scikit-learn-intelex 2024.2.0__py311-none-win_amd64.whl → 2024.4.0__py311-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (112) hide show
  1. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__init__.py +9 -7
  2. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +31 -4
  3. {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  4. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  5. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
  6. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -1
  7. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +63 -0
  8. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +335 -0
  9. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +22 -8
  10. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +74 -43
  11. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +78 -89
  12. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +15 -19
  13. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  14. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +63 -11
  15. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  16. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -2
  17. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +74 -20
  18. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  19. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +44 -131
  20. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +198 -221
  21. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +146 -0
  22. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -5
  23. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  24. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  25. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  26. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  27. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
  28. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  29. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +70 -50
  30. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +6 -52
  31. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +70 -51
  32. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  33. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +164 -0
  34. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +8 -3
  35. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +268 -0
  36. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +8 -2
  37. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
  38. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +371 -0
  39. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  40. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  41. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
  42. scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
  43. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
  44. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
  45. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  46. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -308
  47. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -19
  48. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -374
  49. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -170
  50. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -240
  51. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -136
  52. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -118
  53. scikit_learn_intelex-2024.2.0.dist-info/RECORD +0 -101
  54. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  55. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  56. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  57. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  58. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  60. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  61. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  62. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  63. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  64. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  65. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  67. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  69. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  70. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  71. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  72. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  73. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  74. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  76. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  77. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  79. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  80. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  81. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  83. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  84. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  87. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  91. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  92. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  93. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  94. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  96. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  97. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  98. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  99. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  108. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  109. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  110. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
