scikit-learn-intelex 2024.4.0__py39-none-win_amd64.whl → 2024.6.0__py39-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (113) hide show
  1. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
  2. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  3. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
  4. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  5. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
  6. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  7. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  8. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
  9. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
  10. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
  11. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
  12. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
  13. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  14. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  15. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
  16. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
  17. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
  18. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  19. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  20. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
  21. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  22. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  23. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  24. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
  25. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  26. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
  27. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
  28. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
  29. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
  30. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
  31. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
  32. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
  33. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
  34. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
  35. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
  36. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
  37. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
  38. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
  40. scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
  41. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
  44. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
  45. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  46. scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
  47. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  49. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  50. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  51. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  53. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  54. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  56. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  57. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  60. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  61. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  63. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  64. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  65. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  66. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  68. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  69. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  71. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  72. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  73. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  74. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  75. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  76. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  78. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  79. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  80. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  81. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  84. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  86. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  87. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  90. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  92. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  93. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  94. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  95. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  96. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  97. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  99. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  108. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  109. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  110. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  111. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  112. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  113. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -1,230 +1,230 @@
1
- Metadata-Version: 2.1
2
- Name: scikit-learn-intelex
3
- Version: 2024.4.0
4
- Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
- Home-page: https://github.com/intel/scikit-learn-intelex
6
- Author: Intel Corporation
7
- Author-email: onedal.maintainers@intel.com
8
- Maintainer-email: onedal.maintainers@intel.com
9
- License: Apache-2.0
10
- Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
11
- Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
12
- Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
13
- Keywords: machine learning,scikit-learn,data science,data analytics
14
- Platform: UNKNOWN
15
- Classifier: Development Status :: 5 - Production/Stable
16
- Classifier: Environment :: Console
17
- Classifier: Intended Audience :: Developers
18
