scikit-learn-intelex 2025.0.0__py310-none-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (278) hide show
  1. daal4py/__init__.py +73 -0
  2. daal4py/__main__.py +58 -0
  3. daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so +0 -0
  4. daal4py/doc/third-party-programs.txt +424 -0
  5. daal4py/mb/__init__.py +19 -0
  6. daal4py/mb/model_builders.py +377 -0
  7. daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so +0 -0
  8. daal4py/sklearn/__init__.py +40 -0
  9. daal4py/sklearn/_n_jobs_support.py +242 -0
  10. daal4py/sklearn/_utils.py +241 -0
  11. daal4py/sklearn/cluster/__init__.py +20 -0
  12. daal4py/sklearn/cluster/dbscan.py +165 -0
  13. daal4py/sklearn/cluster/k_means.py +597 -0
  14. daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. daal4py/sklearn/decomposition/__init__.py +19 -0
  16. daal4py/sklearn/decomposition/_pca.py +524 -0
  17. daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  18. daal4py/sklearn/ensemble/GBTDAAL.py +318 -0
  19. daal4py/sklearn/ensemble/__init__.py +27 -0
  20. daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. daal4py/sklearn/linear_model/__init__.py +29 -0
  23. daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. daal4py/sklearn/linear_model/_linear.py +272 -0
  25. daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  27. daal4py/sklearn/linear_model/linear.py +17 -0
  28. daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. daal4py/sklearn/linear_model/ridge.py +17 -0
  31. daal4py/sklearn/linear_model/tests/test_linear.py +196 -0
  32. daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. daal4py/sklearn/manifold/__init__.py +19 -0
  34. daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. daal4py/sklearn/metrics/__init__.py +20 -0
  36. daal4py/sklearn/metrics/_pairwise.py +155 -0
  37. daal4py/sklearn/metrics/_ranking.py +210 -0
  38. daal4py/sklearn/model_selection/__init__.py +19 -0
  39. daal4py/sklearn/model_selection/_split.py +309 -0
  40. daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. daal4py/sklearn/monkeypatch/tests/_models_info.py +161 -0
  44. daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. daal4py/sklearn/monkeypatch/tests/test_patching.py +87 -0
  46. daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +118 -0
  47. daal4py/sklearn/neighbors/__init__.py +21 -0
  48. daal4py/sklearn/neighbors/_base.py +503 -0
  49. daal4py/sklearn/neighbors/_classification.py +139 -0
  50. daal4py/sklearn/neighbors/_regression.py +74 -0
  51. daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. daal4py/sklearn/svm/__init__.py +19 -0
  54. daal4py/sklearn/svm/svm.py +734 -0
  55. daal4py/sklearn/utils/__init__.py +21 -0
  56. daal4py/sklearn/utils/base.py +75 -0
  57. daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. daal4py/sklearn/utils/validation.py +693 -0
  59. onedal/__init__.py +83 -0
  60. onedal/_config.py +53 -0
  61. onedal/_device_offload.py +229 -0
  62. onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  63. onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so +0 -0
  64. onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so +0 -0
  65. onedal/basic_statistics/__init__.py +20 -0
  66. onedal/basic_statistics/basic_statistics.py +107 -0
  67. onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  68. onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  69. onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  70. onedal/cluster/__init__.py +27 -0
  71. onedal/cluster/dbscan.py +110 -0
  72. onedal/cluster/kmeans.py +560 -0
  73. onedal/cluster/kmeans_init.py +115 -0
  74. onedal/cluster/tests/test_dbscan.py +125 -0
  75. onedal/cluster/tests/test_kmeans.py +88 -0
  76. onedal/cluster/tests/test_kmeans_init.py +93 -0
  77. onedal/common/_base.py +38 -0
  78. onedal/common/_estimator_checks.py +47 -0
  79. onedal/common/_mixin.py +62 -0
  80. onedal/common/_policy.py +59 -0
  81. onedal/common/_spmd_policy.py +30 -0
  82. onedal/common/hyperparameters.py +116 -0
  83. onedal/common/tests/test_policy.py +75 -0
  84. onedal/covariance/__init__.py +20 -0
  85. onedal/covariance/covariance.py +125 -0
  86. onedal/covariance/incremental_covariance.py +146 -0
  87. onedal/covariance/tests/test_covariance.py +50 -0
  88. onedal/covariance/tests/test_incremental_covariance.py +122 -0
  89. onedal/datatypes/__init__.py +19 -0
  90. onedal/datatypes/_data_conversion.py +95 -0
  91. onedal/datatypes/tests/test_data.py +235 -0
  92. onedal/decomposition/__init__.py +20 -0
  93. onedal/decomposition/incremental_pca.py +204 -0
  94. onedal/decomposition/pca.py +186 -0
  95. onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. onedal/ensemble/__init__.py +29 -0
  97. onedal/ensemble/forest.py +720 -0
  98. onedal/ensemble/tests/test_random_forest.py +97 -0
  99. onedal/linear_model/__init__.py +27 -0
  100. onedal/linear_model/incremental_linear_model.py +258 -0
  101. onedal/linear_model/linear_model.py +329 -0
  102. onedal/linear_model/logistic_regression.py +249 -0
  103. onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. onedal/linear_model/tests/test_linear_regression.py +149 -0
  106. onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. onedal/linear_model/tests/test_ridge.py +95 -0
  108. onedal/neighbors/__init__.py +19 -0
  109. onedal/neighbors/neighbors.py +778 -0
  110. onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. onedal/primitives/__init__.py +27 -0
  112. onedal/primitives/get_tree.py +25 -0
  113. onedal/primitives/kernel_functions.py +153 -0
  114. onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. onedal/spmd/__init__.py +25 -0
  116. onedal/spmd/_base.py +30 -0
  117. onedal/spmd/basic_statistics/__init__.py +20 -0
  118. onedal/spmd/basic_statistics/basic_statistics.py +30 -0
  119. onedal/spmd/basic_statistics/incremental_basic_statistics.py +69 -0
  120. onedal/spmd/cluster/__init__.py +28 -0
  121. onedal/spmd/cluster/dbscan.py +23 -0
  122. onedal/spmd/cluster/kmeans.py +56 -0
  123. onedal/spmd/covariance/__init__.py +20 -0
  124. onedal/spmd/covariance/covariance.py +26 -0
  125. onedal/spmd/covariance/incremental_covariance.py +82 -0
  126. onedal/spmd/decomposition/__init__.py +20 -0
