.__class__.__name__}"
278
+ )
279
+
280
+ def _onedal_cpu_supported(self, method_name, *data):
281
+ return self._onedal_supported(method_name, *data)
282
+
283
+ def _onedal_gpu_supported(self, method_name, *data):
284
+ return self._onedal_supported(method_name, *data)
285
+
286
+ def _get_shape_compatibility(self, X):
287
+ _is_shape_compatible = False
288
+ _empty_shape = (0, 0)
289
+ if hasattr(X, "shape"):
290
+ shape_tuple = X.shape
291
+ if len(shape_tuple) == 1:
292
+ shape_tuple = (1, shape_tuple[0])
293
+ elif isinstance(X, list):
294
+ if np.ndim(X) == 1:
295
+ shape_tuple = (1, len(X))
296
+ elif np.ndim(X) == 2:
297
+ shape_tuple = (len(X), len(X[0]))
298
+ else:
299
+ return _empty_shape, _is_shape_compatible
300
+
301
+ if shape_tuple[0] > 0 and shape_tuple[1] > 0 and len(shape_tuple) == 2:
302
+ _is_shape_compatible = shape_tuple[1] / shape_tuple[0] < 2
303
+
304
+ return shape_tuple, _is_shape_compatible
305
+
306
+ def _is_solver_compatible_with_onedal(self, shape_tuple):
307
+ self._fit_svd_solver = self.svd_solver
308
+ n_sf_min = min(shape_tuple)
309
+ n_components = n_sf_min if self.n_components is None else self.n_components
310
+
311
+ if self._fit_svd_solver == "auto":
312
+ if sklearn_check_version("1.1"):
313
+ if (
314
+ sklearn_check_version("1.5")
315
+ and shape_tuple[1] <= 1_000
316
+ and shape_tuple[0] >= 10 * shape_tuple[1]
317
+ ):
318
+ self._fit_svd_solver = "covariance_eigh"
319
+ elif max(shape_tuple) <= 500 or n_components == "mle":
320
+ self._fit_svd_solver = "full"
321
+ elif 1 <= n_components < 0.8 * n_sf_min:
322
+ self._fit_svd_solver = "randomized"
323
+ else:
324
+ self._fit_svd_solver = "full"
325
+ else:
326
+ if n_components == "mle":
327
+ self._fit_svd_solver = "full"
328
+ else:
329
+ # check if sklearnex is faster than randomized sklearn
330
+ # Refer to daal4py
331
+ regression_coefs = np.array(
332
+ [
333
+ [
334
+ 9.779873e-11,
335
+ shape_tuple[0] * shape_tuple[1] * n_components,
336
+ ],
337
+ [
338
+ -1.122062e-11,
339
+ shape_tuple[0] * shape_tuple[1] * shape_tuple[1],
340
+ ],
341
+ [1.127905e-09, shape_tuple[0] ** 2],
342
+ ]
343
+ )
344
+ if (
345
+ n_components >= 1
346
+ and np.dot(regression_coefs[:, 0], regression_coefs[:, 1])
347
+ <= 0
348
+ ):
349
+ self._fit_svd_solver = "randomized"
350
+ else:
351
+ self._fit_svd_solver = "full"
352
+
353
+ # Use oneDAL in next cases:
354
+ # 1. oneDAL SVD solver is explicitly set
355
+ # 2. solver is set or dispatched to "covariance_eigh"
356
+ # 3. solver is set or dispatched to "full" and sklearn version < 1.5
357
+ # 4. solver is set to "auto" and dispatched to "full"
358
+ if self._fit_svd_solver in ["onedal_svd", "covariance_eigh"]:
359
+ return True
360
+ elif not sklearn_check_version("1.5") and self._fit_svd_solver == "full":
361
+ self._fit_svd_solver = "covariance_eigh"
362
+ return True
363
+ elif self.svd_solver == "auto" and self._fit_svd_solver == "full":
364
+ warn(
365
+ "Sklearnex always uses `covariance_eigh` solver instead of `full` "
366
+ "when `svd_solver` parameter is set to `auto` "
367
+ "for performance purposes."
