scikit-learn-intelex 2025.0.0__py310-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,296 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+ from collections.abc import Iterable
19
+ from functools import partial
20
+ from numbers import Number
21
+
22
+ import numpy as np
23
+ import pytest
24
+ from _utils import (
25
+ PATCHED_MODELS,
26
+ SPECIAL_INSTANCES,
27
+ _sklearn_clone_dict,
28
+ call_method,
29
+ gen_dataset,
30
+ gen_models_info,
31
+ )
32
+ from numpy.testing import assert_allclose
33
+ from scipy import sparse
34
+ from sklearn.datasets import (
35
+ load_breast_cancer,
36
+ load_diabetes,
37
+ load_iris,
38
+ make_classification,
39
+ make_regression,
40
+ )
41
+
42
+ import daal4py as d4p
43
+ from daal4py.sklearn._utils import daal_check_version
44
+ from onedal.tests.utils._dataframes_support import _as_numpy, get_dataframes_and_queues
45
+ from sklearnex.cluster import DBSCAN, KMeans
46
+ from sklearnex.decomposition import PCA
47
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
48
+ from sklearnex.model_selection import train_test_split
49
+ from sklearnex.neighbors import (
50
+ KNeighborsClassifier,
51
+ KNeighborsRegressor,
52
+ NearestNeighbors,
53
+ )
54
+ from sklearnex.svm import SVC
55
+
56
+ # to reproduce errors even in CI
57
+ d4p.daalinit(nthreads=100)
58
+
59
+ _dataset_dict = {
60
+ "classification": [
61
+ partial(load_iris, return_X_y=True),
62
+ partial(load_breast_cancer, return_X_y=True),
63
+ ],
64
+ "regression": [
65
+ partial(load_diabetes, return_X_y=True),
66
+ partial(
67
+ make_regression, n_samples=500, n_features=10, noise=64.0, random_state=42
68
+ ),
69
+ ],
70
+ }
71
+
72
+
73
+ def eval_method(X, y, est, method):
74
+ res = []
75
+ est.fit(X, y)
76
+
77
+ if method:
78
+ res = call_method(est, method, X, y)
79
+
80
+ if not isinstance(res, Iterable):
81
+ results = [_as_numpy(res)] if res is not est else []
82
+ else:
83
+ results = [_as_numpy(i) for i in res]
84
+
85
+ attributes = [method] * len(results)
86
+
87
+ # if estimator follows sklearn design rules, then set attributes should have a
88
+ # trailing underscore
89
+ attributes += [
90
+ i
91
+ for i in dir(est)
92
+ if hasattr(est, i) and not i.startswith("_") and i.endswith("_")
93
+ ]
94
+ results += [getattr(est, i) for i in attributes if i != method]
95
+ return results, attributes
96
+
97
+
98
+ def _run_test(estimator, method, datasets):
99
+
100
+ for X, y in datasets:
101
+ baseline, attributes = eval_method(X, y, estimator, method)
102
+
103
+ for i in range(10):
104
+ res, _ = eval_method(X, y, estimator, method)
105
+
106
+ for r, b, n in zip(res, baseline, attributes):
107
+ if (
108
+ isinstance(b, Number)
109
+ or hasattr(b, "__array__")
110
+ or hasattr(b, "__array_namespace__")
111
+ or hasattr(b, "__sycl_usm_ndarray__")
112
+ ):
113
+ assert_allclose(
114
+ r, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
115
+ )
116
+
117
+
118
+ _sparse_instances = [SVC()]
119
+ if daal_check_version((2024, "P", 700)): # Test for > 2024.7.0
120
+ _sparse_instances.extend(
121
+ [
122
+ KMeans(),
123
+ KMeans(init="random"),
124
+ KMeans(init="k-means++"),
125
+ ]
126
+ )
127
+ SPARSE_INSTANCES = _sklearn_clone_dict({str(i): i for i in _sparse_instances})
128
+
129
+ STABILITY_INSTANCES = _sklearn_clone_dict(
130
+ {
131
+ str(i): i
132
+ for i in [
133
+ KNeighborsClassifier(algorithm="brute", weights="distance"),
134
+ KNeighborsClassifier(algorithm="kd_tree", weights="distance"),
135
+ KNeighborsClassifier(algorithm="kd_tree"),
136
+ KNeighborsRegressor(algorithm="brute", weights="distance"),
137
+ KNeighborsRegressor(algorithm="kd_tree", weights="distance"),
138
+ KNeighborsRegressor(algorithm="kd_tree"),
139
+ NearestNeighbors(algorithm="kd_tree"),
140
+ DBSCAN(algorithm="brute"),
141
+ PCA(n_components=0.5, svd_solver="covariance_eigh"),
142
+ KMeans(init="random"),
143
+ ]
144
+ }
145
+ )
146
+
147
+
148
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
149
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
150
+ def test_standard_estimator_stability(estimator, method, dataframe, queue):
151
+ if estimator in ["LogisticRegression", "TSNE"]:
152
+ pytest.skip(f"stability not guaranteed for {estimator}")
153
+ if estimator in ["KMeans", "PCA"] and "score" in method and queue == None:
154
+ pytest.skip(f"variation observed in {estimator}.score")
155
+ if estimator in ["IncrementalEmpiricalCovariance"] and method == "mahalanobis":
156
+ pytest.skip("allowed fallback to sklearn occurs")
157
+
158
+ if "NearestNeighbors" in estimator and "radius" in method:
159
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
160
+
161
+ est = PATCHED_MODELS[estimator]()
162
+
163
+ if method and not hasattr(est, method):
164
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
165
+
166
+ params = est.get_params().copy()
167
+ if "random_state" in params:
168
+ params["random_state"] = 0
169
+ est.set_params(**params)
170
+
171
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
172
+ _run_test(est, method, datasets)
173
+
174
+
175
+ @pytest.mark.allow_sklearn_fallback
176
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
177
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
178
+ def test_special_estimator_stability(estimator, method, dataframe, queue):
179
+ if queue is None and estimator in ["LogisticRegression(solver='newton-cg')"]:
180
+ pytest.skip(f"stability not guaranteed for {estimator}")
181
+ if "KMeans" in estimator and method == "score" and queue == None:
182
+ pytest.skip(f"variation observed in KMeans.score")
183
+ if "NearestNeighbors" in estimator and "radius" in method:
184
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
185
+
186
+ est = SPECIAL_INSTANCES[estimator]
187
+
188
+ if method and not hasattr(est, method):
189
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
190
+
191
+ params = est.get_params().copy()
192
+ if "random_state" in params:
193
+ params["random_state"] = 0
194
+ est.set_params(**params)
195
+
196
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
197
+ _run_test(est, method, datasets)
198
+
199
+
200
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
201
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPARSE_INSTANCES))
202
+ def test_sparse_estimator_stability(estimator, method, dataframe, queue):
203
+ if "KMeans" in estimator and method == "score" and queue == None:
204
+ pytest.skip(f"variation observed in KMeans.score")
205
+
206
+ if "NearestNeighbors" in estimator and "radius" in method:
207
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
208
+ est = SPARSE_INSTANCES[estimator]
209
+
210
+ if method and not hasattr(est, method):
211
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
212
+
213
+ params = est.get_params().copy()
214
+ if "random_state" in params:
215
+ params["random_state"] = 0
216
+ est.set_params(**params)
217
+
218
+ datasets = gen_dataset(
219
+ est, sparse=True, datasets=_dataset_dict, queue=queue, target_df=dataframe
220
+ )
221
+ _run_test(est, method, datasets)
222
+
223
+
224
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues("numpy,array_api"))
225
+ @pytest.mark.parametrize("estimator, method", gen_models_info(STABILITY_INSTANCES))
226
+ def test_other_estimator_stability(estimator, method, dataframe, queue):
227
+ if "KMeans" in estimator and method == "score" and queue == None:
228
+ pytest.skip(f"variation observed in KMeans.score")
229
+ if "NearestNeighbors" in estimator and "radius" in method:
230
+ pytest.skip(f"RadiusNeighbors estimator not implemented in sklearnex")
231
+
232
+ est = STABILITY_INSTANCES[estimator]
233
+
234
+ if method and not hasattr(est, method):
235
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
236
+
237
+ params = est.get_params().copy()
238
+ if "random_state" in params:
239
+ params["random_state"] = 0
240
+ est.set_params(**params)
241
+
242
+ datasets = gen_dataset(est, datasets=_dataset_dict, queue=queue, target_df=dataframe)
243
+ _run_test(est, method, datasets)
244
+
245
+
246
+ @pytest.mark.parametrize("features", range(5, 10))
247
+ def test_train_test_split(features):
248
+ X, y = make_classification(
249
+ n_samples=4000,
250
+ n_features=features,
251
+ n_informative=features,
252
+ n_redundant=0,
253
+ n_clusters_per_class=8,
254