  127. onedal/spmd/decomposition/incremental_pca.py +117 -0
  128. onedal/spmd/decomposition/pca.py +26 -0
  129. onedal/spmd/ensemble/__init__.py +19 -0
  130. onedal/spmd/ensemble/forest.py +28 -0
  131. onedal/spmd/linear_model/__init__.py +21 -0
  132. onedal/spmd/linear_model/incremental_linear_model.py +97 -0
  133. onedal/spmd/linear_model/linear_model.py +30 -0
  134. onedal/spmd/linear_model/logistic_regression.py +38 -0
  135. onedal/spmd/neighbors/__init__.py +19 -0
  136. onedal/spmd/neighbors/neighbors.py +75 -0
  137. onedal/svm/__init__.py +19 -0
  138. onedal/svm/svm.py +556 -0
  139. onedal/svm/tests/test_csr_svm.py +351 -0
  140. onedal/svm/tests/test_nusvc.py +204 -0
  141. onedal/svm/tests/test_nusvr.py +210 -0
  142. onedal/svm/tests/test_svc.py +168 -0
  143. onedal/svm/tests/test_svr.py +243 -0
  144. onedal/tests/test_common.py +41 -0
  145. onedal/tests/utils/_dataframes_support.py +168 -0
  146. onedal/tests/utils/_device_selection.py +107 -0
  147. onedal/utils/__init__.py +49 -0
  148. onedal/utils/_array_api.py +91 -0
  149. onedal/utils/validation.py +432 -0
  150. scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt +202 -0
  151. scikit_learn_intelex-2025.0.0.dist-info/METADATA +231 -0
  152. scikit_learn_intelex-2025.0.0.dist-info/RECORD +278 -0
  153. scikit_learn_intelex-2025.0.0.dist-info/WHEEL +5 -0
  154. scikit_learn_intelex-2025.0.0.dist-info/top_level.txt +3 -0
  155. sklearnex/__init__.py +65 -0
  156. sklearnex/__main__.py +58 -0
  157. sklearnex/_config.py +98 -0
  158. sklearnex/_device_offload.py +121 -0
  159. sklearnex/_utils.py +109 -0
  160. sklearnex/basic_statistics/__init__.py +20 -0
  161. sklearnex/basic_statistics/basic_statistics.py +140 -0
  162. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  163. sklearnex/basic_statistics/tests/test_basic_statistics.py +251 -0
  164. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  165. sklearnex/cluster/__init__.py +20 -0
  166. sklearnex/cluster/dbscan.py +192 -0
  167. sklearnex/cluster/k_means.py +383 -0
  168. sklearnex/cluster/tests/test_dbscan.py +38 -0
  169. sklearnex/cluster/tests/test_kmeans.py +153 -0
  170. sklearnex/conftest.py +73 -0
  171. sklearnex/covariance/__init__.py +19 -0
  172. sklearnex/covariance/incremental_covariance.py +368 -0
  173. sklearnex/covariance/tests/test_incremental_covariance.py +226 -0
  174. sklearnex/decomposition/__init__.py +19 -0
  175. sklearnex/decomposition/pca.py +414 -0
  176. sklearnex/decomposition/tests/test_pca.py +58 -0
  177. sklearnex/dispatcher.py +543 -0
  178. sklearnex/doc/third-party-programs.txt +424 -0
  179. sklearnex/ensemble/__init__.py +29 -0
  180. sklearnex/ensemble/_forest.py +2016 -0
  181. sklearnex/ensemble/tests/test_forest.py +120 -0
  182. sklearnex/glob/__main__.py +72 -0
  183. sklearnex/glob/dispatcher.py +101 -0
  184. sklearnex/linear_model/__init__.py +32 -0
  185. sklearnex/linear_model/coordinate_descent.py +30 -0
  186. sklearnex/linear_model/incremental_linear.py +463 -0
  187. sklearnex/linear_model/incremental_ridge.py +418 -0
  188. sklearnex/linear_model/linear.py +302 -0
  189. sklearnex/linear_model/logistic_path.py +17 -0
  190. sklearnex/linear_model/logistic_regression.py +403 -0
  191. sklearnex/linear_model/ridge.py +24 -0
  192. sklearnex/linear_model/tests/test_incremental_linear.py +203 -0
  193. sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  194. sklearnex/linear_model/tests/test_linear.py +142 -0
  195. sklearnex/linear_model/tests/test_logreg.py +134 -0
  196. sklearnex/manifold/__init__.py +19 -0
  197. sklearnex/manifold/t_sne.py +21 -0
  198. sklearnex/manifold/tests/test_tsne.py +26 -0
  199. sklearnex/metrics/__init__.py +23 -0
  200. sklearnex/metrics/pairwise.py +22 -0
  201. sklearnex/metrics/ranking.py +20 -0
  202. sklearnex/metrics/tests/test_metrics.py +39 -0
  203. sklearnex/model_selection/__init__.py +21 -0
  204. sklearnex/model_selection/split.py +22 -0
  205. sklearnex/model_selection/tests/test_model_selection.py +34 -0
  206. sklearnex/neighbors/__init__.py +27 -0
  207. sklearnex/neighbors/_lof.py +231 -0
  208. sklearnex/neighbors/common.py +310 -0
  209. sklearnex/neighbors/knn_classification.py +226 -0
  210. sklearnex/neighbors/knn_regression.py +203 -0
  211. sklearnex/neighbors/knn_unsupervised.py +170 -0
  212. sklearnex/neighbors/tests/test_neighbors.py +80 -0
  213. sklearnex/preview/__init__.py +17 -0
  214. sklearnex/preview/covariance/__init__.py +19 -0
  215. sklearnex/preview/covariance/covariance.py +133 -0
  216. sklearnex/preview/covariance/tests/test_covariance.py +66 -0
  217. sklearnex/preview/decomposition/__init__.py +19 -0
  218. sklearnex/preview/decomposition/incremental_pca.py +228 -0
  219. sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  220. sklearnex/preview/linear_model/__init__.py +19 -0
  221. sklearnex/preview/linear_model/ridge.py +419 -0
  222. sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  223. sklearnex/spmd/__init__.py +25 -0
  224. sklearnex/spmd/basic_statistics/__init__.py +20 -0
  225. sklearnex/spmd/basic_statistics/basic_statistics.py +21 -0
  226. sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  227. sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  228. sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  229. sklearnex/spmd/cluster/__init__.py +30 -0
  230. sklearnex/spmd/cluster/dbscan.py +50 -0
  231. sklearnex/spmd/cluster/kmeans.py +21 -0
  232. sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  233. sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  234. sklearnex/spmd/covariance/__init__.py +20 -0
  235. sklearnex/spmd/covariance/covariance.py +21 -0
  236. sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  237. sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  238. sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  239. sklearnex/spmd/decomposition/__init__.py +20 -0
  240. sklearnex/spmd/decomposition/incremental_pca.py +30 -0
  241. sklearnex/spmd/decomposition/pca.py +21 -0
  242. sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  243. sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  244. sklearnex/spmd/ensemble/__init__.py +19 -0
  245. sklearnex/spmd/ensemble/forest.py +71 -0
