scikit-learn-intelex 2024.3.0__py310-none-manylinux1_x86_64.whl → 2024.5.0__py310-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (43) hide show
  1. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +2 -2
  2. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/RECORD +43 -37
  3. sklearnex/_device_offload.py +39 -5
  4. sklearnex/basic_statistics/__init__.py +2 -1
  5. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  6. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  7. sklearnex/covariance/incremental_covariance.py +217 -30
  8. sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  9. sklearnex/decomposition/pca.py +71 -19
  10. sklearnex/decomposition/tests/test_pca.py +2 -2
  11. sklearnex/dispatcher.py +33 -2
  12. sklearnex/ensemble/_forest.py +73 -79
  13. sklearnex/linear_model/__init__.py +5 -3
  14. sklearnex/linear_model/incremental_linear.py +387 -0
  15. sklearnex/linear_model/linear.py +275 -340
  16. sklearnex/linear_model/logistic_regression.py +50 -9
  17. sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  18. sklearnex/linear_model/tests/test_linear.py +40 -5
  19. sklearnex/neighbors/_lof.py +53 -36
  20. sklearnex/neighbors/common.py +4 -1
  21. sklearnex/neighbors/knn_classification.py +37 -122
  22. sklearnex/neighbors/knn_regression.py +10 -117
  23. sklearnex/neighbors/knn_unsupervised.py +6 -78
  24. sklearnex/neighbors/tests/test_neighbors.py +2 -2
  25. sklearnex/preview/cluster/k_means.py +5 -73
  26. sklearnex/preview/covariance/covariance.py +6 -5
  27. sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  28. sklearnex/svm/_common.py +4 -7
  29. sklearnex/svm/nusvc.py +66 -50
  30. sklearnex/svm/nusvr.py +3 -49
  31. sklearnex/svm/svc.py +66 -51
  32. sklearnex/svm/svr.py +3 -49
  33. sklearnex/tests/_utils.py +34 -16
  34. sklearnex/tests/test_memory_usage.py +5 -1
  35. sklearnex/tests/test_n_jobs_support.py +12 -2
  36. sklearnex/tests/test_patching.py +87 -58
  37. sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
  38. sklearnex/utils/__init__.py +2 -1
  39. sklearnex/utils/_namespace.py +97 -0
  40. sklearnex/utils/tests/test_finite.py +89 -0
  41. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
  42. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +0 -0
  43. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
sklearnex/dispatcher.py CHANGED
@@ -93,6 +93,7 @@ def get_patch_map_core(preview=False):
93
93
  # Scikit-learn* modules
94
94
  import sklearn as base_module
95
95
  import sklearn.cluster as cluster_module
96
+ import sklearn.covariance as covariance_module
96
97
  import sklearn.decomposition as decomposition_module
97
98
  import sklearn.ensemble as ensemble_module
98
99
  import sklearn.linear_model as linear_model_module
@@ -115,11 +116,17 @@ def get_patch_map_core(preview=False):
115
116
  from .utils.parallel import _FuncWrapperOld as _FuncWrapper_sklearnex
116
117
 
117
118
  from .cluster import DBSCAN as DBSCAN_sklearnex
119
+ from .covariance import (
120
+ IncrementalEmpiricalCovariance as IncrementalEmpiricalCovariance_sklearnex,
121
+ )
118
122
  from .decomposition import PCA as PCA_sklearnex
119
123
  from .ensemble import ExtraTreesClassifier as ExtraTreesClassifier_sklearnex
120
124
  from .ensemble import ExtraTreesRegressor as ExtraTreesRegressor_sklearnex
121
125
  from .ensemble import RandomForestClassifier as RandomForestClassifier_sklearnex
122
126
  from .ensemble import RandomForestRegressor as RandomForestRegressor_sklearnex
127
+ from .linear_model import (
128
+ IncrementalLinearRegression as IncrementalLinearRegression_sklearnex,
129
+ )
123
130
  from .linear_model import LinearRegression as LinearRegression_sklearnex
124
131
  from .linear_model import LogisticRegression as LogisticRegression_sklearnex
125
132
  from .neighbors import KNeighborsClassifier as KNeighborsClassifier_sklearnex
@@ -273,6 +280,30 @@ def get_patch_map_core(preview=False):
273
280
  ]
274
281
  mapping["localoutlierfactor"] = mapping["lof"]
275
282
 
