scikit-learn-intelex 2025.0.0__py312-none-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- daal4py/__init__.py +73 -0
- daal4py/__main__.py +58 -0
- daal4py/_daal4py.cpython-312-x86_64-linux-gnu.so +0 -0
- daal4py/doc/third-party-programs.txt +424 -0
- daal4py/mb/__init__.py +19 -0
- daal4py/mb/model_builders.py +377 -0
- daal4py/mpi_transceiver.cpython-312-x86_64-linux-gnu.so +0 -0
- daal4py/sklearn/__init__.py +40 -0
- daal4py/sklearn/_n_jobs_support.py +242 -0
- daal4py/sklearn/_utils.py +241 -0
- daal4py/sklearn/cluster/__init__.py +20 -0
- daal4py/sklearn/cluster/dbscan.py +165 -0
- daal4py/sklearn/cluster/k_means.py +597 -0
- daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- daal4py/sklearn/decomposition/__init__.py +19 -0
- daal4py/sklearn/decomposition/_pca.py +524 -0
- daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
- daal4py/sklearn/ensemble/__init__.py +27 -0
- daal4py/sklearn/ensemble/_forest.py +1397 -0
- daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- daal4py/sklearn/linear_model/__init__.py +29 -0
- daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- daal4py/sklearn/linear_model/_linear.py +272 -0
- daal4py/sklearn/linear_model/_ridge.py +325 -0
- daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- daal4py/sklearn/linear_model/linear.py +17 -0
- daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- daal4py/sklearn/linear_model/ridge.py +17 -0
- daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
- daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- daal4py/sklearn/manifold/__init__.py +19 -0
- daal4py/sklearn/manifold/_t_sne.py +405 -0
- daal4py/sklearn/metrics/__init__.py +20 -0
- daal4py/sklearn/metrics/_pairwise.py +155 -0
- daal4py/sklearn/metrics/_ranking.py +210 -0
- daal4py/sklearn/model_selection/__init__.py +19 -0
- daal4py/sklearn/model_selection/_split.py +309 -0
- daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- daal4py/sklearn/monkeypatch/__init__.py +0 -0
- daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
- daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
- daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
- daal4py/sklearn/neighbors/__init__.py +21 -0
- daal4py/sklearn/neighbors/_base.py +503 -0
- daal4py/sklearn/neighbors/_classification.py +139 -0
- daal4py/sklearn/neighbors/_regression.py +74 -0
- daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- daal4py/sklearn/svm/__init__.py +19 -0
- daal4py/sklearn/svm/svm.py +734 -0
- daal4py/sklearn/utils/__init__.py +21 -0
- daal4py/sklearn/utils/base.py +75 -0
- daal4py/sklearn/utils/tests/test_utils.py +51 -0
- daal4py/sklearn/utils/validation.py +693 -0
- onedal/__init__.py +83 -0
- onedal/_config.py +53 -0
- onedal/_device_offload.py +229 -0
- onedal/_onedal_py_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_host.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/_onedal_py_spmd_dpc.cpython-312-x86_64-linux-gnu.so +0 -0
- onedal/basic_statistics/__init__.py +20 -0
- onedal/basic_statistics/basic_statistics.py +107 -0
- onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- onedal/cluster/__init__.py +27 -0
- onedal/cluster/dbscan.py +110 -0
- onedal/cluster/kmeans.py +560 -0
- onedal/cluster/kmeans_init.py +115 -0
- onedal/cluster/tests/test_dbscan.py +125 -0
- onedal/cluster/tests/test_kmeans.py +88 -0
- onedal/cluster/tests/test_kmeans_init.py +93 -0
- onedal/common/_base.py +38 -0
- onedal/common/_estimator_checks.py +47 -0
- onedal/common/_mixin.py +62 -0
- onedal/common/_policy.py +59 -0
- onedal/common/_spmd_policy.py +30 -0
- onedal/common/hyperparameters.py +116 -0
- onedal/common/tests/test_policy.py +75 -0
- onedal/covariance/__init__.py +20 -0
- onedal/covariance/covariance.py +125 -0
- onedal/covariance/incremental_covariance.py +146 -0
- onedal/covariance/tests/test_covariance.py +50 -0
- onedal/covariance/tests/test_incremental_covariance.py +122 -0
- onedal/datatypes/__init__.py +19 -0
- onedal/datatypes/_data_conversion.py +95 -0
- onedal/datatypes/tests/test_data.py +235 -0
- onedal/decomposition/__init__.py +20 -0
- onedal/decomposition/incremental_pca.py +204 -0
- onedal/decomposition/pca.py +186 -0