  246. sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  247. sklearnex/spmd/linear_model/__init__.py +21 -0
  248. sklearnex/spmd/linear_model/incremental_linear_model.py +35 -0
  249. sklearnex/spmd/linear_model/linear_model.py +21 -0
  250. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  251. sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  252. sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  253. sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +166 -0
  254. sklearnex/spmd/neighbors/__init__.py +19 -0
  255. sklearnex/spmd/neighbors/neighbors.py +25 -0
  256. sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  257. sklearnex/svm/__init__.py +29 -0
  258. sklearnex/svm/_common.py +328 -0
  259. sklearnex/svm/nusvc.py +332 -0
  260. sklearnex/svm/nusvr.py +148 -0
  261. sklearnex/svm/svc.py +360 -0
  262. sklearnex/svm/svr.py +149 -0
  263. sklearnex/svm/tests/test_svm.py +93 -0
  264. sklearnex/tests/_utils.py +328 -0
  265. sklearnex/tests/_utils_spmd.py +198 -0
  266. sklearnex/tests/test_common.py +54 -0
  267. sklearnex/tests/test_config.py +43 -0
  268. sklearnex/tests/test_memory_usage.py +291 -0
  269. sklearnex/tests/test_monkeypatch.py +276 -0
  270. sklearnex/tests/test_n_jobs_support.py +103 -0
  271. sklearnex/tests/test_parallel.py +48 -0
  272. sklearnex/tests/test_patching.py +385 -0
  273. sklearnex/tests/test_run_to_run_stability.py +296 -0
  274. sklearnex/utils/__init__.py +19 -0
  275. sklearnex/utils/_array_api.py +82 -0
  276. sklearnex/utils/parallel.py +59 -0
  277. sklearnex/utils/tests/test_finite.py +89 -0
  278. sklearnex/utils/validation.py +17 -0
@@ -0,0 +1,231 @@
1
+ Metadata-Version: 2.1
2
+ Name: scikit-learn-intelex
3
+ Version: 2025.0.0
4
+ Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
+ Home-page: https://github.com/intel/scikit-learn-intelex
6
+ Author: Intel Corporation
7
+ Author-email: onedal.maintainers@intel.com
8
+ Maintainer-email: onedal.maintainers@intel.com
9
+ License: Apache v2.0
10
+ Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
11
+ Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
12
+ Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
13
+ Keywords: machine learning,scikit-learn,data science,data analytics
14
+ Platform: UNKNOWN
15
+ Classifier: Development Status :: 5 - Production/Stable
16
+ Classifier: Environment :: Console
17
+ Classifier: Intended Audience :: Developers
18
+ Classifier: Intended Audience :: Other Audience
19
+ Classifier: Intended Audience :: Science/Research
20
+ Classifier: License :: OSI Approved :: Apache Software License
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: POSIX :: Linux
23
+ Classifier: Programming Language :: Python :: 3.8
24
+ Classifier: Programming Language :: Python :: 3.9
25
+ Classifier: Programming Language :: Python :: 3.10
26
+ Classifier: Programming Language :: Python :: 3.11
27
+ Classifier: Programming Language :: Python :: 3.12
28
+ Classifier: Topic :: Scientific/Engineering
29
+ Classifier: Topic :: System
30
+ Classifier: Topic :: Software Development
31
+ Requires-Python: >=3.7
32
+ Description-Content-Type: text/markdown
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: daal (==2025.0.0)
35
+ Requires-Dist: numpy (>=1.19)
36
+ Requires-Dist: scikit-learn (>=0.22)
37
+
38
+
39
+ # Intel(R) Extension for Scikit-learn*
40
+
41
+ [![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
42
+ [![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
43
+ [![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)
44
+ [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
45
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
46
+
47
+ With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
48
+
49
+ The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
50
+
51
+ ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
52
+ You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
53
+
54
+ ## 👀 Follow us on Medium
55
+
56
+ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
57
+
58
+ - [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
59
+ - [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
60
+ - [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
61
+ - [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
62
+ - [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
63
+ - [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
64
+ - [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
65
+ - [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
66
+ - [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
67
+ - [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
68
+
69
+ ## 🔗 Important links
70
+ - [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
71
+ - [Documentation](https://intel.github.io/scikit-learn-intelex/)
72
+ - [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
73
+ - [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
74
+ - [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
75
+ - [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
76
+ - [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
77
+
78
+ ## 💬 Support
79
+
80
+ Report issues, ask questions, and provide suggestions using:
81
+
82
+ - [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
83
+ - [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
84
+ - [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
85
+
86
+ You may reach out to project maintainers privately at onedal.maintainers@intel.com
87
+
88
+ # 🛠 Installation
89
+ Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
90
+ on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
91
+ Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
92
+
93
+ - PyPi (recommended by default)
94
+
95
+ ```bash
96
+ pip install scikit-learn-intelex
97
+ ```
98
+
99
+ - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
100
+
101
+ ```bash
102
+ conda config --add channels conda-forge
103
+ conda config --set channel_priority strict
104
+ conda install scikit-learn-intelex
105
+ ```
106
+
107
+ - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
108
+
109
+ ```bash
110
+ conda config --add channels intel
111
+ conda config --set channel_priority strict