+ random_state=0,
255
+ )
256
+ (
257
+ baseline_X_train,
258
+ baseline_X_test,
259
+ baseline_y_train,
260
+ baseline_y_test,
261
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
262
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
263
+ for _ in range(10):
264
+ X_train, X_test, y_train, y_test = train_test_split(
265
+ X, y, test_size=0.33, random_state=0
266
+ )
267
+ res = [X_train, X_test, y_train, y_test]
268
+ for a, b in zip(res, baseline):
269
+ np.testing.assert_allclose(
270
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
271
+ )
272
+
273
+
274
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
275
+ def test_pairwise_distances(metric):
276
+ X = np.random.rand(1000)
277
+ X = np.array(X, dtype=np.float64)
278
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
279
+ for _ in range(5):
280
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
281
+ for a, b in zip(res, baseline):
282
+ np.testing.assert_allclose(
283
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
284
+ )
285
+
286
+
287
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
288
+ def test_roc_auc(array_size):
289
+ a = [random.randint(0, 1) for i in range(array_size)]
290
+ b = [random.randint(0, 1) for i in range(array_size)]
291
+ baseline = roc_auc_score(a, b)
292
+ for _ in range(5):
293
+ res = roc_auc_score(a, b)
294
+ np.testing.assert_allclose(
295
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
296
+ )
@@ -0,0 +1,19 @@
1
+ # ===============================================================================
2
+ # Copyright 2022 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from .validation import _assert_all_finite
18
+
19
+ __all__ = ["_assert_all_finite"]
@@ -0,0 +1,82 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ """Tools to support array_api."""
18
+
19
+ import numpy as np
20
+
21
+ from daal4py.sklearn._utils import sklearn_check_version
22
+ from onedal.utils._array_api import _get_sycl_namespace
23
+
24
+ if sklearn_check_version("1.2"):
25
+ from sklearn.utils._array_api import get_namespace as sklearn_get_namespace
26
+
27
+
28
+ def get_namespace(*arrays):
29
+ """Get namespace of arrays.
30
+
31
+ Introspect `arrays` arguments and return their common Array API
32
+ compatible namespace object, if any. NumPy 1.22 and later can
33
+ construct such containers using the `numpy.array_api` namespace
34
+ for instance.
35
+
36
+ This function will return the namespace of SYCL-related arrays
37
+ which define the __sycl_usm_array_interface__ attribute
38
+ regardless of array_api support, the configuration of
39
+ array_api_dispatch, or scikit-learn version.
40
+
41
+ See: https://numpy.org/neps/nep-0047-array-api-standard.html
42
+
43
+ If `arrays` are regular numpy arrays, an instance of the
44
+ `_NumPyApiWrapper` compatibility wrapper is returned instead.
45
+
46
+ Namespace support is not enabled by default. To enabled it
47
+ call:
48
+
49
+ sklearn.set_config(array_api_dispatch=True)
50
+
51
+ or:
52
+
53
+ with sklearn.config_context(array_api_dispatch=True):
54
+ # your code here
55
+
56
+ Otherwise an instance of the `_NumPyApiWrapper`
57
+ compatibility wrapper is always returned irrespective of
58
+ the fact that arrays implement the `__array_namespace__`
59
+ protocol or not.
60
+
61
+ Parameters
62
+ ----------
63
+ *arrays : array objects
64
+ Array objects.
65
+
66
+ Returns
67
+ -------
68
+ namespace : module
69
+ Namespace shared by array objects.
70
+
71
+ is_array_api : bool
72
+ True of the arrays are containers that implement the Array API spec.
73
+ """
74
+
75
+ sycl_type, xp, is_array_api_compliant = _get_sycl_namespace(*arrays)
76
+
77
+ if sycl_type:
78
+ return xp, is_array_api_compliant
79
+ elif sklearn_check_version("1.2"):
80
+ return sklearn_get_namespace(*arrays)
81
+ else:
82
+ return np, False
@@ -0,0 +1,59 @@
1
+ # ===============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import warnings
18
+ from functools import update_wrapper
19
+
20
+ from .._config import config_context, get_config
21
+
22
+
23
+ class _FuncWrapper:
24
+ """Load the global configuration before calling the function."""