- onedal/decomposition/tests/test_incremental_pca.py +198 -0
- onedal/ensemble/__init__.py +29 -0
- onedal/ensemble/forest.py +720 -0
- onedal/ensemble/tests/test_random_forest.py +97 -0
- onedal/linear_model/__init__.py +27 -0
- onedal/linear_model/incremental_linear_model.py +258 -0
- onedal/linear_model/linear_model.py +329 -0
- onedal/linear_model/logistic_regression.py +249 -0
- onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- onedal/linear_model/tests/test_linear_regression.py +149 -0
- onedal/linear_model/tests/test_logistic_regression.py +95 -0
- onedal/linear_model/tests/test_ridge.py +95 -0
- onedal/neighbors/__init__.py +19 -0
- onedal/neighbors/neighbors.py +778 -0
- onedal/neighbors/tests/test_knn_classification.py +49 -0
- onedal/primitives/__init__.py +27 -0
- onedal/primitives/get_tree.py +25 -0
- onedal/primitives/kernel_functions.py +153 -0
- onedal/primitives/tests/test_kernel_functions.py +159 -0
- onedal/spmd/__init__.py +25 -0
- onedal/spmd/_base.py +30 -0
- onedal/spmd/basic_statistics/__init__.py +20 -0
- onedal/spmd/basic_statistics/basic_statistics.py +30 -0
- onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
- onedal/spmd/cluster/__init__.py +28 -0
- onedal/spmd/cluster/dbscan.py +23 -0
- onedal/spmd/cluster/kmeans.py +56 -0
- onedal/spmd/covariance/__init__.py +20 -0
- onedal/spmd/covariance/covariance.py +26 -0
- onedal/spmd/covariance/incremental_covariance.py +82 -0
- onedal/spmd/decomposition/__init__.py +20 -0
- onedal/spmd/decomposition/incremental_pca.py +117 -0
- onedal/spmd/decomposition/pca.py +26 -0
- onedal/spmd/ensemble/__init__.py +19 -0
- onedal/spmd/ensemble/forest.py +28 -0
- onedal/spmd/linear_model/__init__.py +21 -0
- onedal/spmd/linear_model/incremental_linear_model.py +97 -0
- onedal/spmd/linear_model/linear_model.py +30 -0
- onedal/spmd/linear_model/logistic_regression.py +38 -0
- onedal/spmd/neighbors/__init__.py +19 -0
- onedal/spmd/neighbors/neighbors.py +75 -0
- onedal/svm/__init__.py +19 -0
- onedal/svm/svm.py +556 -0
- onedal/svm/tests/test_csr_svm.py +351 -0
- onedal/svm/tests/test_nusvc.py +204 -0
- onedal/svm/tests/test_nusvr.py +210 -0
- onedal/svm/tests/test_svc.py +168 -0
- onedal/svm/tests/test_svr.py +243 -0
- onedal/tests/test_common.py +41 -0
- onedal/tests/utils/_dataframes_support.py +168 -0
- onedal/tests/utils/_device_selection.py +107 -0
- onedal/utils/__init__.py +49 -0
- onedal/utils/_array_api.py +91 -0
- onedal/utils/validation.py +432 -0
- scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
- scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
- scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
- sklearnex/__init__.py +65 -0
- sklearnex/__main__.py +58 -0
- sklearnex/_config.py +98 -0
- sklearnex/_device_offload.py +121 -0
- sklearnex/_utils.py +109 -0
- sklearnex/basic_statistics/__init__.py +20 -0
- sklearnex/basic_statistics/basic_statistics.py +140 -0
- sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
- sklearnex/cluster/__init__.py +20 -0
- sklearnex/cluster/dbscan.py +192 -0
- sklearnex/cluster/k_means.py +383 -0
- sklearnex/cluster/tests/test_dbscan.py +38 -0
- sklearnex/cluster/tests/test_kmeans.py +153 -0
- sklearnex/conftest.py +73 -0
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +368 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
- sklearnex/decomposition/__init__.py +19 -0
- sklearnex/decomposition/pca.py +414 -0
- sklearnex/decomposition/tests/test_pca.py +58 -0
- sklearnex/dispatcher.py +543 -0
- sklearnex/doc/third-party-programs.txt +424 -0
- sklearnex/ensemble/__init__.py +29 -0
- sklearnex/ensemble/_forest.py +2016 -0
- sklearnex/ensemble/tests/test_forest.py +120 -0
- sklearnex/glob/__main__.py +72 -0
- sklearnex/glob/dispatcher.py +101 -0
- sklearnex/linear_model/__init__.py +32 -0
- sklearnex/linear_model/coordinate_descent.py +30 -0
- sklearnex/linear_model/incremental_linear.py +463 -0
- sklearnex/linear_model/incremental_ridge.py +418 -0
- sklearnex/linear_model/linear.py +302 -0
- sklearnex/linear_model/logistic_path.py +17 -0
- sklearnex/linear_model/logistic_regression.py +403 -0
- sklearnex/linear_model/ridge.py +24 -0
- sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
- sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- sklearnex/linear_model/tests/test_linear.py +142 -0
- sklearnex/linear_model/tests/test_logreg.py +134 -0
- sklearnex/manifold/__init__.py +19 -0
- sklearnex/manifold/t_sne.py +21 -0
- sklearnex/manifold/tests/test_tsne.py +26 -0
- sklearnex/metrics/__init__.py +23 -0
- sklearnex/metrics/pairwise.py +22 -0
- sklearnex/metrics/ranking.py +20 -0
- sklearnex/metrics/tests/test_metrics.py +39 -0
- sklearnex/model_selection/__init__.py +21 -0
- sklearnex/model_selection/split.py +22 -0
- sklearnex/model_selection/tests/test_model_selection.py +34 -0
- sklearnex/neighbors/__init__.py +27 -0
- sklearnex/neighbors/_lof.py +231 -0
- sklearnex/neighbors/common.py +310 -0
- sklearnex/neighbors/knn_classification.py +226 -0
- sklearnex/neighbors/knn_regression.py +203 -0
- sklearnex/neighbors/knn_unsupervised.py +170 -0
- sklearnex/neighbors/tests/test_neighbors.py +80 -0
- sklearnex/preview/__init__.py +17 -0
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +133 -0
- sklearnex/preview/covariance/tests/test_covariance.py +66 -0
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +228 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/preview/linear_model/__init__.py +19 -0
- sklearnex/preview/linear_model/ridge.py +419 -0
- sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- sklearnex/spmd/__init__.py +25 -0
- sklearnex/spmd/basic_statistics/__init__.py +20 -0
- sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
- sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- sklearnex/spmd/cluster/__init__.py +30 -0
- sklearnex/spmd/cluster/dbscan.py +50 -0
- sklearnex/spmd/cluster/kmeans.py +21 -0
- sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- sklearnex/spmd/covariance/__init__.py +20 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- sklearnex/spmd/decomposition/__init__.py +20 -0
- sklearnex/spmd/decomposition/incremental_pca.py +30 -0
- sklearnex/spmd/decomposition/pca.py +21 -0
- sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- sklearnex/spmd/ensemble/__init__.py +19 -0
- sklearnex/spmd/ensemble/forest.py +71 -0
- sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- sklearnex/spmd/linear_model/__init__.py +21 -0
- sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
- sklearnex/spmd/linear_model/linear_model.py +21 -0
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
- sklearnex/spmd/neighbors/__init__.py +19 -0
- sklearnex/spmd/neighbors/neighbors.py +25 -0
- sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- sklearnex/svm/__init__.py +29 -0
- sklearnex/svm/_common.py +328 -0
- sklearnex/svm/nusvc.py +332 -0
- sklearnex/svm/nusvr.py +148 -0
- sklearnex/svm/svc.py +360 -0
- sklearnex/svm/svr.py +149 -0
- sklearnex/svm/tests/test_svm.py +93 -0
- sklearnex/tests/_utils.py +328 -0
- sklearnex/tests/_utils_spmd.py +198 -0
- sklearnex/tests/test_common.py +54 -0
- sklearnex/tests/test_config.py +43 -0
- sklearnex/tests/test_memory_usage.py +291 -0
- sklearnex/tests/test_monkeypatch.py +276 -0
- sklearnex/tests/test_n_jobs_support.py +103 -0
- sklearnex/tests/test_parallel.py +48 -0
- sklearnex/tests/test_patching.py +385 -0
- sklearnex/tests/test_run_to_run_stability.py +296 -0
- sklearnex/utils/__init__.py +19 -0
- sklearnex/utils/_array_api.py +82 -0
- sklearnex/utils/parallel.py +59 -0
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/utils/validation.py +17 -0
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
20
|
+
from sklearn.datasets import load_diabetes
|
|
21
|
+
from sklearn.metrics import mean_squared_error
|
|
22
|
+
from sklearn.model_selection import train_test_split
|
|
23
|
+
|
|
24
|
+
from onedal.linear_model import IncrementalLinearRegression
|
|
25
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
29
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
30
|
+
def test_diabetes(queue, dtype):
|
|
31
|
+
X, y = load_diabetes(return_X_y=True)
|
|
32
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
33
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
34
|
+
X, y, train_size=0.8, random_state=777
|
|
35
|
+
