scikit-learn-intelex 2024.3.0__py310-none-manylinux1_x86_64.whl → 2024.5.0__py310-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (43) hide show
  1. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +2 -2
  2. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/RECORD +43 -37
  3. sklearnex/_device_offload.py +39 -5
  4. sklearnex/basic_statistics/__init__.py +2 -1
  5. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  6. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  7. sklearnex/covariance/incremental_covariance.py +217 -30
  8. sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  9. sklearnex/decomposition/pca.py +71 -19
  10. sklearnex/decomposition/tests/test_pca.py +2 -2
  11. sklearnex/dispatcher.py +33 -2
  12. sklearnex/ensemble/_forest.py +73 -79
  13. sklearnex/linear_model/__init__.py +5 -3
  14. sklearnex/linear_model/incremental_linear.py +387 -0
  15. sklearnex/linear_model/linear.py +275 -340
  16. sklearnex/linear_model/logistic_regression.py +50 -9
  17. sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  18. sklearnex/linear_model/tests/test_linear.py +40 -5
  19. sklearnex/neighbors/_lof.py +53 -36
  20. sklearnex/neighbors/common.py +4 -1
  21. sklearnex/neighbors/knn_classification.py +37 -122
  22. sklearnex/neighbors/knn_regression.py +10 -117
  23. sklearnex/neighbors/knn_unsupervised.py +6 -78
  24. sklearnex/neighbors/tests/test_neighbors.py +2 -2
  25. sklearnex/preview/cluster/k_means.py +5 -73
  26. sklearnex/preview/covariance/covariance.py +6 -5
  27. sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  28. sklearnex/svm/_common.py +4 -7
  29. sklearnex/svm/nusvc.py +66 -50
  30. sklearnex/svm/nusvr.py +3 -49
  31. sklearnex/svm/svc.py +66 -51
  32. sklearnex/svm/svr.py +3 -49
  33. sklearnex/tests/_utils.py +34 -16
  34. sklearnex/tests/test_memory_usage.py +5 -1
  35. sklearnex/tests/test_n_jobs_support.py +12 -2
  36. sklearnex/tests/test_patching.py +87 -58
  37. sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
  38. sklearnex/utils/__init__.py +2 -1
  39. sklearnex/utils/_namespace.py +97 -0
  40. sklearnex/utils/tests/test_finite.py +89 -0
  41. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
  42. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +0 -0
  43. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,384 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.basic_statistics.tests.test_incremental_basic_statistics import (
22
+ expected_max,
23
+ expected_mean,
24
+ expected_sum,
25
+ options_and_tests,
26
+ )
27
+ from onedal.tests.utils._dataframes_support import (
28
+ _convert_to_dataframe,
29
+ get_dataframes_and_queues,
30
+ )
31
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
32
+
33
+
34
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
35
+ @pytest.mark.parametrize("weighted", [True, False])
36
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
37
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
38
+ X = np.array([[0, 0], [1, 1]])
39
+ X = X.astype(dtype=dtype)
40
+ X_split = np.array_split(X, 2)
41
+ if weighted:
42
+ weights = np.array([1, 0.5])
43
+ weights = weights.astype(dtype=dtype)
44
+ weights_split = np.array_split(weights, 2)
45
+
46
+ incbs = IncrementalBasicStatistics()
47
+ for i in range(2):
48
+ X_split_df = _convert_to_dataframe(
49
+ X_split[i], sycl_queue=queue, target_df=dataframe
50
+ )
51
+ if weighted:
52
+ weights_split_df = _convert_to_dataframe(
53
+ weights_split[i], sycl_queue=queue, target_df=dataframe
54
+ )
55
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
56
+ else:
57
+ result = incbs.partial_fit(X_split_df)
58
+
59
+ if weighted:
60
+ expected_weighted_mean = np.array([0.25, 0.25])
61
+ expected_weighted_min = np.array([0, 0])
62
+ expected_weighted_max = np.array([0.5, 0.5])
63
+ assert_allclose(expected_weighted_mean, result.mean)
64
+ assert_allclose(expected_weighted_max, result.max)
65
+ assert_allclose(expected_weighted_min, result.min)