- Classifier: Intended Audience :: Other Audience
19
- Classifier: Intended Audience :: Science/Research
20
- Classifier: License :: OSI Approved :: Apache Software License
21
- Classifier: Operating System :: Microsoft :: Windows
22
- Classifier: Operating System :: POSIX :: Linux
23
- Classifier: Programming Language :: Python :: 3.8
24
- Classifier: Programming Language :: Python :: 3.9
25
- Classifier: Programming Language :: Python :: 3.10
26
- Classifier: Programming Language :: Python :: 3.11
27
- Classifier: Programming Language :: Python :: 3.12
28
- Classifier: Topic :: Scientific/Engineering
29
- Classifier: Topic :: System
30
- Classifier: Topic :: Software Development
31
- Requires-Python: >=3.7
32
- Description-Content-Type: text/markdown
33
- License-File: LICENSE.txt
34
- Requires-Dist: daal4py (==2024.4.0)
35
- Requires-Dist: scikit-learn (>=0.22)
36
-
37
-
38
- # Intel(R) Extension for Scikit-learn*
39
-
40
- [![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
41
- [![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
42
- [![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)
43
- [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
44
- [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
45
-
46
- With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
47
-
48
- The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
49
-
50
- ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
51
- You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
52
-
53
- ## 👀 Follow us on Medium
54
-
55
- We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
56
-
57
- - [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
58
- - [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
59
- - [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
60
- - [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
61
- - [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
62
- - [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
63
- - [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
64
- - [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
65
- - [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
66
- - [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
67
-
68
- ## 🔗 Important links
69
- - [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
70
- - [Documentation](https://intel.github.io/scikit-learn-intelex/)
71
- - [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
72
- - [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
73
- - [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
74
- - [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
75
- - [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
76
-
77
- ## 💬 Support
78
-
79
- Report issues, ask questions, and provide suggestions using:
80
-
81
- - [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
82
- - [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
83
- - [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
84
-
85
- You may reach out to project maintainers privately at onedal.maintainers@intel.com
86
-
87
- # 🛠 Installation
88
- Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
89
- on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
90
- Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
91
-
92
- - PyPi (recommended by default)
93
-
94
- ```bash
95
- pip install scikit-learn-intelex
96
- ```
97
-
98
- - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
99
-
100
- ```bash
101
- conda config --add channels conda-forge
102
- conda config --set channel_priority strict
103
- conda install scikit-learn-intelex
104
- ```
105
-
106
- - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
107
-
108
- ```bash
109
- conda config --add channels intel
110
- conda config --set channel_priority strict
111
- conda install scikit-learn-intelex
112
- ```
113
-
114
- <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
115
-
116
- #### 📦 PyPi channel
117
-
118
- | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
119
- | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
120
- | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
121
- | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
122
-
123
- #### 📦 Anaconda Cloud: Conda-Forge channel
124
-
125
- | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
126
- | :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
127
- | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
128
- | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
129
-
130
- #### 📦 Anaconda Cloud: Intel channel
131
-
132
- | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
133
- | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
134
- | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
135
- | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
136
-
137
- </details>
138
-
139
- ⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
140
- will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
141
-
142
- <details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
143
-
144
- - PyPi
145
-
146
- ```bash
147
- pip install --upgrade dpcpp_cpp_rt
148
- ```
149
-
150
- - Anaconda Cloud
151
-
152
- ```bash
153
- conda install dpcpp_cpp_rt -c intel
154
- ```
155
-
156
- </details>
157
-
158
- You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
159
-
160
- # ⚡️ Get Started
161
-
162
- Intel CPU optimizations patching
163
- ```py
164
- import numpy as np
165
- from sklearnex import patch_sklearn
166
- patch_sklearn()
167
-
168
- from sklearn.cluster import DBSCAN
169
-
170
- X = np.array([[1., 2.], [2., 2.], [2., 3.],
171
- [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
172
- clustering = DBSCAN(eps=3, min_samples=2).fit(X)
173
- ```
174
-
175
- Intel GPU optimizations patching
176
- ```py
177
- import numpy as np
178
- import dpctl
179
- from sklearnex import patch_sklearn, config_context
180
- patch_sklearn()
181
-
182
- from sklearn.cluster import DBSCAN
183
-
184
- X = np.array([[1., 2.], [2., 2.], [2., 3.],