)
|
|
36
|
+
X_train_split = np.array_split(X_train, 2)
|
|
37
|
+
y_train_split = np.array_split(y_train, 2)
|
|
38
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
39
|
+
for i in range(2):
|
|
40
|
+
model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
|
|
41
|
+
model.finalize_fit()
|
|
42
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
43
|
+
assert mean_squared_error(y_test, y_pred) < 2396
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
47
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
48
|
+
@pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
|
|
49
|
+
def test_pickle(queue, dtype):
|
|
50
|
+
# TODO Implement pickling for oneDAL entities
|
|
51
|
+
X, y = load_diabetes(return_X_y=True)
|
|
52
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
53
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
54
|
+
model.partial_fit(X, y, queue=queue)
|
|
55
|
+
model.finalize_fit()
|
|
56
|
+
expected = model.predict(X, queue=queue)
|
|
57
|
+
|
|
58
|
+
import pickle
|
|
59
|
+
|
|
60
|
+
dump = pickle.dumps(model)
|
|
61
|
+
model2 = pickle.loads(dump)
|
|
62
|
+
|
|
63
|
+
assert isinstance(model2, model.__class__)
|
|
64
|
+
result = model2.predict(X, queue=queue)
|
|
65
|
+
|
|
66
|
+
assert_array_equal(expected, result)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
70
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
71
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
72
|
+
def test_full_results(queue, num_blocks, dtype):
|
|
73
|
+
seed = 42
|
|
74
|
+
num_features, num_targets = 19, 7
|
|
75
|
+
num_samples_train, num_samples_test = 3500, 1999
|
|
76
|
+
|
|
77
|
+
gen = np.random.default_rng(seed)
|
|
78
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
79
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
80
|
+
|
|
81
|
+
X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
|
|
82
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
83
|
+
X_split = np.array_split(X, num_blocks)
|
|
84
|
+
y_split = np.array_split(y, num_blocks)
|
|
85
|
+
|
|
86
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
87
|
+
for i in range(num_blocks):
|
|
88
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
89
|
+
model.finalize_fit()
|
|
90
|
+
|
|
91
|
+
if queue and queue.sycl_device.is_gpu:
|
|
92
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
93
|
+
else:
|
|
94
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
95
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
96
|
+
|
|
97
|
+
tol = 2e-3 if model.intercept_.dtype == np.float32 else 1e-5
|
|
98
|
+
assert_allclose(intercept, model.intercept_, rtol=tol)
|
|
99
|
+
|
|
100
|
+
Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
|
|
101
|
+
gtr = Xt @ coef + intercept[np.newaxis, :]
|
|
102
|
+
|
|
103
|
+
res = model.predict(Xt, queue=queue)
|
|
104
|
+
|
|
105
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
106
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
110
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
111
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
112
|
+
def test_no_intercept_results(queue, num_blocks, dtype):
|
|
113
|
+
seed = 42
|
|
114
|
+
num_features, num_targets = 19, 7
|
|
115
|
+
num_samples_train, num_samples_test = 3500, 1999
|
|
116
|
+
|
|
117
|
+
gen = np.random.default_rng(seed)
|
|
118
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
119
|
+
|
|
120
|
+
X = gen.random(size=(num_samples_train, num_features), dtype=dtype)
|
|
121
|
+
y = X @ coef
|
|
122
|
+
|
|
123
|
+
X_split = np.array_split(X, num_blocks)
|
|
124
|
+
y_split = np.array_split(y, num_blocks)
|
|
125
|
+
|
|
126
|
+
model = IncrementalLinearRegression(fit_intercept=False)
|
|
127
|
+
for i in range(num_blocks):
|
|
128
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
129
|
+
model.finalize_fit()
|
|
130
|
+
|
|
131
|
+
# TODO Find out is it necessary to have accuracy so different for float32 and float64
|
|
132
|
+
if queue and queue.sycl_device.is_gpu:
|
|
133
|
+
tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
134
|
+
else:
|
|
135
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
136
