scikit-learn-intelex 2024.4.0__py39-none-win_amd64.whl → 2024.6.0__py39-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (113) hide show
  1. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +8 -1
  2. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
  3. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -0
  4. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  5. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/conftest.py +11 -1
  6. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  7. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  8. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +68 -13
  9. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +6 -4
  10. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +46 -1
  11. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +114 -22
  12. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +13 -3
  13. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  14. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  15. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +464 -0
  16. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +27 -9
  17. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -15
  18. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  19. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +2 -2
  20. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +24 -0
  21. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  22. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  23. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  24. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +228 -0
  25. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  26. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +330 -0
  27. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +40 -4
  28. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +31 -2
  29. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +40 -4
  30. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +31 -2
  31. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +70 -29
  32. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +54 -0
  33. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +290 -0
  34. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +4 -0
  35. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +22 -10
  36. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +283 -0
  37. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/_namespace.py +1 -1
  38. scikit_learn_intelex-2024.6.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +230 -230
  40. scikit_learn_intelex-2024.6.0.dist-info/RECORD +108 -0
  41. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -185
  44. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -227
  45. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  46. scikit_learn_intelex-2024.4.0.dist-info/RECORD +0 -101
  47. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  49. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  50. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  51. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  53. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +0 -0
  54. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  56. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  57. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  60. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  61. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  63. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  64. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  65. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  66. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  68. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  69. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  71. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  72. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  73. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  74. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  75. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  76. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +0 -0
  78. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  79. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  80. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  81. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  84. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  86. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  87. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  90. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  92. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  93. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  94. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  95. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  96. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  97. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  99. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  108. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  109. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  110. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  111. {scikit_learn_intelex-2024.4.0.data → scikit_learn_intelex-2024.6.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  112. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
  113. {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
@@ -127,8 +127,15 @@ def _transfer_to_host(queue, *data):
127
127
  queue = usm_iface["syclobj"]
128
128
 
129
129
  buffer = as_usm_memory(item).copy_to_host()
130
+ order = "C"
131
+ if usm_iface["strides"] is not None:
132
+ if usm_iface["strides"][0] < usm_iface["strides"][1]:
133
+ order = "F"
130
134
  item = np.ndarray(
131
- shape=usm_iface["shape"], dtype=usm_iface["typestr"], buffer=buffer
135
+ shape=usm_iface["shape"],
136
+ dtype=usm_iface["typestr"],
137
+ buffer=buffer,
138
+ order=order,
132
139
  )
133
140
  has_usm_data = True
134
141
  else:
@@ -165,7 +165,7 @@ def test_partial_fit_multiple_options_on_random_data(
165
165
  expected_sum(X),
166
166
  )
167
167
 
168
- tol = 1e-5 if res_mean.dtype == np.float32 else 1e-7
168
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
169
169
  assert_allclose(gtr_mean, res_mean, atol=tol)
170
170
  assert_allclose(gtr_max, res_max, atol=tol)
171
171
  assert_allclose(gtr_sum, res_sum, atol=tol)
@@ -208,7 +208,6 @@ def test_partial_fit_all_option_on_random_data(
208
208
 
209
209
  for option in options_and_tests:
210
210
  result_option, function, tols = option
211
- print(result_option)
212
211
  fp32tol, fp64tol = tols
213
212
  res = getattr(result, result_option)
214
213
  if weighted:
@@ -301,7 +300,7 @@ def test_fit_single_option_on_random_data(
301
300
  @pytest.mark.parametrize("column_count", [10, 100])
302
301
  @pytest.mark.parametrize("weighted", [True, False])
303
302
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
304
- def test_partial_fit_multiple_options_on_random_data(
303
+ def test_fit_multiple_options_on_random_data(
305
304
  dataframe, queue, num_batches, row_count, column_count, weighted, dtype
306
305
  ):
307
306
  seed = 77
@@ -375,7 +374,6 @@ def test_fit_all_option_on_random_data(
375
374
 