66
+ else:
67
+ expected_mean = np.array([0.5, 0.5])
68
+ expected_min = np.array([0, 0])
69
+ expected_max = np.array([1, 1])
70
+ assert_allclose(expected_mean, result.mean)
71
+ assert_allclose(expected_max, result.max)
72
+ assert_allclose(expected_min, result.min)
73
+
74
+
75
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
76
+ @pytest.mark.parametrize("num_batches", [2, 10])
77
+ @pytest.mark.parametrize("option", options_and_tests)
78
+ @pytest.mark.parametrize("row_count", [100, 1000])
79
+ @pytest.mark.parametrize("column_count", [10, 100])
80
+ @pytest.mark.parametrize("weighted", [True, False])
81
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
82
+ def test_partial_fit_single_option_on_random_data(
83
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
84
+ ):
85
+ result_option, function, tols = option
86
+ fp32tol, fp64tol = tols
87
+ seed = 77
88
+ gen = np.random.default_rng(seed)
89
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
90
+ X = X.astype(dtype=dtype)
91
+ X_split = np.array_split(X, num_batches)
92
+ if weighted:
93
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
94
+ weights = weights.astype(dtype=dtype)
95
+ weights_split = np.array_split(weights, num_batches)
96
+ incbs = IncrementalBasicStatistics(result_options=result_option)
97
+
98
+ for i in range(num_batches):
99
+ X_split_df = _convert_to_dataframe(
100
+ X_split[i], sycl_queue=queue, target_df=dataframe
101
+ )
102
+ if weighted:
103
+ weights_split_df = _convert_to_dataframe(
104
+ weights_split[i], sycl_queue=queue, target_df=dataframe
105
+ )
106
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
107
+ else:
108
+ result = incbs.partial_fit(X_split_df)
109
+
110
+ res = getattr(result, result_option)
111
+ if weighted:
112
+ weighted_data = np.diag(weights) @ X
113
+ gtr = function(weighted_data)
114
+ else:
115
+ gtr = function(X)
116
+
117
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
118
+ assert_allclose(gtr, res, atol=tol)
119
+
120
+
121
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
122
+ @pytest.mark.parametrize("num_batches", [2, 10])
123
+ @pytest.mark.parametrize("row_count", [100, 1000])
124
+ @pytest.mark.parametrize("column_count", [10, 100])
125
+ @pytest.mark.parametrize("weighted", [True, False])
126
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
127
+ def test_partial_fit_multiple_options_on_random_data(
128
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
129
+ ):
130
+ seed = 42
131
+ gen = np.random.default_rng(seed)
132
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
133
+ X = X.astype(dtype=dtype)
134
+ X_split = np.array_split(X, num_batches)
135
+ if weighted:
136
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
137
+ weights = weights.astype(dtype=dtype)
138
+ weights_split = np.array_split(weights, num_batches)
139
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
140
+
141
+ for i in range(num_batches):
142
+ X_split_df = _convert_to_dataframe(
143
+ X_split[i], sycl_queue=queue, target_df=dataframe
144
+ )
145
+ if weighted:
146
+ weights_split_df = _convert_to_dataframe(
147
+ weights_split[i], sycl_queue=queue, target_df=dataframe
148
+ )
149
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
150
+ else:
151
+ result = incbs.partial_fit(X_split_df)
152
+
153
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
154
+ if weighted:
155
+ weighted_data = np.diag(weights) @ X
156
+ gtr_mean, gtr_max, gtr_sum = (
157
+ expected_mean(weighted_data),
158
+ expected_max(weighted_data),
159
+ expected_sum(weighted_data),
160
+ )
161
+ else:
162
+ gtr_mean, gtr_max, gtr_sum = (
163
+ expected_mean(X),
164
+ expected_max(X),
165
+ expected_sum(X),
166
+ )
167
+
168
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
169
+ assert_allclose(gtr_mean, res_mean, atol=tol)
170
+ assert_allclose(gtr_max, res_max, atol=tol)
171
+ assert_allclose(gtr_sum, res_sum, atol=tol)