  111. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
  112. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,386 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.basic_statistics.tests.test_incremental_basic_statistics import (
22
+ expected_max,
23
+ expected_mean,
24
+ expected_sum,
25
+ options_and_tests,
26
+ )
27
+ from onedal.tests.utils._dataframes_support import (
28
+ _convert_to_dataframe,
29
+ get_dataframes_and_queues,
30
+ )
31
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
32
+
33
+
34
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
35
+ @pytest.mark.parametrize("weighted", [True, False])
36
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
37
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
38
+ X = np.array([[0, 0], [1, 1]])
39
+ X = X.astype(dtype=dtype)
40
+ X_split = np.array_split(X, 2)
41
+ if weighted:
42
+ weights = np.array([1, 0.5])
43
+ weights = weights.astype(dtype=dtype)
44
+ weights_split = np.array_split(weights, 2)
45
+
46
+ incbs = IncrementalBasicStatistics()
47
+ for i in range(2):
48
+ X_split_df = _convert_to_dataframe(
49
+ X_split[i], sycl_queue=queue, target_df=dataframe
50
+ )
51
+ if weighted:
52
+ weights_split_df = _convert_to_dataframe(
53
+ weights_split[i], sycl_queue=queue, target_df=dataframe
54
+ )
55
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
56
+ else:
57
+ result = incbs.partial_fit(X_split_df)
58
+
59
+ if weighted:
60
+ expected_weighted_mean = np.array([0.25, 0.25])
61
+ expected_weighted_min = np.array([0, 0])
62
+ expected_weighted_max = np.array([0.5, 0.5])
63
+ assert_allclose(expected_weighted_mean, result.mean)
64
+ assert_allclose(expected_weighted_max, result.max)
65
+ assert_allclose(expected_weighted_min, result.min)
66
+ else:
67
+ expected_mean = np.array([0.5, 0.5])
68
+ expected_min = np.array([0, 0])
69
+ expected_max = np.array([1, 1])
70
+ assert_allclose(expected_mean, result.mean)
71
+ assert_allclose(expected_max, result.max)
72
+ assert_allclose(expected_min, result.min)
73
+
74
+
75
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
76
+ @pytest.mark.parametrize("num_batches", [2, 10])
77
+ @pytest.mark.parametrize("option", options_and_tests)
78
+ @pytest.mark.parametrize("row_count", [100, 1000])
79
+ @pytest.mark.parametrize("column_count", [10, 100])
80
+ @pytest.mark.parametrize("weighted", [True, False])
81
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
82
+ def test_partial_fit_single_option_on_random_data(
83
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
84
+ ):
85
+ result_option, function, tols = option
86
+ fp32tol, fp64tol = tols
87
+ seed = 77
88
+ gen = np.random.default_rng(seed)
89
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
90
+ X = X.astype(dtype=dtype)
91
+ X_split = np.array_split(X, num_batches)
92
+ if weighted:
93
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
94
+ weights = weights.astype(dtype=dtype)
95
+ weights_split = np.array_split(weights, num_batches)
96
+ incbs = IncrementalBasicStatistics(result_options=result_option)
97
+
98
+ for i in range(num_batches):
99
+ X_split_df = _convert_to_dataframe(
100
+ X_split[i], sycl_queue=queue, target_df=dataframe
101
+ )
102
+ if weighted:
103
+ weights_split_df = _convert_to_dataframe(
104
+ weights_split[i], sycl_queue=queue, target_df=dataframe
105
+ )
106
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
107
+ else:
108
+ result = incbs.partial_fit(X_split_df)
109
+
110
+ res = getattr(result, result_option)
111
+ if weighted:
112
+ weighted_data = np.diag(weights) @ X
113
+ gtr = function(weighted_data)
114
+ else:
115
+ gtr = function(X)
116
+
117
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
118
+ assert_allclose(gtr, res, atol=tol)
119
+
120
+
121
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
122
+ @pytest.mark.parametrize("num_batches", [2, 10])
123
+ @pytest.mark.parametrize("row_count", [100, 1000])
124
+ @pytest.mark.parametrize("column_count", [10, 100])
125
+ @pytest.mark.parametrize("weighted", [True, False])
126
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
127
+ def test_partial_fit_multiple_options_on_random_data(
128
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
129
+ ):
130
+ seed = 42
131
+ gen = np.random.default_rng(seed)
132
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
133
+ X = X.astype(dtype=dtype)
134
+ X_split = np.array_split(X, num_batches)
135
+ if weighted:
136
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
137
+ weights = weights.astype(dtype=dtype)
138
+ weights_split = np.array_split(weights, num_batches)
139
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
140
+
141
+ for i in range(num_batches):
142
+ X_split_df = _convert_to_dataframe(
143
+ X_split[i], sycl_queue=queue, target_df=dataframe
144
+ )
145
+ if weighted:
146
+ weights_split_df = _convert_to_dataframe(
147
+ weights_split[i], sycl_queue=queue, target_df=dataframe
148
+ )
149
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
150
+ else:
151
+ result = incbs.partial_fit(X_split_df)