376
375
  for option in options_and_tests:
377
376
  result_option, function, tols = option
378
- print(result_option)
379
377
  fp32tol, fp64tol = tols
380
378
  res = getattr(result, result_option)
381
379
  if weighted:
@@ -85,6 +85,9 @@ class DBSCAN(sklearn_DBSCAN, BaseDBSCAN):
85
85
  self.n_jobs = n_jobs
86
86
 
87
87
  def _onedal_fit(self, X, y, sample_weight=None, queue=None):
88
+ if sklearn_check_version("1.0"):
89
+ X = self._validate_data(X, force_all_finite=False)
90
+
88
91
  onedal_params = {
89
92
  "eps": self.eps,
90
93
  "min_samples": self.min_samples,
@@ -18,16 +18,18 @@ import numpy as np
18
18
  import pytest
19
19
  from numpy.testing import assert_allclose
20
20
 
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
21
25
 
22
- # TODO:
23
- # adding this parameterized testing
24
- # somehow breaks other test with preview module patch:
25
- # sklearnex/tests/test_monkeypatch.py::test_preview_namespace.
26
- # @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
27
- def test_sklearnex_import_dbscan():
26
+
27
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
28
+ def test_sklearnex_import_dbscan(dataframe, queue):
28
29
  from sklearnex.cluster import DBSCAN
29
30
 
30
31
  X = np.array([[1, 2], [2, 2], [2, 3], [8, 7], [8, 8], [25, 80]])
32
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
31
33
  dbscan = DBSCAN(eps=3, min_samples=2).fit(X)
32
34
  assert "sklearnex" in dbscan.__module__
33
35
 
@@ -19,7 +19,8 @@ import logging
19
19
 
20
20
  import pytest
21
21
 
22
- from sklearnex import patch_sklearn, unpatch_sklearn
22
+ from daal4py.sklearn._utils import sklearn_check_version
23
+ from sklearnex import config_context, patch_sklearn, unpatch_sklearn
23
24
 