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
137
|
+
|
|
138
|
+
Xt = gen.random(size=(num_samples_test, num_features), dtype=dtype)
|
|
139
|
+
gtr = Xt @ coef
|
|
140
|
+
|
|
141
|
+
res = model.predict(Xt, queue=queue)
|
|
142
|
+
|
|
143
|
+
tol = 5e-5 if res.dtype == np.float32 else 1e-7
|
|
144
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
148
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
149
|
+
def test_reconstruct_model(queue, dtype):
|
|
150
|
+
seed = 42
|
|
151
|
+
num_samples = 3500
|
|
152
|
+
num_features, num_targets = 14, 9
|
|
153
|
+
|
|
154
|
+
gen = np.random.default_rng(seed)
|
|
155
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
156
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
157
|
+
|
|
158
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
159
|
+
gtr = X @ coef + intercept[np.newaxis, :]
|
|
160
|
+
|
|
161
|
+
model = IncrementalLinearRegression(fit_intercept=True)
|
|
162
|
+
model.coef_ = coef.T
|
|
163
|
+
model.intercept_ = intercept
|
|
164
|
+
|
|
165
|
+
res = model.predict(X, queue=queue)
|
|
166
|
+
|
|
167
|
+
tol = 1e-5 if res.dtype == np.float32 else 1e-7
|
|
168
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 600)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
23
|
+
from sklearn.datasets import load_diabetes
|
|
24
|
+
from sklearn.metrics import mean_squared_error
|
|
25
|
+
from sklearn.model_selection import train_test_split
|
|
26
|
+
|
|
27
|
+
from onedal.linear_model import IncrementalRidge
|
|
28
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
31
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
32
|
+
def test_diabetes(queue, dtype):
|
|
33
|
+
X, y = load_diabetes(return_X_y=True)
|
|
34
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
35
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
36
|
+
X, y, train_size=0.8, random_state=777
|
|
37
|
+
)
|
|
38
|
+
X_train_split = np.array_split(X_train, 2)
|
|
39
|
+
y_train_split = np.array_split(y_train, 2)
|
|
40
|
+
model = IncrementalRidge(fit_intercept=True, alpha=0.1)
|
|
41
|
+
for i in range(2):
|
|
42
|
+
model.partial_fit(X_train_split[i], y_train_split[i], queue=queue)
|
|
43
|
+
model.finalize_fit()
|
|
44
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
45
|
+
assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
|
|
46
|
+
|
|
47
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
48
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
49
|
+
@pytest.mark.skip(reason="pickling not implemented for oneDAL entities")
|
|
50
|
+
def test_pickle(queue, dtype):
|
|
51
|
+
# TODO Implement pickling for oneDAL entities
|
|
52
|
+
X, y = load_diabetes(return_X_y=True)
|
|
53
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
54
|
+
model = IncrementalRidge(fit_intercept=True, alpha=0.5)
|
|
55
|
+
model.partial_fit(X, y, queue=queue)
|
|
56
|
+
model.finalize_fit()
|
|
57
|
+
expected = model.predict(X, queue=queue)
|
|
58
|
+
|
|
59
|
+
import pickle
|
|
60
|
+
|
|
61
|
+
dump = pickle.dumps(model)
|
|
62
|
+
model2 = pickle.loads(dump)
|
|
63
|
+
|
|
64
|
+
assert isinstance(model2, model.__class__)
|
|
65
|
+
result = model2.predict(X, queue=queue)
|
|
66
|
+
|
|
67
|
+
assert_array_equal(expected, result)
|
|
68
|
+
|
|
69
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
70
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 10])
|
|
71
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
72
|
+
def test_no_intercept_results(queue, num_blocks, dtype):
|
|
73
|
+
seed = 42
|
|
74
|
+
n_features, n_targets = 19, 7
|
|
75
|
+
n_train_samples, n_test_samples = 3500, 1999
|
|
76
|
+
|
|
77
|
+
gen = np.random.default_rng(seed)
|
|
78
|
+
|
|
79
|
+
X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
|
|
80
|
+
y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
|
|
81
|
+
X_split = np.array_split(X, num_blocks)
|
|
82
|
+
y_split = np.array_split(y, num_blocks)
|
|
83
|
+
alpha = 0.5
|
|
84
|
+
|
|
85
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
86
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
87
|
+
xt_y = np.dot(X.T, y)
|
|
88
|
+
coef = np.dot(inverse_term, xt_y)
|
|
89
|
+
|
|
90
|
+