152
+
153
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
154
+ if weighted:
155
+ weighted_data = np.diag(weights) @ X
156
+ gtr_mean, gtr_max, gtr_sum = (
157
+ expected_mean(weighted_data),
158
+ expected_max(weighted_data),
159
+ expected_sum(weighted_data),
160
+ )
161
+ else:
162
+ gtr_mean, gtr_max, gtr_sum = (
163
+ expected_mean(X),
164
+ expected_max(X),
165
+ expected_sum(X),
166
+ )
167
+
168
+ tol = 1e-5 if res_mean.dtype == np.float32 else 1e-7
169
+ assert_allclose(gtr_mean, res_mean, atol=tol)
170
+ assert_allclose(gtr_max, res_max, atol=tol)
171
+ assert_allclose(gtr_sum, res_sum, atol=tol)
172
+
173
+
174
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
175
+ @pytest.mark.parametrize("num_batches", [2, 10])
176
+ @pytest.mark.parametrize("row_count", [100, 1000])
177
+ @pytest.mark.parametrize("column_count", [10, 100])
178
+ @pytest.mark.parametrize("weighted", [True, False])
179
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
180
+ def test_partial_fit_all_option_on_random_data(
181
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
182
+ ):
183
+ seed = 77
184
+ gen = np.random.default_rng(seed)
185
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
186
+ X = X.astype(dtype=dtype)
187
+ X_split = np.array_split(X, num_batches)
188
+ if weighted:
189
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
190
+ weights = weights.astype(dtype=dtype)
191
+ weights_split = np.array_split(weights, num_batches)
192
+ incbs = IncrementalBasicStatistics(result_options="all")
193
+
194
+ for i in range(num_batches):
195
+ X_split_df = _convert_to_dataframe(
196
+ X_split[i], sycl_queue=queue, target_df=dataframe
197
+ )
198
+ if weighted:
199
+ weights_split_df = _convert_to_dataframe(
200
+ weights_split[i], sycl_queue=queue, target_df=dataframe
201
+ )
202
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
203
+ else:
204
+ result = incbs.partial_fit(X_split_df)
205
+
206
+ if weighted:
207
+ weighted_data = np.diag(weights) @ X
208
+
209
+ for option in options_and_tests:
210
+ result_option, function, tols = option
211
+ print(result_option)
212
+ fp32tol, fp64tol = tols
213
+ res = getattr(result, result_option)
214
+ if weighted:
215
+ gtr = function(weighted_data)
216
+ else:
217
+ gtr = function(X)
218
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
219
+ assert_allclose(gtr, res, atol=tol)
220
+
221
+
222
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
223
+ @pytest.mark.parametrize("weighted", [True, False])
224
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
225
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
226
+ X = np.array([[0, 0], [1, 1]])
227
+ X = X.astype(dtype=dtype)
228
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
229
+ if weighted:
230
+ weights = np.array([1, 0.5])
231
+ weights = weights.astype(dtype=dtype)
232
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
233
+ incbs = IncrementalBasicStatistics(batch_size=1)
234
+
235
+ if weighted:
236
+ result = incbs.fit(X_df, sample_weight=weights_df)
237
+ else:
238
+ result = incbs.fit(X_df)
239
+
240
+ if weighted:
241
+ expected_weighted_mean = np.array([0.25, 0.25])
242
+ expected_weighted_min = np.array([0, 0])
243
+ expected_weighted_max = np.array([0.5, 0.5])
244
+ assert_allclose(expected_weighted_mean, result.mean)
245
+ assert_allclose(expected_weighted_max, result.max)
246
+ assert_allclose(expected_weighted_min, result.min)
247
+ else:
248
+ expected_mean = np.array([0.5, 0.5])
249
+ expected_min = np.array([0, 0])
250
+ expected_max = np.array([1, 1])
251
+ assert_allclose(expected_mean, result.mean)
252
+ assert_allclose(expected_max, result.max)
253
+ assert_allclose(expected_min, result.min)
254
+
255
+
256
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
257
+ @pytest.mark.parametrize("num_batches", [2, 10])
258
+ @pytest.mark.parametrize("option", options_and_tests)
259
+ @pytest.mark.parametrize("row_count", [100, 1000])
260
+ @pytest.mark.parametrize("column_count", [10, 100])
261
+ @pytest.mark.parametrize("weighted", [True, False])
262
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
263
+ def test_fit_single_option_on_random_data(
264
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
265
+ ):
266
+ result_option, function, tols = option
267
+ fp32tol, fp64tol = tols
268
+ seed = 77
269
+ gen = np.random.default_rng(seed)
270
+ batch_size = row_count // num_batches
271
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
272
+ X = X.astype(dtype=dtype)
273
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
274
+ if weighted:
275
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
276
+ weights = weights.astype(dtype=dtype)
277
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
278
+ incbs = IncrementalBasicStatistics(
279
+ result_options=result_option, batch_size=batch_size
280
+ )
281
+
282
+ if weighted:
283
+ result = incbs.fit(X_df, sample_weight=weights_df)
284
+ else:
285
+ result = incbs.fit(X_df)
286
+
287
+ res = getattr(result, result_option)
288
+ if weighted:
289
+ weighted_data = np.diag(weights) @ X
290
+ gtr = function(weighted_data)
291
+ else:
292
+ gtr = function(X)
293
+
294
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
295
+ assert_allclose(gtr, res, atol=tol)
296
+
297
+
298