24
25
 
25
26
  def pytest_configure(config):
@@ -61,3 +62,12 @@ def with_sklearnex():
61
62
  patch_sklearn()
62
63
  yield
63
64
  unpatch_sklearn()
65
+
66
+
67
+ @pytest.fixture
68
+ def with_array_api():
69
+ if sklearn_check_version("1.2"):
70
+ with config_context(array_api_dispatch=True):
71
+ yield
72
+ else:
73
+ yield
@@ -0,0 +1,317 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ import warnings
19
+
20
+ import numpy as np
21
+ from scipy import linalg
22
+ from sklearn.base import BaseEstimator
23
+ from sklearn.covariance import EmpiricalCovariance as sklearn_EmpiricalCovariance
24
+ from sklearn.utils import check_array, gen_batches
25
+
26
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
27
+ from daal4py.sklearn._utils import daal_check_version, sklearn_check_version
28
+ from onedal._device_offload import support_usm_ndarray
29
+ from onedal.covariance import (
30
+ IncrementalEmpiricalCovariance as onedal_IncrementalEmpiricalCovariance,
31
+ )
32
+ from sklearnex import config_context
33
+
34
+ from .._device_offload import dispatch, wrap_output_data
35
+ from .._utils import PatchingConditionsChain, register_hyperparameters
36
+ from ..metrics import pairwise_distances
37
+
38
+ if sklearn_check_version("1.2"):
39
+ from sklearn.utils._param_validation import Interval
40
+
41
+
42
+ @control_n_jobs(decorated_methods=["partial_fit", "fit", "_onedal_finalize_fit"])
43
+ class IncrementalEmpiricalCovariance(BaseEstimator):
44
+ """
45
+ Incremental estimator for covariance.
46
+ Allows to compute empirical covariance estimated by maximum
47
+ likelihood method if data are splitted into batches.
48
+
49
+ Parameters
50
+ ----------
51
+ store_precision : bool, default=False
52
+ Specifies if the estimated precision is stored.
53
+
54
+ assume_centered : bool, default=False
55
+ If True, data are not centered before computation.
56
+ Useful when working with data whose mean is almost, but not exactly
57
+ zero.
58
+ If False (default), data are centered before computation.
59
+
60
+ batch_size : int, default=None
61
+ The number of samples to use for each batch. Only used when calling
62
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
63
+ is inferred from the data and set to ``5 * n_features``, to provide a
64
+ balance between approximation accuracy and memory consumption.
65
+
66
+ copy : bool, default=True
67
+ If False, X will be overwritten. ``copy=False`` can be used to
68
+ save memory but is unsafe for general use.
69
+
70
+ Attributes
71
+ ----------
72
+ location_ : ndarray of shape (n_features,)
73
+ Estimated location, i.e. the estimated mean.
74
+
75
+ covariance_ : ndarray of shape (n_features, n_features)
76
+ Estimated covariance matrix
77
+
78
+ n_samples_seen_ : int
79
+ The number of samples processed by the estimator. Will be reset on
80
+ new calls to fit, but increments across ``partial_fit`` calls.
81
+
82
+ batch_size_ : int
83
+ Inferred batch size from ``batch_size``.
84
+
85
+ n_features_in_ : int
86
+ Number of features seen during :term:`fit` `partial_fit`.
87
+ """
88
+
89
+ _onedal_incremental_covariance = staticmethod(onedal_IncrementalEmpiricalCovariance)
90
+
91
+ if sklearn_check_version("1.2"):
92
+ _parameter_constraints: dict = {
93
+ "store_precision": ["boolean"],
94
+ "assume_centered": ["boolean"],
95
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
96
+ "copy": ["boolean"],
97
+ }
98
+
99
+ get_precision = sklearn_EmpiricalCovariance.get_precision
100
+ error_norm = wrap_output_data(sklearn_EmpiricalCovariance.error_norm)
101
+ score = wrap_output_data(sklearn_EmpiricalCovariance.score)
102
+
103
+ def __init__(
104
+ self, *, store_precision=False, assume_centered=False, batch_size=None, copy=True
105
+ ):
106
+ self.assume_centered = assume_centered
107
+ self.store_precision = store_precision
108
+ self.batch_size = batch_size
109
+ self.copy = copy
110
+
111
+ def _onedal_supported(self, method_name, *data):
112
+ patching_status = PatchingConditionsChain(
113
+ f"sklearn.covariance.{self.__class__.__name__}.{method_name}"
114
+ )
115
+ return patching_status
116
+
117
+ def _onedal_finalize_fit(self):
118
+ assert hasattr(self, "_onedal_estimator")
119
+ self._onedal_estimator.finalize_fit()
120
+ self._need_to_finalize = False
121
+
122
+ if not daal_check_version((2024, "P", 400)) and self.assume_centered:
123
+ location = self._onedal_estimator.location_[None, :]
124
+ self._onedal_estimator.covariance_ += np.dot(location.T, location)
125
+ self._onedal_estimator.location_ = np.zeros_like(np.squeeze(location))
126
+ if self.store_precision:
127
+ self.precision_ = linalg.pinvh(
128
+ self._onedal_estimator.covariance_, check_finite=False
129
+ )
130
+ else:
131
+ self.precision_ = None
132
+
133
+ @property
134
+ def covariance_(self):
135
+ if hasattr(self, "_onedal_estimator"):
136
+ if self._need_to_finalize:
137
+ self._onedal_finalize_fit()
138
+ return self._onedal_estimator.covariance_
139
+ else:
140
+ raise AttributeError(
141
+ f"'{self.__class__.__name__}' object has no attribute 'covariance_'"
142
+ )
143
+
144
+ @property
145
+ def location_(self):
146