model = IncrementalRidge(fit_intercept=False, alpha=alpha)
|
|
91
|
+
for i in range(num_blocks):
|
|
92
|
+
model.partial_fit(X_split[i], y_split[i], queue=queue)
|
|
93
|
+
model.finalize_fit()
|
|
94
|
+
|
|
95
|
+
if queue and queue.sycl_device.is_gpu:
|
|
96
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
97
|
+
else:
|
|
98
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
99
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
100
|
+
|
|
101
|
+
Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
|
|
102
|
+
gtr = Xt @ coef
|
|
103
|
+
|
|
104
|
+
res = model.predict(Xt, queue=queue)
|
|
105
|
+
|
|
106
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
107
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
20
|
+
from sklearn.datasets import load_diabetes
|
|
21
|
+
from sklearn.metrics import mean_squared_error
|
|
22
|
+
from sklearn.model_selection import train_test_split
|
|
23
|
+
|
|
24
|
+
from onedal.linear_model import LinearRegression
|
|
25
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
29
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
30
|
+
def test_diabetes(queue, dtype):
|
|
31
|
+
X, y = load_diabetes(return_X_y=True)
|
|
32
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
33
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
34
|
+
X, y, train_size=0.8, random_state=777
|
|
35
|
+
)
|
|
36
|
+
model = LinearRegression(fit_intercept=True)
|
|
37
|
+
model.fit(X_train, y_train, queue=queue)
|
|
38
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
39
|
+
assert_allclose(mean_squared_error(y_test, y_pred), 2395.567, rtol=1e-5)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
43
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
44
|
+
def test_pickle(queue, dtype):
|
|
45
|
+
X, y = load_diabetes(return_X_y=True)
|
|
46
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
47
|
+
model = LinearRegression(fit_intercept=True)
|
|
48
|
+
model.fit(X, y, queue=queue)
|
|
49
|
+
expected = model.predict(X, queue=queue)
|
|
50
|
+
|
|
51
|
+
import pickle
|
|
52
|
+
|
|
53
|
+
dump = pickle.dumps(model)
|
|
54
|
+
model2 = pickle.loads(dump)
|
|
55
|
+
|
|
56
|
+
assert isinstance(model2, model.__class__)
|
|
57
|
+
result = model2.predict(X, queue=queue)
|
|
58
|
+
|
|
59
|
+
assert_array_equal(expected, result)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
63
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
64
|
+
def test_full_results(queue, dtype):
|
|
65
|
+
seed = 42
|
|
66
|
+
f_count, r_count = 19, 7
|
|
67
|
+
s_count, t_count = 3500, 1999
|
|
68
|
+
|
|
69
|
+
gen = np.random.default_rng(seed)
|
|
70
|
+
intp = gen.random(size=r_count, dtype=dtype)
|
|
71
|
+
coef = gen.random(size=(r_count, f_count), dtype=dtype).T
|
|
72
|
+
|
|
73
|
+
X = gen.random(size=(s_count, f_count), dtype=dtype)
|
|
74
|
+
y = X @ coef + intp[np.newaxis, :]
|
|
75
|
+
|
|
76
|
+
model = LinearRegression(fit_intercept=True)
|
|
77
|
+
model.fit(X, y, queue=queue)
|
|
78
|
+
|
|
79
|
+
if queue and queue.sycl_device.is_gpu:
|
|
80
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
81
|
+
else:
|
|
82
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
83
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
84
|
+
|
|
85
|
+
tol = 2e-3 if model.intercept_.dtype == np.float32 else 1e-5
|
|
86
|
+
assert_allclose(intp, model.intercept_, rtol=tol)
|
|
87
|
+
|
|
88
|
+
Xt = gen.random(size=(t_count, f_count), dtype=dtype)
|
|
89
|
+
gtr = Xt @ coef + intp[np.newaxis, :]
|
|
90
|
+
|
|
91
|
+
res = model.predict(Xt, queue=queue)
|
|
92
|
+
|
|
93
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
94
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
95
|
+
|
|
96
|
+
|
|
97
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
98
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
99
|
+
def test_no_intercept_results(queue, dtype):
|
|
100
|
+
seed = 42
|
|
101
|
+
f_count, r_count = 19, 7
|
|
102
|
+
s_count, t_count = 3500, 1999
|
|
103
|
+
|
|
104
|
+
gen = np.random.default_rng(seed)
|
|
105
|
+
coef = gen.random(size=(r_count, f_count), dtype=dtype).T
|
|
106
|
+
|
|
107
|
+
X = gen.random(size=(s_count, f_count), dtype=dtype)