185
- [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
186
- with config_context(target_offload="gpu:0"):
187
- clustering = DBSCAN(eps=3, min_samples=2).fit(X)
188
- ```
189
-
190
- # 🚀 Scikit-learn patching
191
-
192
- ![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
193
- Configurations:
194
- - HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
195
- - SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
196
-
197
- [Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
198
-
199
- <details><summary>[Click to expand] ℹ️ Reproduce results </summary>
200
-
201
- - With Intel® Extension for Scikit-learn enabled:
202
-
203
- ```bash
204
- python runner.py --configs configs/blogs/skl_conda_config.json -–report
205
- ```
206
-
207
- - With the original Scikit-learn:
208
-
209
- ```bash
210
- python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
211
- ```
212
- </details>
213
-
214
- Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
215
-
216
- ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
217
-
218
- ## 📜 Intel(R) Extension for Scikit-learn verbose
219
-
220
- To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
221
- - On Linux: `export SKLEARNEX_VERBOSE=INFO`
222
- - On Windows: `set SKLEARNEX_VERBOSE=INFO`
223
-
224
- For example, for DBSCAN you get one of these print statements depending on which implementation is used:
225
- - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
226
- - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
227
-
228
- [Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
229
-
230
-
1
+ Metadata-Version: 2.1
2
+ Name: scikit-learn-intelex
3
+ Version: 2024.6.0
4
+ Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
+ Home-page: https://github.com/intel/scikit-learn-intelex
6
+ Author: Intel Corporation
7
+ Author-email: onedal.maintainers@intel.com
8
+ Maintainer-email: onedal.maintainers@intel.com
9
+ License: Apache-2.0
10
+ Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
11
+ Project-URL: Documentation, https://intel.github.io/scikit-learn-intelex/
12
+ Project-URL: Source Code, https://github.com/intel/scikit-learn-intelex
13
+ Keywords: machine learning,scikit-learn,data science,data analytics
14
+ Platform: UNKNOWN
15
+ Classifier: Development Status :: 5 - Production/Stable
16
+ Classifier: Environment :: Console
17
+ Classifier: Intended Audience :: Developers
18
+ Classifier: Intended Audience :: Other Audience
19
+ Classifier: Intended Audience :: Science/Research
20
+ Classifier: License :: OSI Approved :: Apache Software License
21
+ Classifier: Operating System :: Microsoft :: Windows
22
+ Classifier: Operating System :: POSIX :: Linux
23
+ Classifier: Programming Language :: Python :: 3.8
24
+ Classifier: Programming Language :: Python :: 3.9
25
+ Classifier: Programming Language :: Python :: 3.10
26
+ Classifier: Programming Language :: Python :: 3.11
27
+ Classifier: Programming Language :: Python :: 3.12
28
+ Classifier: Topic :: Scientific/Engineering
29
+ Classifier: Topic :: System
30
+ Classifier: Topic :: Software Development
31
+ Requires-Python: >=3.7
32
+ Description-Content-Type: text/markdown
33
+ License-File: LICENSE.txt
34
+ Requires-Dist: daal4py ==2024.6.0
35
+ Requires-Dist: scikit-learn >=0.22
36
+
37
+
38
+ # Intel(R) Extension for Scikit-learn*
39
+
40
+ [![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
41
+ [![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
42
+ [![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)
43
+ [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
44
+ [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
45
+
46
+ With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
47
+
48
+ The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
49
+
50
+ ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
51
+ You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
52
+
53
+ ## 👀 Follow us on Medium
54
+
55
+ We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
56
+
57
+ - [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
58
+ - [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
59
+ - [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
60
+ - [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
61
+ - [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
62
+ - [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
63
+ - [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
64
+ - [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
65
+ - [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
66
+ - [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
67
+
68
+ ## 🔗 Important links
69
+ - [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
70
+ - [Documentation](https://intel.github.io/scikit-learn-intelex/)
71
+ - [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
72
+ - [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
73
+ - [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
74
+ - [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
75
+ - [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
76
+
77
+ ## 💬 Support
78
+
79
+ Report issues, ask questions, and provide suggestions using:
80
+
81
+ - [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
82
+ - [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
83
+ - [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
84
+
85
+ You may reach out to project maintainers privately at onedal.maintainers@intel.com
86
+
87
+ # 🛠 Installation
88
+ Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
89
+ on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
90
+ Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
91
+
92
+ - PyPi (recommended by default)
93
+
94
+ ```bash
95
+ pip install scikit-learn-intelex
96
+ ```
97
+
98
+ - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
99
+
100
+ ```bash
101
+ conda config --add channels conda-forge
102
+ conda config --set channel_priority strict
103