+ if hasattr(self, "_onedal_estimator"):
147
+ if self._need_to_finalize:
148
+ self._onedal_finalize_fit()
149
+ return self._onedal_estimator.location_
150
+ else:
151
+ raise AttributeError(
152
+ f"'{self.__class__.__name__}' object has no attribute 'location_'"
153
+ )
154
+
155
+ def _onedal_partial_fit(self, X, queue=None, check_input=True):
156
+
157
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
158
+
159
+ # finite check occurs on onedal side
160
+ if check_input:
161
+ if sklearn_check_version("1.2"):
162
+ self._validate_params()
163
+
164
+ if sklearn_check_version("1.0"):
165
+ X = self._validate_data(
166
+ X,
167
+ dtype=[np.float64, np.float32],
168
+ reset=first_pass,
169
+ copy=self.copy,
170
+ force_all_finite=False,
171
+ )
172
+ else:
173
+ X = check_array(
174
+ X,
175
+ dtype=[np.float64, np.float32],
176
+ copy=self.copy,
177
+ force_all_finite=False,
178
+ )
179
+
180
+ onedal_params = {
181
+ "method": "dense",
182
+ "bias": True,
183
+ "assume_centered": self.assume_centered,
184
+ }
185
+ if not hasattr(self, "_onedal_estimator"):
186
+ self._onedal_estimator = self._onedal_incremental_covariance(**onedal_params)
187
+ try:
188
+ if first_pass:
189
+ self.n_samples_seen_ = X.shape[0]
190
+ self.n_features_in_ = X.shape[1]
191
+ else:
192
+ self.n_samples_seen_ += X.shape[0]
193
+
194
+ self._onedal_estimator.partial_fit(X, queue)
195
+ finally:
196
+ self._need_to_finalize = True
197
+
198
+ return self
199
+
200
+ def partial_fit(self, X, y=None, check_input=True):
201
+ """
202
+ Incremental fit with X. All of X is processed as a single batch.
203
+
204
+ Parameters
205
+ ----------
206
+ X : array-like of shape (n_samples, n_features)
207
+ Training data, where `n_samples` is the number of samples and
208
+ `n_features` is the number of features.
209
+
210
+ y : Ignored
211
+ Not used, present for API consistency by convention.
212
+
213
+ check_input : bool, default=True
214
+ Run check_array on X.
215
+
216
+ Returns
217
+ -------
218
+ self : object
219
+ Returns the instance itself.
220
+ """
221
+ return dispatch(
222
+ self,
223
+ "partial_fit",
224
+ {
225
+ "onedal": self.__class__._onedal_partial_fit,
226
+ "sklearn": None,
227
+ },
228
+ X,
229
+ check_input=check_input,
230
+ )
231
+
232
+ def fit(self, X, y=None):
233
+ """
234
+ Fit the model with X, using minibatches of size batch_size.
235
+
236
+ Parameters
237
+ ----------
238
+ X : array-like of shape (n_samples, n_features)
239
+ Training data, where `n_samples` is the number of samples and
240
+ `n_features` is the number of features.
241
+
242
+ y : Ignored
243
+ Not used, present for API consistency by convention.
244
+
245
+ Returns
246
+ -------
247
+ self : object
248
+ Returns the instance itself.
249
+ """
250
+
251
+ return dispatch(
252
+ self,
253
+ "fit",
254
+ {
255
+ "onedal": self.__class__._onedal_fit,
256
+ "sklearn": None,
257
+ },
258
+ X,
259
+ )
260
+
261
+ def _onedal_fit(self, X, queue=None):
262
+ self.n_samples_seen_ = 0
263
+ if hasattr(self, "_onedal_estimator"):
264
+ self._onedal_estimator._reset()
265
+
266
+ if sklearn_check_version("1.2"):
267
+ self._validate_params()
268
+
269
+ # finite check occurs on onedal side
270
+ if sklearn_check_version("1.0"):
271
+ X = self._validate_data(
272
+ X, dtype=[np.float64, np.float32], copy=self.copy, force_all_finite=False
273
+ )
274
+ else:
275
+ X = check_array(
276
+ X, dtype=[np.float64, np.float32], copy=self.copy, force_all_finite=False
277
+ )
278
+ self.n_features_in_ = X.shape[1]
279
+
280
+ self.batch_size_ = self.batch_size if self.batch_size else 5 * self.n_features_in_
281
+
282
+ if X.shape[0] == 1:
283
+ warnings.warn(
284
+ "Only one sample available. You may want to reshape your data array"
285
+ )
286
+
287
+ for batch in gen_batches(X.shape[0], self.batch_size_):
288
+ X_batch = X[batch]
289
+ self._onedal_partial_fit(X_batch, queue=queue, check_input=False)
290
+
291
+ self._onedal_finalize_fit()
292
+
293
+ return self
294
+
295
+ # expose sklearnex pairwise_distances if mahalanobis distance eventually supported
296
+ @wrap_output_data
297
+ def mahalanobis(self, X):
298
+ if sklearn_check_version("1.0"):
299
+ self._validate_data(X, reset=False, copy=self.copy)
300
+ else:
301
+ check_array(X, copy=self.copy)
302
+
303
+ precision = self.get_precision()
304
+ with config_context(assume_finite=True):
305
+ # compute mahalanobis distances
306
+ dist = pairwise_distances(
307
+ X, self.location_[np.newaxis, :], metric="mahalanobis", VI=precision
308
+ )
309
+
310
+ return np.reshape(dist, (len(X),)) ** 2
311
+
312
+ _onedal_cpu_supported = _onedal_supported
313
+ _onedal_gpu_supported = _onedal_supported
314
+
315
+ mahalanobis.__doc__ = sklearn_EmpiricalCovariance.mahalanobis.__doc__
316
+ error_norm.__doc__ = sklearn_EmpiricalCovariance.error_norm.__doc__
317
+ score.__doc__ = sklearn_EmpiricalCovariance.score.__doc__
@@ -17,6 +17,10 @@
17
17
  import numpy as np
18
18
  import pytest
19
19
  from numpy.testing import assert_allclose
20
+ from sklearn.covariance.tests.test_covariance import (
21
+ test_covariance,
22
+ test_EmpiricalCovariance_validates_mahalanobis,
23
+ )
20
24
 