112
+ conda install scikit-learn-intelex
113
+ ```
114
+
115
+ <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
116
+
117
+ #### 📦 PyPi channel
118
+
119
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
120
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
121
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
122
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
123
+
124
+ #### 📦 Anaconda Cloud: Conda-Forge channel
125
+
126
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
127
+ | :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
128
+ | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
129
+ | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
130
+
131
+ #### 📦 Anaconda Cloud: Intel channel
132
+
133
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
134
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
135
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
136
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
137
+
138
+ </details>
139
+
140
+ ⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
141
+ will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
142
+
143
+ <details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
144
+
145
+ - PyPi
146
+
147
+ ```bash
148
+ pip install --upgrade dpcpp_cpp_rt
149
+ ```
150
+
151
+ - Anaconda Cloud
152
+
153
+ ```bash
154
+ conda install dpcpp_cpp_rt -c intel
155
+ ```
156
+
157
+ </details>
158
+
159
+ You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
160
+
161
+ # ⚡️ Get Started
162
+
163
+ Intel CPU optimizations patching
164
+ ```py
165
+ import numpy as np
166
+ from sklearnex import patch_sklearn
167
+ patch_sklearn()
168
+
169
+ from sklearn.cluster import DBSCAN
170
+
171
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
172
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
173
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
174
+ ```
175
+
176
+ Intel GPU optimizations patching
177
+ ```py
178
+ import numpy as np
179
+ import dpctl
180
+ from sklearnex import patch_sklearn, config_context
181
+ patch_sklearn()
182
+
183
+ from sklearn.cluster import DBSCAN
184
+
185
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
186
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
187
+ with config_context(target_offload="gpu:0"):
188
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
189
+ ```
190
+
191
+ # 🚀 Scikit-learn patching
192
+
193
+ ![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
194
+ Configurations:
195
+ - HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
196
+ - SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
197
+
198
+ [Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
199
+
200
+ <details><summary>[Click to expand] ℹ️ Reproduce results </summary>
201
+
202
+ - With Intel® Extension for Scikit-learn enabled:
203
+
204
+ ```bash
205
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report
206
+ ```
207
+
208
+ - With the original Scikit-learn:
209
+
210
+ ```bash
211
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
212
+ ```
213
+ </details>
214
+
215
+ Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
216
+
217
+ ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
218
+
219
+ ## 📜 Intel(R) Extension for Scikit-learn verbose
220
+
221
+ To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
222
+ - On Linux: `export SKLEARNEX_VERBOSE=INFO`
223
+ - On Windows: `set SKLEARNEX_VERBOSE=INFO`
224
+
225
+ For example, for DBSCAN you get one of these print statements depending on which implementation is used:
226
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
227
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
228
+
229
+ [Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
230
+
231
+
@@ -0,0 +1,278 @@
1
+ daal4py/__init__.py,sha256=Z9m4-_WGRMvvv4BRTlQy9tDh6dDXyKMuvJbFdCkKm7U,2605
2
+ daal4py/__main__.py,sha256=XkcEBDY30krQy7F6b5GRIBs1Ef3mNjv8IZE3TdcUCAs,1956
3
+ daal4py/_daal4py.cpython-310-x86_64-linux-gnu.so,sha256=B1kL_SvPH7nNdGjOnXPmFTMDlQpDJ6Qj4YhzWeJM7f0,10340712
4
+ daal4py/mpi_transceiver.cpython-310-x86_64-linux-gnu.so,sha256=llVxZhm2bN4wHRk9H_P0OKSECJOHPActMijxPXaAsfY,22904
5
+ daal4py/doc/third-party-programs.txt,sha256=3tB2wzQ26wLa0aa574AxPit02Cse01Sqk0MJJboyQd0,21754
6
+ daal4py/mb/__init__.py,sha256=Gw3YCjY4oRlB-Y-io1hD9wnRs20WK-5M8ADaMh-orLE,853
7
+ daal4py/mb/model_builders.py,sha256=kyyv7V8XG2MWiCIPjGoyozz2W9iV2zg3sg1xwZ_GCmw,15453
8
+ daal4py/sklearn/__init__.py,sha256=ljO7C5-OtnGwwtlFCDWGHzmc4pDH0M9QtlJbs--TeiQ,1410
9
+ daal4py/sklearn/_n_jobs_support.py,sha256=9kRwWIfwlmbiJ6UmBN1Mwxt3g2Frk1-G0wE7y5kEJxA,9582
10
+ daal4py/sklearn/_utils.py,sha256=WycPl3gHsD5pC5GA9oGT4tMXl5dXGO2t5F7XoaU_00o,7463
11
+ daal4py/sklearn/cluster/__init__.py,sha256=qb3jlWeIF5XSxofmlnvtAWYINhsnnWBq_PJg_jp0F44,831
12
+ daal4py/sklearn/cluster/dbscan.py,sha256=3op03kXlvKYul28sl64K3xY4G6q7XBGXyShukBBLPjA,5726
13
+ daal4py/sklearn/cluster/k_means.py,sha256=LLlap2zDbHrp6wPILOQZ-GzG6WhVmUpNZLsJSLA-cyk,20218
14
+ daal4py/sklearn/cluster/tests/test_dbscan.py,sha256=j8PeJIt3zqpWFMDltt2-nYc2gWPujeZYYdwQfUHyEe0,3868
15
+ daal4py/sklearn/decomposition/__init__.py,sha256=L7T0brhrvz-9lrJjnou9U84u5y0C9bscg1y18KfA--Y,785
16
+ daal4py/sklearn/decomposition/_pca.py,sha256=nG-4L4N90QmmIlRJJgGXi5FoXeyNyOfUrkTMrYxn9Ag,18970
17
+ daal4py/sklearn/ensemble/AdaBoostClassifier.py,sha256=aYKsKFrcA5hRkEJ5sM67BBbOglsokTGt-cuMQc4sOJo,6681
18
+ daal4py/sklearn/ensemble/GBTDAAL.py,sha256=df261AY1EuJAenG6_-G8VQfr4e45dHudmU1U8poCDEs,11052
19
+ daal4py/sklearn/ensemble/__init__.py,sha256=NE1py-RLgY6ubN6LIi4QlbXqMkLaygTK5uwQyjC3-d4,1068
20
+ daal4py/sklearn/ensemble/_forest.py,sha256=cG3pf7fAyAzvOt22fXPZeMB-2eq8Moq29OmonsTid88,53253
21
+ daal4py/sklearn/ensemble/tests/test_decision_forest.py,sha256=r0u7UkQrAntATP99EyCIpvvt3a1BgHMQEiqwqDeLGsk,6956
22
+ daal4py/sklearn/linear_model/__init__.py,sha256=qBjmXJW0bKX7FZZC9j559ZREUw7Ddb0vobKjDKkrXaw,1069
23
+ daal4py/sklearn/linear_model/_coordinate_descent.py,sha256=PE_6ZnoVygVPtgFgfm3jvoT6SyufIQ0UpNL8QhCfXvA,28380
24
+ daal4py/sklearn/linear_model/_linear.py,sha256=3EBj8q1TUDvYDaxw2dfOkAiWjWxFXeZ6LbeVrdOdYY8,8753
25
+ daal4py/sklearn/linear_model/_ridge.py,sha256=u_X0jRxUqR0u_WLfW7Ls1hYeXYnedBVxJdsF99I0JkM,10533