283
+ # IncrementalEmpiricalCovariance
284
+ mapping["incrementalempiricalcovariance"] = [
285
+ [
286
+ (
287
+ covariance_module,
288
+ "IncrementalEmpiricalCovariance",
289
+ IncrementalEmpiricalCovariance_sklearnex,
290
+ ),
291
+ None,
292
+ ]
293
+ ]
294
+
295
+ # IncrementalLinearRegression
296
+ mapping["incrementallinearregression"] = [
297
+ [
298
+ (
299
+ linear_model_module,
300
+ "IncrementalLinearRegression",
301
+ IncrementalLinearRegression_sklearnex,
302
+ ),
303
+ None,
304
+ ]
305
+ ]
306
+
276
307
  # Configs
277
308
  mapping["set_config"] = [
278
309
  [(base_module, "set_config", set_config_sklearnex), None]
@@ -314,10 +345,10 @@ def get_patch_names():
314
345
  def patch_sklearn(name=None, verbose=True, global_patch=False, preview=False):
315
346
  if preview:
316
347
  os.environ["SKLEARNEX_PREVIEW"] = "enabled_via_patch_sklearn"
317
- if not sklearn_check_version("0.22"):
348
+ if not sklearn_check_version("0.24"):
318
349
  raise NotImplementedError(
319
350
  "Intel(R) Extension for Scikit-learn* patches apply "
320
- "for scikit-learn >= 0.22 only ..."
351
+ "for scikit-learn >= 0.24 only ..."
321
352
  )
322
353
 
323
354
  if global_patch:
@@ -25,8 +25,11 @@ from sklearn.ensemble import ExtraTreesClassifier as sklearn_ExtraTreesClassifie
25
25
  from sklearn.ensemble import ExtraTreesRegressor as sklearn_ExtraTreesRegressor
26
26
  from sklearn.ensemble import RandomForestClassifier as sklearn_RandomForestClassifier
27
27
  from sklearn.ensemble import RandomForestRegressor as sklearn_RandomForestRegressor
28
+ from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
29
+ from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
28
30
  from sklearn.ensemble._forest import _get_n_samples_bootstrap
29
31
  from sklearn.exceptions import DataConversionWarning
32
+ from sklearn.metrics import accuracy_score
30
33
  from sklearn.tree import (
31
34
  DecisionTreeClassifier,
32
35
  DecisionTreeRegressor,
@@ -35,12 +38,7 @@ from sklearn.tree import (
35
38
  )
36
39
  from sklearn.tree._tree import Tree
37
40
  from sklearn.utils import check_random_state, deprecated
38
- from sklearn.utils.validation import (
39
- check_array,
40
- check_consistent_length,
41
- check_is_fitted,
42
- check_X_y,
43
- )
41
+ from sklearn.utils.validation import check_array, check_is_fitted
44
42
 
45
43
  from daal4py.sklearn._n_jobs_support import control_n_jobs
46
44
  from daal4py.sklearn._utils import (
@@ -52,19 +50,10 @@ from onedal.ensemble import ExtraTreesClassifier as onedal_ExtraTreesClassifier
52
50
  from onedal.ensemble import ExtraTreesRegressor as onedal_ExtraTreesRegressor
53
51
  from onedal.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
54
52
  from onedal.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
55
-
56
- # try catch needed for changes in structures observed in Scikit-learn around v0.22
57
- try:
58
- from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
59
- from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
60
- except ModuleNotFoundError:
61
- from sklearn.ensemble.forest import ForestClassifier as sklearn_ForestClassifier
62
- from sklearn.ensemble.forest import ForestRegressor as sklearn_ForestRegressor
63
-
64
53
  from onedal.primitives import get_tree_state_cls, get_tree_state_reg
65
54
  from onedal.utils import _num_features, _num_samples
55
+ from sklearnex.utils import get_namespace
66
56
 
67
- from .._config import get_config
68
57
  from .._device_offload import dispatch, wrap_output_data
69
58
  from .._utils import PatchingConditionsChain
70
59
 