21
25
  from onedal.tests.utils._dataframes_support import (
22
26
  _convert_to_dataframe,
@@ -26,13 +30,14 @@ from onedal.tests.utils._dataframes_support import (
26
30
 
27
31
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
28
32
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
29
- def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
33
+ @pytest.mark.parametrize("assume_centered", [True, False])
34
+ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype, assume_centered):
30
35
  from sklearnex.covariance import IncrementalEmpiricalCovariance
31
36
 
32
37
  X = np.array([[0, 1], [0, 1]])
33
38
  X = X.astype(dtype)
34
39
  X_split = np.array_split(X, 2)
35
- inccov = IncrementalEmpiricalCovariance()
40
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
36
41
 
37
42
  for i in range(2):
38
43
  X_split_df = _convert_to_dataframe(
@@ -40,8 +45,12 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
40
45
  )
41
46
  result = inccov.partial_fit(X_split_df)
42
47
 
43
- expected_covariance = np.array([[0, 0], [0, 0]])
44
- expected_means = np.array([0, 1])
48
+ if assume_centered:
49
+ expected_covariance = np.array([[0, 0], [0, 1]])
50
+ expected_means = np.array([0, 0])
51
+ else:
52
+ expected_covariance = np.array([[0, 0], [0, 0]])
53
+ expected_means = np.array([0, 1])
45
54
 
46
55
  assert_allclose(expected_covariance, result.covariance_)
47
56
  assert_allclose(expected_means, result.location_)
@@ -49,7 +58,7 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
49
58
  X = np.array([[1, 2], [3, 6]])
50
59
  X = X.astype(dtype)
51
60
  X_split = np.array_split(X, 2)
52
- inccov = IncrementalEmpiricalCovariance()
61
+ inccov = IncrementalEmpiricalCovariance(assume_centered=assume_centered)
53
62
 
54
63
  for i in range(2):
55
64
  X_split_df = _convert_to_dataframe(
@@ -57,8 +66,12 @@ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
57
66
  )
58
67
  result = inccov.partial_fit(X_split_df)
59
68
 