|
|
108
|
+
y = X @ coef
|
|
109
|
+
|
|
110
|
+
model = LinearRegression(fit_intercept=False)
|
|
111
|
+
model.fit(X, y, queue=queue)
|
|
112
|
+
|
|
113
|
+
if queue and queue.sycl_device.is_gpu:
|
|
114
|
+
tol = 3e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
115
|
+
else:
|
|
116
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-7
|
|
117
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
118
|
+
|
|
119
|
+
Xt = gen.random(size=(t_count, f_count), dtype=dtype)
|
|
120
|
+
gtr = Xt @ coef
|
|
121
|
+
|
|
122
|
+
res = model.predict(Xt, queue=queue)
|
|
123
|
+
|
|
124
|
+
tol = 5e-5 if res.dtype == np.float32 else 1e-7
|
|
125
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
129
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
130
|
+
def test_reconstruct_model(queue, dtype):
|
|
131
|
+
seed = 42
|
|
132
|
+
s_count = 3500
|
|
133
|
+
f_count, r_count = 14, 9
|
|
134
|
+
|
|
135
|
+
gen = np.random.default_rng(seed)
|
|
136
|
+
intp = gen.random(size=r_count, dtype=dtype)
|
|
137
|
+
coef = gen.random(size=(r_count, f_count), dtype=dtype).T
|
|
138
|
+
|
|
139
|
+
X = gen.random(size=(s_count, f_count), dtype=dtype)
|
|
140
|
+
gtr = X @ coef + intp[np.newaxis, :]
|
|
141
|
+
|
|
142
|
+
model = LinearRegression(fit_intercept=True)
|
|
143
|
+
model.coef_ = coef.T
|
|
144
|
+
model.intercept_ = intp
|
|
145
|
+
|
|
146
|
+
res = model.predict(X, queue=queue)
|
|
147
|
+
|
|
148
|
+
tol = 1e-5 if res.dtype == np.float32 else 1e-7
|
|
149
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 1)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
23
|
+
from scipy.sparse import csr_matrix
|
|
24
|
+
from sklearn.datasets import load_breast_cancer, make_classification
|
|
25
|
+
from sklearn.metrics import accuracy_score
|
|
26
|
+
from sklearn.model_selection import train_test_split
|
|
27
|
+
|
|
28
|
+
from onedal.linear_model import LogisticRegression
|
|
29
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
30
|
+
|
|
31
|
+
@pytest.mark.parametrize("queue", get_queues("gpu"))
|
|
32
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
33
|
+
def test_breast_cancer(queue, dtype):
|
|
34
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
35
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
36
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
37
|
+
X, y, train_size=0.8, random_state=42
|
|
38
|
+
)
|
|
39
|
+
model = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
40
|
+
model.fit(X_train, y_train, queue=queue)
|
|
41
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
42
|
+
assert accuracy_score(y_test, y_pred) > 0.95
|
|
43
|
+
|
|
44
|
+
assert hasattr(model, "n_iter_")
|
|
45
|
+
assert hasattr(model, "coef_")
|
|
46
|
+
assert hasattr(model, "intercept_")
|
|
47
|
+
if daal_check_version((2024, "P", 300)):
|
|
48
|
+
assert hasattr(model, "_n_inner_iter")
|
|
49
|
+
|
|
50
|
+
@pytest.mark.parametrize("queue", get_queues("gpu"))
|
|
51
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
52
|
+
def test_pickle(queue, dtype):
|
|
53
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
54
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
55
|
+
model = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
56
|
+
model.fit(X, y, queue=queue)
|
|
57
|
+
expected = model.predict(X, queue=queue)
|
|
58
|
+
|
|
59
|
+
import pickle
|
|
60
|
+
|
|
61
|
+
dump = pickle.dumps(model)
|
|
62
|
+
model2 = pickle.loads(dump)
|
|
63
|
+
|
|
64
|
+
assert isinstance(model2, model.__class__)
|
|
65
|
+
result = model2.predict(X, queue=queue)
|
|
66
|
+
|
|
67
|
+
assert_array_equal(expected, result)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
if daal_check_version((2024, "P", 700)):
|
|
71
|
+
|
|
72
|
+
@pytest.mark.parametrize("queue", get_queues("gpu"))
|
|
73
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
74
|
+
@pytest.mark.parametrize(
|
|
75
|
+
"dims", [(3007, 17, 0.05), (50000, 100, 0.01), (512, 10, 0.5)]
|
|
76
|
+
)
|
|
77
|
+
def test_csr(queue, dtype, dims):
|
|
78
|
+
n, p, density = dims
|
|
79
|
+
X, y = make_classification(n, p, random_state=42)
|
|
80
|
+
np.random.seed(2007 + n + p)
|
|