368
+ )
369
+ self._fit_svd_solver = "covariance_eigh"
370
+ return True
371
+ else:
372
+ return False
373
+
374
+ def _save_attributes(self):
375
+ self.n_samples_ = self._onedal_estimator.n_samples_
376
+ if sklearn_check_version("1.2"):
377
+ self.n_features_in_ = self._onedal_estimator.n_features_
378
+ else:
379
+ self.n_features_ = self._onedal_estimator.n_features_
380
+ self.n_features_in_ = self._onedal_estimator.n_features_
381
+ self.n_components_ = self._onedal_estimator.n_components_
382
+ self.components_ = self._onedal_estimator.components_
383
+ self.mean_ = self._onedal_estimator.mean_
384
+ self.singular_values_ = self._onedal_estimator.singular_values_
385
+ self.explained_variance_ = self._onedal_estimator.explained_variance_.ravel()
386
+ self.explained_variance_ratio_ = (
387
+ self._onedal_estimator.explained_variance_ratio_
388
+ )
389
+ self.noise_variance_ = self._onedal_estimator.noise_variance_
390
+
391
+ def _validate_n_features_in_after_fitting(self, X):
392
+ if sklearn_check_version("1.2"):
393
+ expected_n_features = self.n_features_in_
394
+ else:
395
+ expected_n_features = self.n_features_
396
+ if X.shape[1] != expected_n_features:
397
+ raise ValueError(
398
+ (
399
+ f"X has {X.shape[1]} features, "
400
+ f"but PCA is expecting {expected_n_features} features as input"
401
+ )
402
+ )
403
+
404
+ fit.__doc__ = sklearn_PCA.fit.__doc__
405
+ transform.__doc__ = sklearn_PCA.transform.__doc__
406
+ fit_transform.__doc__ = sklearn_PCA.fit_transform.__doc__
407
+ inverse_transform.__doc__ = sklearn_PCA.inverse_transform.__doc__
408
+
409
+ else:
410
+ from daal4py.sklearn.decomposition import PCA
411
+
412
+ logging.warning(
413
+ "Sklearnex PCA requires oneDAL version >= 2024.1.0 but it was not found"
414
+ )
@@ -0,0 +1,58 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.tests.utils._dataframes_support import (
23
+ _as_numpy,
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
27
+
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ def test_sklearnex_import(dataframe, queue):
31
+ from sklearnex.decomposition import PCA
32
+
33
+ X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
34
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
35
+ X_transformed_expected = [
36
+ [-1.38340578, -0.2935787],
37
+ [-2.22189802, 0.25133484],
38
+ [-3.6053038, -0.04224385],
39
+ [1.38340578, 0.2935787],
40
+ [2.22189802, -0.25133484],
41
+ [3.6053038, 0.04224385],
42
+ ]
43
+
44
+ pca = PCA(n_components=2, svd_solver="covariance_eigh")
45
+ pca.fit(X)
46
+ X_transformed = pca.transform(X)
47
+ X_fit_transformed = PCA(n_components=2, svd_solver="covariance_eigh").fit_transform(X)
48
+
49
+ if daal_check_version((2024, "P", 100)):
50
+ assert "sklearnex" in pca.__module__
51
+ assert hasattr(pca, "_onedal_estimator")
52
+ else:
53
+ assert "daal4py" in pca.__module__
54
+
55
+ tol = 1e-5 if _as_numpy(X_transformed).dtype == np.float32 else 1e-7
56
+ assert_allclose([6.30061232, 0.54980396], _as_numpy(pca.singular_values_))
57
+ assert_allclose(X_transformed_expected, _as_numpy(X_transformed), rtol=tol)
58
+ assert_allclose(X_transformed_expected, _as_numpy(X_fit_transformed), rtol=tol)