@@ -78,24 +67,14 @@ class BaseForest(ABC):
78
67
  _onedal_factory = None
79
68
 
80
69
  def _onedal_fit(self, X, y, sample_weight=None, queue=None):
81
- if sklearn_check_version("0.24"):
82
- X, y = self._validate_data(
83
- X,
84
- y,
85
- multi_output=False,
86
- accept_sparse=False,
87
- dtype=[np.float64, np.float32],
88
- force_all_finite=False,
89
- )
90
- else:
91
- X, y = check_X_y(
92
- X,
93
- y,
94
- accept_sparse=False,
95
- dtype=[np.float64, np.float32],
96
- multi_output=False,
97
- force_all_finite=False,
98
- )
70
+ X, y = self._validate_data(
71
+ X,
72
+ y,
73
+ multi_output=False,
74
+ accept_sparse=False,
75
+ dtype=[np.float64, np.float32],
76
+ force_all_finite=False,
77
+ )
99
78
 
100
79
  if sample_weight is not None:
101
80
  sample_weight = self.check_sample_weight(sample_weight, X)
@@ -173,15 +152,6 @@ class BaseForest(ABC):
173
152
 
174
153
  return self
175
154
 
176
- def _fit_proba(self, X, y, sample_weight=None, queue=None):
177
- params = self.get_params()
178
- self.__class__(**params)
179
-
180
- # We use stock metaestimators below, so the only way
181
- # to pass a queue is using config_context.
182
- cfg = get_config()
183
- cfg["target_offload"] = queue
184
-
185
155
  def _save_attributes(self):
186
156
  if self.oob_score:
187
157
  self.oob_score_ = self._onedal_estimator.oob_score_
@@ -204,8 +174,6 @@ class BaseForest(ABC):
204
174
  self._validate_estimator()
205
175
  return self
206
176
 
207
- # TODO:
208
- # move to onedal modul.
209
177
  def _check_parameters(self):
210
178
  if isinstance(self.min_samples_leaf, numbers.Integral):
211
179
  if not 1 <= self.min_samples_leaf:
@@ -550,18 +518,14 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
550
518
  )
551
519
 
552
520
  if patching_status.get_status():
553
- if sklearn_check_version("0.24"):
554
- X, y = self._validate_data(
555
- X,
556
- y,
557
- multi_output=True,
558
- accept_sparse=True,
559
- dtype=[np.float64, np.float32],
560
- force_all_finite=False,
561
- )
562
- else:
563
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
564
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
521
+ X, y = self._validate_data(
522
+ X,
523
+ y,
524
+ multi_output=True,
525
+ accept_sparse=True,
526
+ dtype=[np.float64, np.float32],
527
+ force_all_finite=False,
528
+ )
565
529
 
566
530
  if y.ndim == 2 and y.shape[1] == 1:
567
531
  warnings.warn(
@@ -655,9 +619,38 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
655
619
  X,
656
620
  )
657
621
 
622
+ def predict_log_proba(self, X):
623
+ xp, _ = get_namespace(X)
624
+ proba = self.predict_proba(X)
625
+
626
+ if self.n_outputs_ == 1:
627
+ return xp.log(proba)
628
+
629
+ else:
630
+ for k in range(self.n_outputs_):
631
+ proba[k] = xp.log(proba[k])
632
+
633
+ return proba
634
+
635
+ @wrap_output_data
636
+ def score(self, X, y, sample_weight=None):
637
+ return dispatch(
638
+ self,
639
+ "score",
640
+ {
641
+ "onedal": self.__class__._onedal_score,
642
+ "sklearn": sklearn_ForestClassifier.score,
643
+ },
644
+ X,
645
+ y,
646
+ sample_weight=sample_weight,
647
+ )
648
+
658
649
  fit.__doc__ = sklearn_ForestClassifier.fit.__doc__
659
650
  predict.__doc__ = sklearn_ForestClassifier.predict.__doc__
660
651
  predict_proba.__doc__ = sklearn_ForestClassifier.predict_proba.__doc__
652
+ predict_log_proba.__doc__ = sklearn_ForestClassifier.predict_log_proba.__doc__
653
+ score.__doc__ = sklearn_ForestClassifier.score.__doc__
661
654
 
662
655
  def _onedal_cpu_supported(self, method_name, *data):
663
656
  class_name = self.__class__.__name__
@@ -684,7 +677,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
684
677
  ]
685
678
  )
686
679
 
687
- elif method_name in ["predict", "predict_proba"]:
680
+ elif method_name in ["predict", "predict_proba", "score"]:
688
681
  X = data[0]
689
682
 