172
+
173
+
174
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
175
+ @pytest.mark.parametrize("num_batches", [2, 10])
176
+ @pytest.mark.parametrize("row_count", [100, 1000])
177
+ @pytest.mark.parametrize("column_count", [10, 100])
178
+ @pytest.mark.parametrize("weighted", [True, False])
179
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
180
+ def test_partial_fit_all_option_on_random_data(
181
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
182
+ ):
183
+ seed = 77
184
+ gen = np.random.default_rng(seed)
185
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
186
+ X = X.astype(dtype=dtype)
187
+ X_split = np.array_split(X, num_batches)
188
+ if weighted:
189
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
190
+ weights = weights.astype(dtype=dtype)
191
+ weights_split = np.array_split(weights, num_batches)
192
+ incbs = IncrementalBasicStatistics(result_options="all")
193
+
194
+ for i in range(num_batches):
195
+ X_split_df = _convert_to_dataframe(
196
+ X_split[i], sycl_queue=queue, target_df=dataframe
197
+ )
198
+ if weighted:
199
+ weights_split_df = _convert_to_dataframe(
200
+ weights_split[i], sycl_queue=queue, target_df=dataframe
201
+ )
202
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
203
+ else:
204
+ result = incbs.partial_fit(X_split_df)
205
+
206
+ if weighted:
207
+ weighted_data = np.diag(weights) @ X
208
+
209
+ for option in options_and_tests:
210
+ result_option, function, tols = option
211
+ fp32tol, fp64tol = tols
212
+ res = getattr(result, result_option)
213
+ if weighted:
214
+ gtr = function(weighted_data)
215
+ else:
216
+ gtr = function(X)
217
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
218
+ assert_allclose(gtr, res, atol=tol)
219
+
220
+
221
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
222
+ @pytest.mark.parametrize("weighted", [True, False])
223
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
224
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
225
+ X = np.array([[0, 0], [1, 1]])
226
+ X = X.astype(dtype=dtype)
227
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
228
+ if weighted:
229
+ weights = np.array([1, 0.5])
230
+ weights = weights.astype(dtype=dtype)
231
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
232
+ incbs = IncrementalBasicStatistics(batch_size=1)
233
+
234
+ if weighted:
235
+ result = incbs.fit(X_df, sample_weight=weights_df)
236
+ else:
237
+ result = incbs.fit(X_df)
238
+
239
+ if weighted:
240
+ expected_weighted_mean = np.array([0.25, 0.25])
241
+ expected_weighted_min = np.array([0, 0])
242
+ expected_weighted_max = np.array([0.5, 0.5])
243
+ assert_allclose(expected_weighted_mean, result.mean)
244
+ assert_allclose(expected_weighted_max, result.max)
245
+ assert_allclose(expected_weighted_min, result.min)
246
+ else:
247
+ expected_mean = np.array([0.5, 0.5])
248
+ expected_min = np.array([0, 0])
249
+ expected_max = np.array([1, 1])
250
+ assert_allclose(expected_mean, result.mean)
251
+ assert_allclose(expected_max, result.max)
252
+ assert_allclose(expected_min, result.min)
253
+
254
+
255
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
256
+ @pytest.mark.parametrize("num_batches", [2, 10])
257
+ @pytest.mark.parametrize("option", options_and_tests)
258
+ @pytest.mark.parametrize("row_count", [100, 1000])
259
+ @pytest.mark.parametrize("column_count", [10, 100])
260
+ @pytest.mark.parametrize("weighted", [True, False])
261
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
262
+ def test_fit_single_option_on_random_data(
263
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
264
+ ):
265
+ result_option, function, tols = option
266
+ fp32tol, fp64tol = tols
267
+ seed = 77
268
+ gen = np.random.default_rng(seed)
269
+ batch_size = row_count // num_batches
270
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
271
+ X = X.astype(dtype=dtype)
272
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
273
+ if weighted:
274
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
275
+ weights = weights.astype(dtype=dtype)
276
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
277
+ incbs = IncrementalBasicStatistics(
278
+ result_options=result_option, batch_size=batch_size
279
+ )
280
+
281
+ if weighted:
282
+ result = incbs.fit(X_df, sample_weight=weights_df)
283
+ else:
284
+ result = incbs.fit(X_df)
285
+
286
+ res = getattr(result, result_option)
287
+ if weighted:
288
+ weighted_data = np.diag(weights) @ X
289
+ gtr = function(weighted_data)
290
+ else:
291
+ gtr = function(X)
292
+
293
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
294
+ assert_allclose(gtr, res, atol=tol)
295
+
296
+
297
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
298
+ @pytest.mark.parametrize("num_batches", [2, 10])
299
+ @pytest.mark.parametrize("row_count", [100, 1000])
300
+ @pytest.mark.parametrize("column_count", [10, 100])
301
+ @pytest.mark.parametrize("weighted", [True, False])
302
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
303
+ def test_fit_multiple_options_on_random_data(
304
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
305
+ ):
306
+ seed = 77
307
+ gen = np.random.default_rng(seed)
308
+ batch_size = row_count // num_batches
309
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
310
+ X = X.astype(dtype=dtype)
311
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
312
+ if weighted:
313
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
314
+ weights = weights.astype(dtype=dtype)
315
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
316
+ incbs = IncrementalBasicStatistics(
317
+ result_options=["mean", "max", "sum"], batch_size=batch_size
318
+ )
319
+
320
+ if weighted:
321
+ result = incbs.fit(X_df, sample_weight=weights_df)
322
+ else:
323
+ result = incbs.fit(X_df)
324
+
325
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
326
+ if weighted:
327
+ weighted_data = np.diag(weights) @ X
328
+ gtr_mean, gtr_max, gtr_sum = (
329
+ expected_mean(weighted_data),
330
+ expected_max(weighted_data),
331
+ expected_sum(weighted_data),
332
+ )
333
+ else:
334
+ gtr_mean, gtr_max, gtr_sum = (
335
+ expected_mean(X),
336
+ expected_max(X),
337
+ expected_sum(X),
338
+ )
339
+
340
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
341
+ assert_allclose(gtr_mean, res_mean, atol=tol)
342
+ assert_allclose(gtr_max, res_max, atol=tol)
343
+ assert_allclose(gtr_sum, res_sum, atol=tol)
344
+
345
+
346
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
347
+ @pytest.mark.parametrize("num_batches", [2, 10])
348
+ @pytest.mark.parametrize("row_count", [100, 1000])
349
+ @pytest.mark.parametrize("column_count", [10, 100])
350
+ @pytest.mark.parametrize("weighted", [True, False])
351
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
352
+ def test_fit_all_option_on_random_data(
353
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
354
+ ):
355
+ seed = 77
356
+ gen = np.random.default_rng(seed)
357
+ batch_size = row_count // num_batches
358
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
359
+ X = X.astype(dtype=dtype)
360
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
361
+ if weighted:
362
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
363
+ weights = weights.astype(dtype=dtype)
364
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
365
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
366
+
367
+ if weighted:
368
+ result = incbs.fit(X_df, sample_weight=weights_df)
369
+ else:
370
+ result = incbs.fit(X_df)
371
+
372
+ if weighted:
373
+ weighted_data = np.diag(weights) @ X
374
+
375
+ for option in options_and_tests:
376
+ result_option, function, tols = option
377
+ fp32tol, fp64tol = tols
378
+ res = getattr(result, result_option)
379
+ if weighted:
380
+ gtr = function(weighted_data)
381
+ else:
382
+ gtr = function(X)
383
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
384
+ assert_allclose(gtr, res, atol=tol)