81
|
+
mask = np.random.binomial(1, density, (n, p))
|
|
82
|
+
X = X * mask
|
|
83
|
+
X_sp = csr_matrix(X)
|
|
84
|
+
model = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
85
|
+
model.fit(X, y, queue=queue)
|
|
86
|
+
pred = model.predict(X, queue=queue)
|
|
87
|
+
|
|
88
|
+
model_sp = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
89
|
+
model_sp.fit(X_sp, y, queue=queue)
|
|
90
|
+
pred_sp = model_sp.predict(X_sp, queue=queue)
|
|
91
|
+
|
|
92
|
+
rtol = 2e-4
|
|
93
|
+
assert_allclose(pred, pred_sp, rtol=rtol)
|
|
94
|
+
assert_allclose(model.coef_, model_sp.coef_, rtol=rtol)
|
|
95
|
+
assert_allclose(model.intercept_, model_sp.intercept_, rtol=rtol)
|
|
@@ -0,0 +1,95 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 600)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
23
|
+
from sklearn.datasets import load_diabetes
|
|
24
|
+
from sklearn.metrics import mean_squared_error
|
|
25
|
+
from sklearn.model_selection import train_test_split
|
|
26
|
+
|
|
27
|
+
from onedal.linear_model import Ridge
|
|
28
|
+
from onedal.tests.utils._device_selection import get_queues
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
31
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
32
|
+
def test_diabetes(queue, dtype):
|
|
33
|
+
X, y = load_diabetes(return_X_y=True)
|
|
34
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
35
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
36
|
+
X, y, train_size=0.8, random_state=777
|
|
37
|
+
)
|
|
38
|
+
model = Ridge(fit_intercept=True, alpha=0.1)
|
|
39
|
+
model.fit(X_train, y_train, queue=queue)
|
|
40
|
+
y_pred = model.predict(X_test, queue=queue)
|
|
41
|
+
assert_allclose(mean_squared_error(y_test, y_pred), 2388.775, rtol=1e-5)
|
|
42
|
+
|
|
43
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
44
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
45
|
+
def test_pickle(queue, dtype):
|
|
46
|
+
X, y = load_diabetes(return_X_y=True)
|
|
47
|
+
X, y = X.astype(dtype), y.astype(dtype)
|
|
48
|
+
model = Ridge(fit_intercept=True, alpha=0.5)
|
|
49
|
+
model.fit(X, y, queue=queue)
|
|
50
|
+
expected = model.predict(X, queue=queue)
|
|
51
|
+
|
|
52
|
+
import pickle
|
|
53
|
+
|
|
54
|
+
dump = pickle.dumps(model)
|
|
55
|
+
model2 = pickle.loads(dump)
|
|
56
|
+
|
|
57
|
+
assert isinstance(model2, model.__class__)
|
|
58
|
+
result = model2.predict(X, queue=queue)
|
|
59
|
+
|
|
60
|
+
assert_array_equal(expected, result)
|
|
61
|
+
|
|
62
|
+
@pytest.mark.parametrize("queue", get_queues())
|
|
63
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
64
|
+
def test_no_intercept_results(queue, dtype):
|
|
65
|
+
seed = 42
|
|
66
|
+
n_features, n_targets = 19, 7
|
|
67
|
+
n_train_samples, n_test_samples = 3500, 1999
|
|
68
|
+
|
|
69
|
+
gen = np.random.default_rng(seed)
|
|
70
|
+
|
|
71
|
+
X = gen.random(size=(n_train_samples, n_features), dtype=dtype)
|
|
72
|
+
y = gen.random(size=(n_train_samples, n_targets), dtype=dtype)
|
|
73
|
+
alpha = 0.5
|
|
74
|
+
|
|
75
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
76
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
77
|
+
xt_y = np.dot(X.T, y)
|
|
78
|
+
coef = np.dot(inverse_term, xt_y)
|
|
79
|
+
|
|
80
|
+
model = Ridge(fit_intercept=False, alpha=alpha)
|
|
81
|
+
model.fit(X, y, queue=queue)
|
|
82
|
+
|
|
83
|
+
if queue and queue.sycl_device.is_gpu:
|
|
84
|
+
tol = 5e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
85
|
+
else:
|
|
86
|
+
tol = 2e-3 if model.coef_.dtype == np.float32 else 1e-5
|
|
87
|
+
assert_allclose(coef, model.coef_.T, rtol=tol)
|
|
88
|
+
|
|
89
|
+
Xt = gen.random(size=(n_test_samples, n_features), dtype=dtype)
|
|
90
|
+
gtr = Xt @ coef
|
|
91
|
+
|
|
92
|
+
res = model.predict(Xt, queue=queue)
|
|
93
|
+
|
|
94
|
+
tol = 2e-4 if res.dtype == np.float32 else 1e-7
|
|
95
|
+
assert_allclose(gtr, res, rtol=tol)
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2022 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from .neighbors import KNeighborsClassifier, KNeighborsRegressor, NearestNeighbors
|
|
18
|
+
|
|
19
|
+
__all__ = ["KNeighborsClassifier", "KNeighborsRegressor", "NearestNeighbors"]
|