690
683
  patching_status.and_conditions(
@@ -749,7 +742,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
749
742
  ]
750
743
  )
751
744
 
752
- elif method_name in ["predict", "predict_proba"]:
745
+ elif method_name in ["predict", "predict_proba", "score"]:
753
746
  X = data[0]
754
747
 
755
748
  patching_status.and_conditions(
@@ -784,15 +777,16 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
784
777
  return patching_status
785
778
 
786
779
  def _onedal_predict(self, X, queue=None):
780
+ check_is_fitted(self, "_onedal_estimator")
781
+
782
+ if sklearn_check_version("1.0"):
783
+ self._check_feature_names(X, reset=False)
784
+
787
785
  X = check_array(
788
786
  X,
789
787
  dtype=[np.float64, np.float32],
790
788
  force_all_finite=False,
791
789
  ) # Warning, order of dtype matters
792
- check_is_fitted(self, "_onedal_estimator")
793
-
794
- if sklearn_check_version("1.0"):
795
- self._check_feature_names(X, reset=False)
796
790
 
797
791
  res = self._onedal_estimator.predict(X, queue=queue)
798
792
  return np.take(self.classes_, res.ravel().astype(np.int64, casting="unsafe"))
@@ -801,12 +795,16 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
801
795
  X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
802
796
  check_is_fitted(self, "_onedal_estimator")
803
797
 
804
- if sklearn_check_version("0.23"):
805
- self._check_n_features(X, reset=False)
798
+ self._check_n_features(X, reset=False)
806
799
  if sklearn_check_version("1.0"):
807
800
  self._check_feature_names(X, reset=False)
808
801
  return self._onedal_estimator.predict_proba(X, queue=queue)
809
802
 
803
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
804
+ return accuracy_score(
805
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
806
+ )
807
+
810
808
 
811
809
  class ForestRegressor(sklearn_ForestRegressor, BaseForest):
812
810
  _err = "out_of_bag_error_r2|out_of_bag_error_prediction"
@@ -916,18 +914,14 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
916
914
  )
917
915
 
918
916
  if patching_status.get_status():
919
- if sklearn_check_version("0.24"):
920
- X, y = self._validate_data(
921
- X,
922
- y,
923
- multi_output=True,
924
- accept_sparse=True,
925
- dtype=[np.float64, np.float32],
926
- force_all_finite=False,
927
- )
928
- else:
929
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
930
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
917
+ X, y = self._validate_data(
918
+ X,
919
+ y,
920
+ multi_output=True,
921
+ accept_sparse=True,
922
+ dtype=[np.float64, np.float32],
923
+ force_all_finite=False,
924
+ )
931
925
 
932
926
  if y.ndim == 2 and y.shape[1] == 1:
933
927
  warnings.warn(
@@ -1129,7 +1123,7 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
1129
1123
  predict.__doc__ = sklearn_ForestRegressor.predict.__doc__
1130
1124
 
1131
1125
 
1132
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1126
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1133
1127
  class RandomForestClassifier(ForestClassifier):
1134
1128
  __doc__ = sklearn_RandomForestClassifier.__doc__
1135
1129
  _onedal_factory = onedal_RandomForestClassifier
@@ -1540,7 +1534,7 @@ class RandomForestRegressor(ForestRegressor):
1540
1534
  self.min_bin_size = min_bin_size
1541
1535
 
1542
1536
 
1543
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1537
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1544
1538
  class ExtraTreesClassifier(ForestClassifier):
1545
1539
  __doc__ = sklearn_ExtraTreesClassifier.__doc__
1546
1540
  _onedal_factory = onedal_ExtraTreesClassifier
@@ -15,14 +15,16 @@
15
15
  # ===============================================================================
16
16
 
17
17
  from .coordinate_descent import ElasticNet, Lasso
18
+ from .incremental_linear import IncrementalLinearRegression
18
19
  from .linear import LinearRegression
19
20
  from .logistic_regression import LogisticRegression
20
21
  from .ridge import Ridge
21
22
 
22
23
  __all__ = [
23
- "Ridge",
24
- "LinearRegression",
25
- "LogisticRegression",
26
24
  "ElasticNet",
25
+ "IncrementalLinearRegression",
27
26
  "Lasso",
27
+ "LinearRegression",
28
+ "LogisticRegression",
29
+ "Ridge",
28
30
  ]