25
+
26
+ def __init__(self, function):
27
+ self.function = function
28
+ update_wrapper(self, self.function)
29
+
30
+ def with_config(self, config):
31
+ self.config = config
32
+ return self
33
+
34
+ def __call__(self, *args, **kwargs):
35
+ config = getattr(self, "config", None)
36
+ if config is None:
37
+ warnings.warn(
38
+ "`sklearn.utils.parallel.delayed` should be used with "
39
+ "`sklearn.utils.parallel.Parallel` to make it possible to propagate "
40
+ "the scikit-learn configuration of the current thread to the "
41
+ "joblib workers.",
42
+ UserWarning,
43
+ )
44
+ config = {}
45
+ with config_context(**config):
46
+ return self.function(*args, **kwargs)
47
+
48
+
49
+ class _FuncWrapperOld:
50
+ """Load the global configuration before calling the function."""
51
+
52
+ def __init__(self, function):
53
+ self.function = function
54
+ self.config = get_config()
55
+ update_wrapper(self, self.function)
56
+
57
+ def __call__(self, *args, **kwargs):
58
+ with config_context(**self.config):
59
+ return self.function(*args, **kwargs)
@@ -0,0 +1,89 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import time
18
+
19
+ import numpy as np
20
+ import numpy.random as rand
21
+ import pytest
22
+ from numpy.testing import assert_raises
23
+
24
+ from sklearnex.utils import _assert_all_finite
25
+
26
+
27
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
28
+ @pytest.mark.parametrize(
29
+ "shape",
30
+ [
31
+ [16, 2048],
32
+ [
33
+ 2**16 + 3,
34
+ ],
35
+ [1000, 1000],
36
+ ],
37
+ )
38
+ @pytest.mark.parametrize("allow_nan", [False, True])
39
+ def test_sum_infinite_actually_finite(dtype, shape, allow_nan):
40
+ X = np.array(shape, dtype=dtype)
41
+ X.fill(np.finfo(dtype).max)
42
+ _assert_all_finite(X, allow_nan=allow_nan)
43
+
44
+
45
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
46
+ @pytest.mark.parametrize(
47
+ "shape",
48
+ [
49
+ [16, 2048],
50
+ [
51
+ 2**16 + 3,
52
+ ],
53
+ [1000, 1000],
54
+ ],
55
+ )
56
+ @pytest.mark.parametrize("allow_nan", [False, True])
57
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
58
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
59
+ def test_assert_finite_random_location(dtype, shape, allow_nan, check, seed):
60
+ rand.seed(seed)
61
+ X = rand.uniform(high=np.finfo(dtype).max, size=shape).astype(dtype)
62
+
63
+ if check:
64
+ loc = rand.randint(0, X.size - 1)
65
+ X.reshape((-1,))[loc] = float(check)
66
+
67
+ if check is None or (allow_nan and check == "NaN"):
68
+ _assert_all_finite(X, allow_nan=allow_nan)
69
+ else:
70
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
71
+
72
+
73
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
74
+ @pytest.mark.parametrize("allow_nan", [False, True])
75
+ @pytest.mark.parametrize("check", ["inf", "NaN", None])
76
+ @pytest.mark.parametrize("seed", [0, int(time.time())])
77
+ def test_assert_finite_random_shape_and_location(dtype, allow_nan, check, seed):
78
+ lb, ub = 32768, 1048576 # lb is a patching condition, ub 2^20
79
+ rand.seed(seed)
80
+ X = rand.uniform(high=np.finfo(dtype).max, size=rand.randint(lb, ub)).astype(dtype)
81
+
82
+ if check:
83
+ loc = rand.randint(0, X.size - 1)
84
+ X[loc] = float(check)
85
+
86
+ if check is None or (allow_nan and check == "NaN"):
87
+ _assert_all_finite(X, allow_nan=allow_nan)
88
+ else:
89
+ assert_raises(ValueError, _assert_all_finite, X, allow_nan=allow_nan)
@@ -0,0 +1,17 @@
1
+ # ===============================================================================
2
+ # Copyright 2022 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn.utils.validation import _assert_all_finite