+ conda install scikit-learn-intelex
104
+ ```
105
+
106
+ - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
107
+
108
+ ```bash
109
+ conda config --add channels intel
110
+ conda config --set channel_priority strict
111
+ conda install scikit-learn-intelex
112
+ ```
113
+
114
+ <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
115
+
116
+ #### 📦 PyPi channel
117
+
118
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
119
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
120
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
121
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
122
+
123
+ #### 📦 Anaconda Cloud: Conda-Forge channel
124
+
125
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
126
+ | :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
127
+ | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
128
+ | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
129
+
130
+ #### 📦 Anaconda Cloud: Intel channel
131
+
132
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
133
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
134
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
135
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
136
+
137
+ </details>
138
+
139
+ ⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
140
+ will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
141
+
142
+ <details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
143
+
144
+ - PyPi
145
+
146
+ ```bash
147
+ pip install --upgrade dpcpp_cpp_rt
148
+ ```
149
+
150
+ - Anaconda Cloud
151
+
152
+ ```bash
153
+ conda install dpcpp_cpp_rt -c intel
154
+ ```
155
+
156
+ </details>
157
+
158
+ You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
159
+
160
+ # ⚡️ Get Started
161
+
162
+ Intel CPU optimizations patching
163
+ ```py
164
+ import numpy as np
165
+ from sklearnex import patch_sklearn
166
+ patch_sklearn()
167
+
168
+ from sklearn.cluster import DBSCAN
169
+
170
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
171
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
172
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
173
+ ```
174
+
175
+ Intel GPU optimizations patching
176
+ ```py
177
+ import numpy as np
178
+ import dpctl
179
+ from sklearnex import patch_sklearn, config_context
180
+ patch_sklearn()
181
+
182
+ from sklearn.cluster import DBSCAN
183
+
184
+ X = np.array([[1., 2.], [2., 2.], [2., 3.],
185
+ [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
186
+ with config_context(target_offload="gpu:0"):
187
+ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
188
+ ```
189
+
190
+ # 🚀 Scikit-learn patching
191
+
192
+ ![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
193
+ Configurations:
194
+ - HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
195
+ - SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
196
+
197
+ [Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
198
+
199
+ <details><summary>[Click to expand] ℹ️ Reproduce results </summary>
200
+
201
+ - With Intel® Extension for Scikit-learn enabled:
202
+
203
+ ```bash
204
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report
205
+ ```
206
+
207
+ - With the original Scikit-learn:
208
+
209
+ ```bash
210
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
211
+ ```
212
+ </details>
213
+
214
+ Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
215
+
216
+ ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
217
+
218
+ ## 📜 Intel(R) Extension for Scikit-learn verbose
219
+
220
+ To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
221
+ - On Linux: `export SKLEARNEX_VERBOSE=INFO`
222
+ - On Windows: `set SKLEARNEX_VERBOSE=INFO`
223
+
224
+ For example, for DBSCAN you get one of these print statements depending on which implementation is used:
225
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
226
+ - `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
227
+
228
+ [Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
229
+
230
+
@@ -0,0 +1,108 @@
1
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=m8Hspffwx6Tn3f-OYLqwf5cUCKq4vZ3aSLmhY92qp08,8876
5
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ODuhlscC0HNGXiA8olEfHTDULzjevqG9_sn0yMGRkHg,2376
7
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=XElvy9dDJ8XNOci8asKUnWXJpr6JROXHehdWBc_od3g,15876
8
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=zTb_04DBGYSfwcpRaP0OJzi4Z6jz4jqV_kDRAp1x-no,14926
12
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
13
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EiAMRZq53KhGQ_d4_c867-frgG-pz8S1J88vd8hLAn4,6844
14
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
15
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=JYpwyuPkGQHdbE_IPbQv4qNj7clMm4UPdz_lrpRzKXE,1504
16
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
17
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
18
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=0MvYlGnmuZ8_kRBaIkMzg3RyGdcSMjO-I7dhw2VpTsg,11010
19
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=ZbEfup4ICm278RW4hZIHPciOiqhFhx_k1l3lpnw0M6s,6763
20
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
21
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=JkyxsSz_8vVGUjJrfxyAwwY1Yf2uht-qxwOisEHv9mY,15550
22
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=EoCgpSojE2S2e7hOUwW0Bh3vVGTUywawAhU7ThVAlW0,2319
23
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
24
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
25
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=tElkh0jezrp9QK2T3_kDCgye6El9W6hOlJepaeMIOM4,73494
26
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=UXj6pfSuOr8wm_KZciyE9zt6hh-we1U8s0XU9bShqHI,4735
27
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
28
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=o6XKGKM3M91F7FlXBOt1IhnpWQK4R1VY2WS-0uIghcw,3906
29
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=mzZ0EaBhDH66ETNt2vylznSoZbCYexgL2qE_jKppYYc,1144
30
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