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
299
+ @pytest.mark.parametrize("num_batches", [2, 10])
300
+ @pytest.mark.parametrize("row_count", [100, 1000])
301
+ @pytest.mark.parametrize("column_count", [10, 100])
302
+ @pytest.mark.parametrize("weighted", [True, False])
303
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
304
+ def test_partial_fit_multiple_options_on_random_data(
305
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
306
+ ):
307
+ seed = 77
308
+ gen = np.random.default_rng(seed)
309
+ batch_size = row_count // num_batches
310
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
311
+ X = X.astype(dtype=dtype)
312
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
313
+ if weighted:
314
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
315
+ weights = weights.astype(dtype=dtype)
316
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
317
+ incbs = IncrementalBasicStatistics(
318
+ result_options=["mean", "max", "sum"], batch_size=batch_size
319
+ )
320
+
321
+ if weighted:
322
+ result = incbs.fit(X_df, sample_weight=weights_df)
323
+ else:
324
+ result = incbs.fit(X_df)
325
+
326
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
327
+ if weighted:
328
+ weighted_data = np.diag(weights) @ X
329
+ gtr_mean, gtr_max, gtr_sum = (
330
+ expected_mean(weighted_data),
331
+ expected_max(weighted_data),
332
+ expected_sum(weighted_data),
333
+ )
334
+ else:
335
+ gtr_mean, gtr_max, gtr_sum = (
336
+ expected_mean(X),
337
+ expected_max(X),
338
+ expected_sum(X),
339
+ )
340
+
341
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
342
+ assert_allclose(gtr_mean, res_mean, atol=tol)
343
+ assert_allclose(gtr_max, res_max, atol=tol)
344
+ assert_allclose(gtr_sum, res_sum, atol=tol)
345
+
346
+
347
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
348
+ @pytest.mark.parametrize("num_batches", [2, 10])
349
+ @pytest.mark.parametrize("row_count", [100, 1000])
350
+ @pytest.mark.parametrize("column_count", [10, 100])
351
+ @pytest.mark.parametrize("weighted", [True, False])
352
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
353
+ def test_fit_all_option_on_random_data(
354
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
355
+ ):
356
+ seed = 77
357
+ gen = np.random.default_rng(seed)
358
+ batch_size = row_count // num_batches
359
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
360
+ X = X.astype(dtype=dtype)
361
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
362
+ if weighted:
363
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
364
+ weights = weights.astype(dtype=dtype)
365
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
366
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
367
+
368
+ if weighted:
369
+ result = incbs.fit(X_df, sample_weight=weights_df)
370
+ else:
371
+ result = incbs.fit(X_df)
372
+
373
+ if weighted:
374
+ weighted_data = np.diag(weights) @ X
375
+
376
+ for option in options_and_tests:
377
+ result_option, function, tols = option
378
+ print(result_option)
379
+ fp32tol, fp64tol = tols
380
+ res = getattr(result, result_option)
381
+ if weighted:
382
+ gtr = function(weighted_data)
383
+ else:
384
+ gtr = function(X)
385
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
386
+ assert_allclose(gtr, res, atol=tol)
@@ -26,7 +26,7 @@ from daal4py.sklearn._n_jobs_support import control_n_jobs
26
26
  from daal4py.sklearn._utils import sklearn_check_version
27
27
  from onedal.cluster import DBSCAN as onedal_DBSCAN
28
28
 
29
- from .._device_offload import dispatch, wrap_output_data
29
+ from .._device_offload import dispatch
30
30
  from .._utils import PatchingConditionsChain
31
31
 
32
32
  if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
@@ -186,3 +186,5 @@ class DBSCAN(sklearn_DBSCAN, BaseDBSCAN):
186
186
  )
187
187
 
188
188
  return self
189
+
190
+ fit.__doc__ = sklearn_DBSCAN.fit.__doc__
@@ -0,0 +1,63 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import io
18
+ import logging
19
+
20
+ import pytest
21
+
22
+ from sklearnex import patch_sklearn, unpatch_sklearn
23
+
24
+
25
+ def pytest_configure(config):
26
+ config.addinivalue_line(
27
+ "markers", "allow_sklearn_fallback: mark test to not check for sklearnex usage"
28
+ )
29
+
30
+
31
+ @pytest.hookimpl(hookwrapper=True)
32
+ def pytest_runtest_call(item):
33
+ # setup logger to check for sklearn fallback
34
+ if not item.get_closest_marker("allow_sklearn_fallback"):
35
+ log_stream = io.StringIO()
36
+ log_handler = logging.StreamHandler(log_stream)
37
+ sklearnex_logger = logging.getLogger("sklearnex")
38
+ level = sklearnex_logger.level
39
+ sklearnex_stderr_handler = sklearnex_logger.handlers
40
+ sklearnex_logger.handlers = []
41
+ sklearnex_logger.addHandler(log_handler)
42
+ sklearnex_logger.setLevel(logging.INFO)
43
+ log_handler.setLevel(logging.INFO)
44
+
45
+ yield
46
+
47
+ sklearnex_logger.handlers = sklearnex_stderr_handler
48
+ sklearnex_logger.setLevel(level)
49
+ sklearnex_logger.removeHandler(log_handler)
50
+ text = log_stream.getvalue()
51
+ if "fallback to original Scikit-learn" in text:
52
+ raise TypeError(
53
+ f"test did not properly evaluate sklearnex functionality and fell back to sklearn:\n{text}"
54
+ )
55
+ else:
56
+ yield
57
+
58
+
59
+ @pytest.fixture
60
+ def with_sklearnex():
61
+ patch_sklearn()
62
+ yield
63
+ unpatch_sklearn()