26
+ daal4py/sklearn/linear_model/coordinate_descent.py,sha256=upbKtmIQ3sVxr2H4z6GA1qWqXgT2hgP5OHZK7ASidis,779
27
+ daal4py/sklearn/linear_model/linear.py,sha256=na9FknpQlw2Up-jgIV7xYqSpHZKN1s9O5LWgP0oxMmk,767
28
+ daal4py/sklearn/linear_model/logistic_loss.py,sha256=PFX7HInSCjUsjWxEqz2AcWpNGkne1X_f2WgsVkvFkXk,5698
29
+ daal4py/sklearn/linear_model/logistic_path.py,sha256=D8HTC7r4obokccmoTjktGrKdbuF71yc3_4DQVYgorfs,37387
30
+ daal4py/sklearn/linear_model/ridge.py,sha256=87SL9602MtRaahCWkwqwzUOUW1tk-nOQah9BklU7a7c,766
31
+ daal4py/sklearn/linear_model/tests/test_linear.py,sha256=u0ghGoJDl99fC0z_bJ8lHdmyFWtl3bovTmt7AXit_FU,6427
32
+ daal4py/sklearn/linear_model/tests/test_ridge.py,sha256=UNxSclFuq4V5pqzcYTaFQBGRWxKlgNwfnYSqUkio8mQ,2451
33
+ daal4py/sklearn/manifold/__init__.py,sha256=wwA6Xjd62lNdPIFu2gowmpZfcm_B2WUk8BYUM_Y3vAo,789
34
+ daal4py/sklearn/manifold/_t_sne.py,sha256=Vlh8--DoNA7JSAVRx0WfZLg45qfz8kbj2sZjOKNuKKc,15947
35
+ daal4py/sklearn/metrics/__init__.py,sha256=tvEWaSO3dAPaCuUClXFhVpO7XfNEnYDoq1ZFf66KD3M,873
36
+ daal4py/sklearn/metrics/_pairwise.py,sha256=Lu4FkjMrafeYPcs4tUiowlY6WZZXTn71l63E22-6DWM,5853
37
+ daal4py/sklearn/metrics/_ranking.py,sha256=YBJznAOjgQ-GPaIu-aNP6AMV39_SEwjr99Z_9Ub13XI,7238
38
+ daal4py/sklearn/model_selection/__init__.py,sha256=AkKzl_Q4hN9myaeXmTMRQSwXcKh9UTzKH85ySH29AHo,834
39
+ daal4py/sklearn/model_selection/_split.py,sha256=fvPJQEz3mceWeLeknrKuchqKxT1eyLoCehg7OBCCbvw,11389
40
+ daal4py/sklearn/model_selection/tests/test_split.py,sha256=MUBiCKh63UctC71aUzzlk4KNXCRblEjzAL0qbaB8xUQ,2065
41
+ daal4py/sklearn/monkeypatch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
+ daal4py/sklearn/monkeypatch/dispatcher.py,sha256=GGtLj7wUOjNO8l22sGXep4MP93Q2e_vYei4e3p5kuoE,9016
43
+ daal4py/sklearn/monkeypatch/tests/_models_info.py,sha256=mD80wbWCNDr5XiPVNBPbeQ96j9vsWkAdJit5437nmNY,4632
44
+ daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py,sha256=SBy6hDFMymxeaXCliLcmjtF_Q2BaJ__hjC4DCJQVgn8,2447
45
+ daal4py/sklearn/monkeypatch/tests/test_patching.py,sha256=WcKBx0Mr_Gey22RN0GD5xxdrkaNdD912tSSb10TIzGg,2645
46
+ daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py,sha256=tnxpKpV9RquXDswfehClHLVYWFLlKSNMEae0ouO66PA,3730
47
+ daal4py/sklearn/neighbors/__init__.py,sha256=HKrqR7H6UIU4G02S4KASadaYcwGHHBXKLoQmPaDT_WY,962
48
+ daal4py/sklearn/neighbors/_base.py,sha256=jXRYB6UMmS10OREN_K2vROyjMb_c1W6nXdUUSK6DJw4,17297
49
+ daal4py/sklearn/neighbors/_classification.py,sha256=FV8MlAJ5HRgHk6CxnlZv4N102vgs41pMZ_dWdy8OHeI,4823
50
+ daal4py/sklearn/neighbors/_regression.py,sha256=fw8RotX9x_1taqhOmW_MFLGOQsbjGTzrFvvA4IJRddE,2434
51
+ daal4py/sklearn/neighbors/_unsupervised.py,sha256=IpIKiZYmdbKtNatbi6BE6QIF7i7VXXcnh9tACY8kLB8,1790
52
+ daal4py/sklearn/neighbors/tests/test_kneighbors.py,sha256=ifHe4Uz4wvEjf-u71eGN2O3FfPXUY20-BbqhLAAjyIs,4394
53
+ daal4py/sklearn/svm/__init__.py,sha256=zSfWPgCxTUGF92Ul5psjCyssvDYnaOfKvyuz3pAQk4A,784
54
+ daal4py/sklearn/svm/svm.py,sha256=VKmImNCRRK1MCCFpROAQCs7U79TrgPRBqtoyolfODTk,24126
55
+ daal4py/sklearn/utils/__init__.py,sha256=4Lehb4O7jih_S0n_y4aNun6vWT5SfISDPDzPP0WnPhA,828
56
+ daal4py/sklearn/utils/base.py,sha256=usdRsETKbIsEZfohFBWZqfD4cQfZ3B-3svoLTAhIXiI,3032
57
+ daal4py/sklearn/utils/validation.py,sha256=bxhcgaLoqBM_ZZDbX-y7ZziVtFE2g7VFeYFrlLOFb7Y,25857
58
+ daal4py/sklearn/utils/tests/test_utils.py,sha256=n3bO5WJCb5Q9Dlk_S8SxNhhvQJGT3dVkaFfzi7WU2xo,1963
59
+ onedal/__init__.py,sha256=t9aTOZfzqSLNLlDITKiZD2Y-Q6uGD5Ust0DuzkhoUNI,2595
60
+ onedal/_config.py,sha256=DWBjwvF2l5Yyqa9Ev7YfBCjpCB0F_7p2bSTe2sI12g0,1788
61
+ onedal/_device_offload.py,sha256=5w9FEhf4FVJsHWbCtBFufShjy1w3WLzaOsauiPx9NqQ,7946
62
+ onedal/_onedal_py_dpc.cpython-310-x86_64-linux-gnu.so,sha256=ysVnEvgtgaoQlGkEQQ1fkGwk_8S-J2cIO30A_hjqO1o,2633264
63
+ onedal/_onedal_py_host.cpython-310-x86_64-linux-gnu.so,sha256=46f7SkGvuXnQVjGKtZL4EA7BuIbme5PhZqoyHgTHYRw,1543480
64
+ onedal/_onedal_py_spmd_dpc.cpython-310-x86_64-linux-gnu.so,sha256=qSZWfhFebzrgd0J1Kuw3brrbcmFh1WocSzXR7C5pmj0,1019440
65
+ onedal/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
66
+ onedal/basic_statistics/basic_statistics.py,sha256=RXehnZh5JHqaKNXEWvz7pVt_3C9DTefu1OUVX-kZ1kg,3710
67
+ onedal/basic_statistics/incremental_basic_statistics.py,sha256=xTflikq9CAecI3vqwj9bcMawzCKcLkjW56fXnu1Yj_U,5346
68
+ onedal/basic_statistics/tests/test_basic_statistics.py,sha256=5_GjDKbb2qN57UeIwXEnZSKENbWNUPUey2HjLZ7UtqU,9503
69
+ onedal/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=hiB7kTebX4fhgbTclAQ6R4gkXG7CIEPMUTPJGHXFgOY,7399
70
+ onedal/cluster/__init__.py,sha256=_xWLZWG4nmnvcntClA-KAG0SOQOVUeq3hQdlRXt4ZlE,1054
71
+ onedal/cluster/dbscan.py,sha256=LDAF2z2Uv7Th7Q-o7uwwpMprFAKUVHqSV2OqynmjJzY,3688
72
+ onedal/cluster/kmeans.py,sha256=NZD67MEE4uDqaugtVdnXF8ODCznyPl1F7aJA5mqDekk,19294
73
+ onedal/cluster/kmeans_init.py,sha256=osex8tdVuKNXqRXuuVvdeBwzjUNECUZCGfiDM-1LNGE,4011
74
+ onedal/cluster/tests/test_dbscan.py,sha256=EFbPR7872nnwg9pjGK358EpdfIDvep2ML1ml1ewC1Jw,4232
75
+ onedal/cluster/tests/test_kmeans.py,sha256=8-CaqVDa1WBy8NFEJ7aEogxNeRF9FuryRUtP0M4oLnM,3683
76
+ onedal/cluster/tests/test_kmeans_init.py,sha256=DmMWYhTyX4ju9zdPTuAQnfH4mvd3vDUol0qgv9wVejI,4031
77
+ onedal/common/_base.py,sha256=_ywcmPy5qbF8igz50FKnFp8obpuqcOFdFEePnN-mKiA,1374
78
+ onedal/common/_estimator_checks.py,sha256=IJre7S_H4_cBSyOhHKzUN6BkmbXYPxWUJkLyjTtuyEM,1848
79
+ onedal/common/_mixin.py,sha256=ucnJvRl5m6RS4r_9jAZWVPlE2AZ-shd0bbHu_kFAH8U,1995
80
+ onedal/common/_policy.py,sha256=iDbhCPJrmv3Q36piExZqdG3OTHhPrIcma-88HXI3ZgQ,2079
81
+ onedal/common/_spmd_policy.py,sha256=428GN-Evrq_DDmSQbVyhPuiRpEhUDYw66pZiFZ_-HwU,1170
82
+ onedal/common/hyperparameters.py,sha256=yccEwzrBAu_Gmfk6TaAeu8qAEpJvlH67frWVBqX3Lj4,4273
83
+ onedal/common/tests/test_policy.py,sha256=o2Zo7QT-NeD2GsUdKfftv2378aqNbexAEeKl2FX9wZA,2605
84
+ onedal/covariance/__init__.py,sha256=M_LutElm3cDgR5EPd38HTJhHfkAibSv_n01RrZSpnVs,926
85
+ onedal/covariance/covariance.py,sha256=JgFnslZny2gmrYDrvlSnjQBaPd8PfD1q-bo6WogVOBI,4313
86
+ onedal/covariance/incremental_covariance.py,sha256=SQe5Aj9uZm2DfV232kEGzlAdqDazDpjARfH4RgCtmdA,4722
87
+ onedal/covariance/tests/test_covariance.py,sha256=ABf7RbNCts3Fxxpmpda7oicY22kS1alFb0MQDzU4ohc,1931
88