60
- expected_covariance = np.array([[1, 2], [2, 4]])
61
- expected_means = np.array([2, 4])
69
+ if assume_centered:
70
+ expected_covariance = np.array([[5, 10], [10, 20]])
71
+ expected_means = np.array([0, 0])
72
+ else:
73
+ expected_covariance = np.array([[1, 2], [2, 4]])
74
+ expected_means = np.array([2, 4])
62
75
 
63
76
  assert_allclose(expected_covariance, result.covariance_)
64
77
  assert_allclose(expected_means, result.location_)
@@ -87,9 +100,9 @@ def test_sklearnex_fit_on_gold_data(dataframe, queue, batch_size, dtype):
87
100
 
88
101
 
89
102
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
90
- @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
91
- @pytest.mark.parametrize("row_count", [100, 1000, 2000])
92
- @pytest.mark.parametrize("column_count", [10, 100, 200])
103
+ @pytest.mark.parametrize("num_batches", [2, 10])
104
+ @pytest.mark.parametrize("row_count", [100, 1000])
105
+ @pytest.mark.parametrize("column_count", [10, 100])
93
106
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
107
  def test_sklearnex_partial_fit_on_random_data(
95
108
  dataframe, queue, num_batches, row_count, column_count, dtype
@@ -117,12 +130,13 @@ def test_sklearnex_partial_fit_on_random_data(
117
130
 
118
131
 
119
132
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
120
- @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
121
- @pytest.mark.parametrize("row_count", [100, 1000, 2000])
122
- @pytest.mark.parametrize("column_count", [10, 100, 200])
133
+ @pytest.mark.parametrize("num_batches", [2, 10])
134
+ @pytest.mark.parametrize("row_count", [100, 1000])
135
+ @pytest.mark.parametrize("column_count", [10, 100])
123
136
  @pytest.mark.parametrize("dtype", [np.float32, np.float64])
137
+ @pytest.mark.parametrize("assume_centered", [True, False])
124
138
  def test_sklearnex_fit_on_random_data(
125
- dataframe, queue, num_batches, row_count, column_count, dtype
139
+ dataframe, queue, num_batches, row_count, column_count, dtype, assume_centered
126
140
  ):
127
141
  from sklearnex.covariance import IncrementalEmpiricalCovariance
128
142
 
@@ -132,12 +146,35 @@ def test_sklearnex_fit_on_random_data(
132
146
  X = X.astype(dtype)
133
147
  X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
134
148
  batch_size = row_count // num_batches
135
- inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
149
+ inccov = IncrementalEmpiricalCovariance(
150
+ batch_size=batch_size, assume_centered=assume_centered
151
+ )
136
152
 
137
153
  result = inccov.fit(X_df)
138
154
 
139
- expected_covariance = np.cov(X.T, bias=1)
140
- expected_means = np.mean(X, axis=0)
155
+ if assume_centered:
156
+ expected_covariance = np.dot(X.T, X) / X.shape[0]
157
+ expected_means = np.zeros_like(X[0])
158
+ else:
159
+ expected_covariance = np.cov(X.T, bias=1)
160
+ expected_means = np.mean(X, axis=0)
141
161
 
142
162
  assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
143
163
  assert_allclose(expected_means, result.location_, atol=1e-6)
164
+
165
+
166
+ # Monkeypatch IncrementalEmpiricalCovariance into relevant sklearn.covariance tests
167
+ @pytest.mark.allow_sklearn_fallback
168
+ @pytest.mark.parametrize(
169
+ "sklearn_test",
170
+ [
171
+ test_covariance,
172
+ test_EmpiricalCovariance_validates_mahalanobis,
173
+ ],
174
+ )
175
+ def test_IncrementalEmpiricalCovariance_against_sklearn(monkeypatch, sklearn_test):
176
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
177
+
178
+ class_name = ".".join([sklearn_test.__module__, "EmpiricalCovariance"])
179
+ monkeypatch.setattr(class_name, IncrementalEmpiricalCovariance)
180
+ sklearn_test()