31
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py,sha256=iDad4Z4xMDImvG-Jgtt0Hz3Qp9MVhSi-IjUPcV0Y_ks,16101
32
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=SUoFFvpl4Eb308sYBp6FNbZls-4G69eg8wSeuPs0oAg,11765
33
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
34
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=jmsNs7MYHm-PncuG20m_TSqXbM5jXx_vHsoH-hReEFQ,14271
35
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
36
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py,sha256=e0ZADjB0myq1QcdwYxlVYl6tGFs4tVZIfBoV1xkdFuw,7337
37
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=9YQgyYmcGSL2rEgIfhZZxTIlj5v-Z6-ygBqYR6ly3oE,4357
38
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
39
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
40
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
41
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
42
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
43
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
44
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
45
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
46
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
47
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
48
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
49
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
50
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
51
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
52
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
53
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=ge8VAMa8aJ58M5ccN5NMILFHuRYtYKzyoLF8fxxgGfo,7462
54
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
55
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=yAlMnLt9GrdT6Ceph5B7iFuMJXpDURiHWTE99oO8EDw,3417
56
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
57
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
58
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
59
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
60
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
61
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
62
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
63
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=9VcJPWKgSrWDFEXUY6ZCpAT2XGbOVA4a1j_XgfJBnTM,839
64
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py,sha256=SsY1-AQt0mFTJGP5yzVxZvopNz2tSeXUO9p9c_3uVus,7820
65
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py,sha256=tsAlM18nzfIQxic7Ry986Ue0ovUdbopWFNckqQLK5xU,10776
66
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
67
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
68
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
69
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
70
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
71
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
72
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
73
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
74
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
75
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
76
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
77
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
78
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
79
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
80
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
81
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
82
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
83
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
84
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=wH4LT6QIoe7xM3btaUBC7fpKJcqKLfNHJj16rAaEZ1k,12797
85
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-SfYz2bUMLaosYg_qeTBYf1Ra-bFuGmI62xIerf3XeE,11262
86
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=9nbRaPCoDQ5SBGH_jLgcaX_PWGDh667w-gW5X2YbHBM,4764
87
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=fZ9oVpKkgH5OYBXo4mPdZ-8cP07hSzPHoJsyItpXmcQ,12470
88
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=NIWVUu7NjV4Fe4L-Y4vIqd3KePFdMJ1-jupeH4ZvNsg,4733
89
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
90
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=zRNpggSrZs4H0L-__UuiYRPm_ASqrqWm226ZQzlBQ7I,6252
91
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py,sha256=MYx0y7oomArxWu9qe2zNs7YL-ScPGFnzvw8PZ1or04A,1813
92
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
93
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=FTtQgaa7p5ScDGscB93LkpU4B3DzfqnVMi84b2vSL30,10957
94
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
95
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=NziTP4GwZEDoBe1CDvhHZnp8JpwjYQmCNvXEDfS7Wo4,4313
96
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
97
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=LKi-x0ELu_y5HEa86UYhDzOalJphiEBtEe5own89PEs,14782
98
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py,sha256=49WnqTcAaGGa5eP7RBwEePvr_dA9hfYsCK4-pZA8OPw,9984
99
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
100
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=ohr8gOgEFgrccLecllMVYQPqbqqyye9uT-cWLtyxHFs,3167
101
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
102
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
103
+ scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py,sha256=AzJRY71X0VvDUicUI8Ey9Le6_yKp5O-3ZikhDVJNWms,2943
104
+ scikit_learn_intelex-2024.6.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
105
+ scikit_learn_intelex-2024.6.0.dist-info/METADATA,sha256=5EaxEdRCGbRZSbI2UugxUxEWAj224Gnx0QNJOAh56ck,12674
106
+ scikit_learn_intelex-2024.6.0.dist-info/WHEEL,sha256=9oBDzQrLL1cL83fmIoCoe1FAIp1bUM-WzBgOOhljzh8,99
107
+ scikit_learn_intelex-2024.6.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
108
+ scikit_learn_intelex-2024.6.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.37.1)
2
+ Generator: bdist_wheel (0.43.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py39-none-win_amd64
5
5