+ onedal/covariance/tests/test_incremental_covariance.py,sha256=OV9cDNgSA2g-zrAClpSz_oOvj6b4calPOOE5vKhTwdA,4275
89
+ onedal/datatypes/__init__.py,sha256=r8Jzt7mSbxbii6aBTif6JHkt9uTHOSsweOCd2p2gVxE,881
90
+ onedal/datatypes/_data_conversion.py,sha256=oeJW8RhDnVFefKv9WB9AMxjbx2-uezS0qITKSRbYX9g,2617
91
+ onedal/datatypes/tests/test_data.py,sha256=uk5h9fefRP2N3yO-R_OdulZ5KG-DLe8YOU38JpCEAmM,8776
92
+ onedal/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
93
+ onedal/decomposition/incremental_pca.py,sha256=Hn2nOy5veAhFIE8od_XULTrzIM2V_6jiBRyQFzEBtnA,7232
94
+ onedal/decomposition/pca.py,sha256=FYthk_AEaTUbM6WigXzHwVE9PXykwLnq0zFVfIv0HRY,7329
95
+ onedal/decomposition/tests/test_incremental_pca.py,sha256=QFsXHtu1guIruLPl-Slv196bga3r5oeGfp0gcGyVdXs,7929
96
+ onedal/ensemble/__init__.py,sha256=zPG_906z717pMYeSxVJR8aZhUqHin45K5gOuvh3ZEsQ,1003
97
+ onedal/ensemble/forest.py,sha256=mpxoU7L15ZtBZ1PFvhM2cvRlyjKd6i0u6BwQ6UPt5Yk,26090
98
+ onedal/ensemble/tests/test_random_forest.py,sha256=S0mNfDUSZ8tazitB3bb-ZiNdcbslpHO8wKyJJT7Cgio,3910
99
+ onedal/linear_model/__init__.py,sha256=VgNBLO71sBhXqvQUwN9h9pEadCg5trDzuN7Z6UDp4ck,1096
100
+ onedal/linear_model/incremental_linear_model.py,sha256=naLVv4xqTD_eE8J0IyNg0C-2oVji6z6BWZYXEsWFxeQ,8920
101
+ onedal/linear_model/linear_model.py,sha256=kMg9KKzhGz-VjtRtdsYS0L-cmxNJbHLFGN73U_CV-n8,10461
102
+ onedal/linear_model/logistic_regression.py,sha256=8hY--YCGaPYVSzLrGW9XwueTwZV3RT_1JkkWtRe5_RA,7974
103
+ onedal/linear_model/tests/test_incremental_linear_regression.py,sha256=A42un5djjDNrobLfCVRAP2PomkhC9pMf6exPlf95biA,6146
104
+ onedal/linear_model/tests/test_incremental_ridge_regression.py,sha256=t9WPJteAAqj7ae6p_nd3xSbWoxUkfjvj0a_2jsf_J7w,4368
105
+ onedal/linear_model/tests/test_linear_regression.py,sha256=0sXExfCNRMkcmLXhnZEWk6v8-pxsVifi90X95y7dBqw,5005
106
+ onedal/linear_model/tests/test_logistic_regression.py,sha256=AkkFycXvXSWPg9jgRGzGXjpq0GExLHbO0n9wddxpqzk,3860
107
+ onedal/linear_model/tests/test_ridge.py,sha256=6OaiavZisFAXyvQrz9haEYLvtrok1Gv1_3zkCK6C39I,3712
108
+ onedal/neighbors/__init__.py,sha256=0uhV1DilaCFEGJOhoQhcr6hduHQDVyuKMeP6broamKk,927
109
+ onedal/neighbors/neighbors.py,sha256=14YGGNCfX9-DcumxVdXq7zqkIcebdykAg0e2iH3nEz4,28174
110
+ onedal/neighbors/tests/test_knn_classification.py,sha256=wjzIQgwIIEspA8fct0iVv0UvBuDLVIdl1IPN_GAGDJk,1881
111
+ onedal/primitives/__init__.py,sha256=JZjEiUEtXMnZ40Sv59Uydl5qeaSwEhDS8ktRVyQQat0,1037
112
+ onedal/primitives/get_tree.py,sha256=SDB1RG5Zr6sAGpYjxxRFCGqJdAS0ATgMP3TVU9u5MhM,1038
113
+ onedal/primitives/kernel_functions.py,sha256=oTSAa6e_eAaGx0Bk3a0CkjSJadNaRJc6bhF2xlkoOn8,4559
114
+ onedal/primitives/tests/test_kernel_functions.py,sha256=fAdAIGwNvBWAkjdvocqS3X8JjZCYClvvJkANrdxXz0o,6101
115
+ onedal/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
116
+ onedal/spmd/_base.py,sha256=b_E2sdBgnlYArAmBDTzX1tVQolv8efkZ6WZFLm0AqQ8,1172
117
+ onedal/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
118
+ onedal/spmd/basic_statistics/basic_statistics.py,sha256=CSb1IGj-RSxXucoaI_AUt76vOn3u_eSiyYuFd1SFIGc,1290
119
+ onedal/spmd/basic_statistics/incremental_basic_statistics.py,sha256=rwBG-jv4giEJTcJo7OZMuuUakxGBkRmK5lZKZDIuHsU,2588
120
+ onedal/spmd/cluster/__init__.py,sha256=oDnWnrClkTH9dVx8tAw_hdVZBDROOSMD1__3AZwp42g,981
121
+ onedal/spmd/cluster/dbscan.py,sha256=Gi28SjQ-Kqhs2u4ZXJx7TyvS3mLrKwKiahrr3E_Daqk,891
122
+ onedal/spmd/cluster/kmeans.py,sha256=_eYOojTS_twoBdq4AhPjeYi7foUADzRavIDpBHl6VAo,1966
123
+ onedal/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
124
+ onedal/spmd/covariance/covariance.py,sha256=WOIiZGePCsaA0Wg9sViro2PFr-EE73ip0LQcFzPq7_0,1102
125
+ onedal/spmd/covariance/incremental_covariance.py,sha256=kqKbJ4I0ZWSDSN2TnDn9dKPCariEMGRUPMbvn-6fFaE,2736
126
+ onedal/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
127
+ onedal/spmd/decomposition/incremental_pca.py,sha256=oCEAdh3Qt_8Epw3yrQPOAxwW_WkyFMvUFB3E_obfdgs,4171
128
+ onedal/spmd/decomposition/pca.py,sha256=igamsO8J5b9rpsngaQ2fHXCLJ2vew6fU3sbKUqBEEVw,1043
129
+ onedal/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
130
+ onedal/spmd/ensemble/forest.py,sha256=r8plwKIyQaE8pF7pYwTRFZyCTU6Cdc1-5FqRI7IMKz0,1125
131
+ onedal/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
132
+ onedal/spmd/linear_model/incremental_linear_model.py,sha256=Z92yj7Yw1qhY9fbhOwxU6OuSGmyyrrJy_imiSOck6WU,3571
133
+ onedal/spmd/linear_model/linear_model.py,sha256=wCVXzju4orFSyw65Urdzc7BDuVNc4jBV_6BEpOXt66k,1204
134
+ onedal/spmd/linear_model/logistic_regression.py,sha256=EE2tlaQR7BmyMcghkR7vXgDtEjZ_Z-hI1wpqxpKgges,1472
135
+ onedal/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
136
+ onedal/spmd/neighbors/neighbors.py,sha256=-YQTGAyre4aVK_urKfr0LuCYIS_AH8YWm9lEWG1xgO0,2960
137
+ onedal/svm/__init__.py,sha256=xxEw0IY_UHIfcDW86SfBShD_x78OZxRqSUM0EUxzP-w,848
138
+ onedal/svm/svm.py,sha256=e_hWTFIOgsR3eHHOw8yPugOboZEiW43oR_nPA-JRHgM,17521
139
+ onedal/svm/tests/test_csr_svm.py,sha256=VoKhuFUZ-2bHFOG3jUBnceuXzpk5ix_79frVxLJf5Qk,8924
140
+ onedal/svm/tests/test_nusvc.py,sha256=WxATmJ6GWHMzPJw6qF4HSEU1bVTaQ-qlWKeqphF5roY,7538
141
+ onedal/svm/tests/test_nusvr.py,sha256=oQ8yZiPVz4VXDFKnDuW03rnQco3dDrHAFa7eSXlAQPA,7703
142
+ onedal/svm/tests/test_svc.py,sha256=qRnSqRpANR3smZWaKMZXAqGiHAo_a1jhT1GP9YPBCdA,6283
143
+ onedal/svm/tests/test_svr.py,sha256=EakCy0mvvpZ8DJtlmcx0FXa6rJ-zJ4Glt_btLdvx9EI,8934
144
+ onedal/tests/test_common.py,sha256=MX0BRoCKIMgMHazPbF0B1hEZPGi2Xh8WAqA4FOPRRas,1520
145
+ onedal/tests/utils/_dataframes_support.py,sha256=5YYetLfjsQhzZryDx7HwMSmHXFJ4cGgrVXOlfmsG4eA,5502
146
+ onedal/tests/utils/_device_selection.py,sha256=NhyXl-JErWhvTFMBeQ1V045RZTqJG1wLF7lu8UQFLDc,3047
147
+ onedal/utils/__init__.py,sha256=10xcH75SnCfeRROvzzzbcK7S_My41GwKJIo3e1MV1TA,1411
148
+ onedal/utils/_array_api.py,sha256=TttfkBDd2f_Fr1TcUteHZJYDsOtmXm0KtCtTckbfi2g,3051
149
+ onedal/utils/validation.py,sha256=eXkDN5oACBAP16igaVier2ZrTNtNVmzl7joF2Cd3OCk,14349
150
+ sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
151
+ sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
152
+ sklearnex/_config.py,sha256=38wvKg2wG79ZctkvICl-Ay7hy8InXdR0t-P3n3h1NUs,3613
153
+ sklearnex/_device_offload.py,sha256=aZqCJyjtc0LCV93A8bZq4Crn9MxCtLxIgCWqe5ewJac,4639
154
+ sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
155
+ sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
156
+ sklearnex/dispatcher.py,sha256=AWsrUNRZukLscR-sBzjMLdin-9rziPuSaBfWgj2Kx9Y,18993
157
+ sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
158
+ sklearnex/basic_statistics/basic_statistics.py,sha256=EQONHwPL4xdTWL49ZyLFN3wRp5oKCdDU1Y6R6Z-su0Q,5358
159
+ sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=lQaJwT865YnW7vZ4z8BXx32LWxithcn39OVmsnbOLpU,10102
160
+ sklearnex/basic_statistics/tests/test_basic_statistics.py,sha256=dsJCHOPdjwZt5Kod1VdD8sdQrpoabPPUJNGN5S8cVvU,9533
161
+ sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=0a5zE0iMzAQMiRyKTpcvQjGHBM86aNhnQZ0l_Ry1fNY,14914
162
+ sklearnex/cluster/__init__.py,sha256=r0CKwy-PSca0jbZc4jU2CkU__qC643751-GuX1aaY40,853
163
+ sklearnex/cluster/dbscan.py,sha256=hpP-R2VTdeXjyoZkSw8AegdGtEa2kRt2KHIokZNHFXo,6824
164
+ sklearnex/cluster/k_means.py,sha256=LGdCJdGRqkV00kL2zJ_BVyYIkInNd-L-NZcJ4rwju2c,13698
165
+ sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
166
+ sklearnex/cluster/tests/test_kmeans.py,sha256=e3RAVsxo6qOZeEFSbrsI_nvjPSPosTn3QGvKHvSIInE,6049
167
+ sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
168
+ sklearnex/covariance/incremental_covariance.py,sha256=pYaRgI4xHnS_ZiuH9VwQptk4ZtuEhgg1PTliIb2ufAw,13096
169
+ sklearnex/covariance/tests/test_incremental_covariance.py,sha256=9iJZyj43YKAgx11i7y_fhHc_S7dvKrMuEW2lYIe_AdU,8592
170
+ sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
171
+ sklearnex/decomposition/pca.py,sha256=XNW8Bo_S0iC-NmVUnyFzkUTNJJ10SjEeJEYuaUjkO1M,16597
172
+ sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
173
+ sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
174
+ sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
175
+ sklearnex/ensemble/_forest.py,sha256=W-iammAJ2Vr5Jys9SVwOnT25TgLqEJQKlW2q_qZe7K8,72356
176
+ sklearnex/ensemble/tests/test_forest.py,sha256=uBpxWlhIOkaSzfd_nS6Ui0O7PcS-fVDzB5my2WQWOi0,4843
177
+ sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
178
+ sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
179
+ sklearnex/linear_model/__init__.py,sha256=5ZHAppxcqKlq5MOZTfigFU9MuN1L5Use_F_cZqo_-p4,1218
180
+ sklearnex/linear_model/coordinate_descent.py,sha256=SKNVTYYX8ysZ8M9h32qIaof3Fc2OKcBRXaCOySUBOiE,1554
181
+ sklearnex/linear_model/incremental_linear.py,sha256=UmpbntBFcx1AIHMEZBvCQfzR2BNB8X8Sa_Lwb65RUwM,16146
182
+ sklearnex/linear_model/incremental_ridge.py,sha256=bOP9WFKQqFeLzlanPLG3XAtafQ6ZVscXSSfUaImTY74,14388
183
+ sklearnex/linear_model/linear.py,sha256=BDexE22Nl6egzHoMiruBp6L_biUfy0eWaZWbHMG9rJc,10740
184
+ sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
185
+ sklearnex/linear_model/logistic_regression.py,sha256=e7tZhQX6URfoyuZ5OweiGGgTY19vfMrGGH02qiTXT0M,14881
186
+ sklearnex/linear_model/ridge.py,sha256=jGehrlT0SPNnABvPXZIZhOC5zDLt0s6X_KK8IP6_Krc,1187
187
+ sklearnex/linear_model/tests/test_incremental_linear.py,sha256=5LPzeuaGpdYNkjHq7f6pm2JYx8L5LHRlwqJNLb6TW0U,7432
188
+ sklearnex/linear_model/tests/test_incremental_ridge.py,sha256=8Zbp-wZFtM8WLb3KHjmXZtxh9AHKKy6x6IFXZ16gkfI,6442
189
+ sklearnex/linear_model/tests/test_linear.py,sha256=7PN4sCZ0bdcknKPdxoV0WtFg__-GHm_0PeNVOAz6HGY,5553
190
+ sklearnex/linear_model/tests/test_logreg.py,sha256=8kTIMl1Hcuu0NSPcEle0oAdRerqMtUAWrRlLjS-n4EI,4924
191
+ sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
192
+ sklearnex/manifold/t_sne.py,sha256=JXVeq9aMtqzeK_Q_0OW47YhpHu1IzqKeufQbrJkohZc,1008
193
+ sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
194
+ sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
195
+ sklearnex/metrics/pairwise.py,sha256=HeBOE8sRBZMiF9pup8HBypDGfizQ-UCrQdX2C6YGvbg,982
196
+ sklearnex/metrics/ranking.py,sha256=6rrOcmQBVwDWiuh6uMg3eLUWEdOGCBr3HieKaP3Hvxk,959
197
+ sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
198
+ sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
199
+ sklearnex/model_selection/split.py,sha256=yvYnmNaKJs-Tr8tGBB-2R9CuhjESYih-CN6Wb3I3z3I,984
200
+ sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
201
+ sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
202
+ sklearnex/neighbors/_lof.py,sha256=GDfAaB33BPlAw15xsamq-Gw0Rjcf1gxkjTJq1F3j0Nc,9125
203
+ sklearnex/neighbors/common.py,sha256=NRk4mb1ZvLkWr3TY3KARizXtA_ufGFtInbzzMNnbSqY,12538
204
+ sklearnex/neighbors/knn_classification.py,sha256=EJAColAfBUpUuBxBhWD3XmMDFqlPcgIotQa4RoJsdfU,7835
205
+ sklearnex/neighbors/knn_regression.py,sha256=eKVqlEB-S2dPgeq8BOzaZwqPnKR2ZNeUBlvJkSSCUlg,6779
206
+ sklearnex/neighbors/knn_unsupervised.py,sha256=GhvVlvcarq681OYHkmWqJ16z62HW_kAkDsrf6KErXmU,6067
207
+ sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
208
+ sklearnex/preview/__init__.py,sha256=Q-msZszWwTpj9XfPQssKjGpEV183cUbPsmAm3IFBWX0,802
209
+ sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
210
+ sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
211
+ sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
212
+ sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
213
+ sklearnex/preview/decomposition/incremental_pca.py,sha256=QK2sVkKUyFKWN10bKCX6XAMtvqg35cLI-gCaIcRaTMM,7852
214
+ sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=ivI5JXygdh9Uml-ncouDcdl6XFSmOlSuACBEE62gods,10742
215
+ sklearnex/preview/linear_model/__init__.py,sha256=azZix9bU9zjwl12g0gB_K5RiVPJvkrinHHCwqVTLQLY,792
216
+ sklearnex/preview/linear_model/ridge.py,sha256=N5LxP5SPjrs-djNL2pGOj9K9xRcxIlqUag_GGYb7ueI,15347
217
+ sklearnex/preview/linear_model/tests/test_ridge.py,sha256=Ru6D9fY2o6bXyxSeUo6O7sHF8jKHX30J545yBk0LRSo,4056
218
+ sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
219
+ sklearnex/spmd/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
220
+ sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
221
+ sklearnex/spmd/basic_statistics/incremental_basic_statistics.py,sha256=KrTeV84fnwKzh0dlvTOfJYW9gmid_99dqqE5VQ-BKIo,1145
222
+ sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py,sha256=I-VV-JTCR7Pu5Z36XtRxoLY6EUoeNp62DmM0vPu-NGY,3787
223
+ sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py,sha256=pGBHzOsqIKn4gr2wFSnPUCnh97lMIPyvmp8vT2njM4A,11195
224
+ sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
225
+ sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
226
+ sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
227
+ sklearnex/spmd/cluster/tests/test_dbscan_spmd.py,sha256=lGh7tWhoQaYMrwS3_BWcUkX2-GjsstWjLRw4JxMQgGA,3494
228
+ sklearnex/spmd/cluster/tests/test_kmeans_spmd.py,sha256=ll4WL1TJDuLg-t3-Qvcl18J9uZLBJHEraf5jH3HQBKQ,5857
229
+ sklearnex/spmd/covariance/__init__.py,sha256=YPvARy7jrTrzvpI-aWrlXWE-pAkoGdrRfRnfbU93Z-Q,924
230
+ sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
231
+ sklearnex/spmd/covariance/incremental_covariance.py,sha256=Sr8T5Fgvs4KDnRckwlyHskWe0ILeVNd4cgeOHy7omxE,1441
232
+ sklearnex/spmd/covariance/tests/test_covariance_spmd.py,sha256=xH4jZ2F77KqVGYK5fyHTM28xNew7qN814lHAfrY1f50,3918
233
+ sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py,sha256=7NySswg8KpOFoRaDhKjiiHZtEt1skYLM0xhRAuUqmFU,6380
234
+ sklearnex/spmd/decomposition/__init__.py,sha256=9itzxOoHDAtO-rx95wq00WLfXuWkTbuWwEFVYRl1-UM,846
235
+ sklearnex/spmd/decomposition/incremental_pca.py,sha256=HT2MLxUy3zSEnTI5aECYtfqWO88YztPRROPjMJnGtS4,1258
236
+ sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
237
+ sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py,sha256=0jSAIDJTf5Q7qgZB6WYoJPTzAamFygdiKqESXc5IU_Q,9179
238
+ sklearnex/spmd/decomposition/tests/test_pca_spmd.py,sha256=9OktZfMTGz5fZfPLBSdOcDKtkcKl7I06CbLnqDajtW4,4709
239
+ sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
240
+ sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
241
+ sklearnex/spmd/ensemble/tests/test_forest_spmd.py,sha256=YOE2sDXWvVHAPj4sswc8iPuWgnXzUSl_AKXDlN1w4zM,9245
242
+ sklearnex/spmd/linear_model/__init__.py,sha256=M5oEaCUWvepOYhxTd9TRzGGf5XG-WkUtpNrOfesVdQA,990
243
+ sklearnex/spmd/linear_model/incremental_linear_model.py,sha256=K1GuXhn9ccrxQBLExBBh2d4v08W3lK_CPbke9cass38,1368
244
+ sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
245
+ sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
246
+ sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py,sha256=0Xmv5kMofFzYEZNZLZhBb3ZVdypqPiQjAxOwXvTYuII,11915
247
+ sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py,sha256=l9bC5gDTNAS2QqZwUAgdbgG0GPvvQOT9XuyqajoAvic,5202
248
+ sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py,sha256=jrkZ4iBod5JYbzuwdu1jx7_ohvoqRGgMEBYTPQb7Iq8,6241
249
+ sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
250
+ sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
251
+ sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py,sha256=aetHv4hdun2FaaHJTokCLc02szhkp0Yi552EdfboWeA,10488
252
+ sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
253
+ sklearnex/svm/_common.py,sha256=2ml2e44mWvAufo6wCoJX3w6RbNON3OnyCaykZX0nkr8,12700
254
+ sklearnex/svm/nusvc.py,sha256=JkwM_ONYvyWzt4Tx3CUG-j7kLqM67PDEof_4AQ4a-T0,11265
255
+ sklearnex/svm/nusvr.py,sha256=9nbRaPCoDQ5SBGH_jLgcaX_PWGDh667w-gW5X2YbHBM,4764
256
+ sklearnex/svm/svc.py,sha256=FpnoSfZKzsbhOWbaeYM_8SV1kAIM6b9OkOdWPujzw5w,12473
257
+ sklearnex/svm/svr.py,sha256=NIWVUu7NjV4Fe4L-Y4vIqd3KePFdMJ1-jupeH4ZvNsg,4733
258
+ sklearnex/svm/tests/test_svm.py,sha256=KnjWVfmHzU0sJqlhDdfLdhFJA_BV_tULPqNlOLXShXg,4194
259
+ sklearnex/tests/_utils.py,sha256=rkZhH5VbMAIBBLBm2Mi5y5DQ_wMXQUq2LqR5X4wcEK0,10556
260
+ sklearnex/tests/_utils_spmd.py,sha256=MS-Jz_tiTC_3OI64TciaAofeTqUN2JOVWxIUAHESVdM,7150
261
+ sklearnex/tests/test_common.py,sha256=MYx0y7oomArxWu9qe2zNs7YL-ScPGFnzvw8PZ1or04A,1813
262
+ sklearnex/tests/test_config.py,sha256=9ek00NtpWSU7HXNqXXM1kFX09FFS8DCHejVIFMii6kM,1540
263
+ sklearnex/tests/test_memory_usage.py,sha256=6mdsFooXRIR5QbSxcFZZVQJo1vOOA-USWUpXObiyO8g,11104
264
+ sklearnex/tests/test_monkeypatch.py,sha256=Qeq0Z84UMKLEAVoQP7WEScouf6gNPbp21fjQ2erxMQo,9962
265
+ sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
266
+ sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
267
+ sklearnex/tests/test_patching.py,sha256=XKnGBazHpJoW8XxeMdCR_Lg9jr2mOdHkL-ypHlxm6hI,14932
268
+ sklearnex/tests/test_run_to_run_stability.py,sha256=aB5izr-z-y30Sj5dUaD4RMgUaPQGCUQPxHN4Rbf74Fs,10975
269
+ sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
270
+ sklearnex/utils/_array_api.py,sha256=c5AFRaxYn3pjInTXeFzcXZB8SrRxQ-4UQARQv1HchFI,2694
271
+ sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
272
+ sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
273
+ sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
274
+ scikit_learn_intelex-2025.0.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
275
+ scikit_learn_intelex-2025.0.0.dist-info/METADATA,sha256=lDZFW4nuu2-BVZppQrIWcxISuzP4XzWQuaP-IG8WsJg,12476
276
+ scikit_learn_intelex-2025.0.0.dist-info/WHEEL,sha256=AbDXtI07YbmAOyulr4lTLqgtukIt8PjPDO5guTSVq0s,112
277
+ scikit_learn_intelex-2025.0.0.dist-info/top_level.txt,sha256=Qa0CGteT1uguKJdxiwylb90eW-a1R8FcENgN6P7IKfs,25
278
+ scikit_learn_intelex-2025.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: true
4
+ Tag: py310-none-manylinux_2_28_x86_64
5
+
@@ -0,0 +1,3 @@
1
+ daal4py
2
+ onedal
3
+ sklearnex
sklearnex/__init__.py ADDED
@@ -0,0 +1,65 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ # Copyright 2024 Fujitsu Limited
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ # ==============================================================================
17
+
18
+ import os
19
+
20
+ from . import utils
21
+ from ._config import config_context, get_config, set_config
22
+ from .dispatcher import (
23
+ get_patch_map,
24
+ get_patch_names,
25
+ is_patched_instance,
26
+ patch_sklearn,
27
+ sklearn_is_patched,
28
+ unpatch_sklearn,
29
+ )
30
+
31
+ __all__ = [
32
+ "basic_statistics",
33
+ "cluster",
34
+ "config_context",
35
+ "decomposition",
36
+ "ensemble",
37
+ "get_config",
38
+ "get_hyperparameters",
39
+ "get_patch_map",
40
+ "get_patch_names",
41
+ "is_patched_instance",
42
+ "linear_model",
43
+ "manifold",
44
+ "metrics",
45
+ "model_selection",
46
+ "neighbors",
47
+ "patch_sklearn",
48
+ "set_config",
49
+ "sklearn_is_patched",
50
+ "svm",
51
+ "unpatch_sklearn",
52
+ "utils",
53
+ ]
54
+ onedal_iface_flag = os.environ.get("OFF_ONEDAL_IFACE", "0")
55
+ if onedal_iface_flag == "0":
56
+ from onedal import _is_spmd_backend
57
+ from onedal.common.hyperparameters import get_hyperparameters
58
+
59
+ if _is_spmd_backend:
60
+ __all__.append("spmd")
61
+
62
+
63
+ from ._utils import set_sklearn_ex_verbose
64
+
65
+ set_sklearn_ex_verbose()