scikit-learn-intelex 2024.2.0__py311-none-win_amd64.whl → 2024.4.0__py311-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__init__.py +9 -7
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +31 -4
- {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +63 -0
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +335 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +22 -8
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +74 -43
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +78 -89
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +15 -19
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +63 -11
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -2
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +74 -20
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +44 -131
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +198 -221
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +146 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -5
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +70 -50
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +6 -52
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +70 -51
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +164 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +8 -3
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +268 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +8 -2
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +371 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
- scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
- scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -308
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -19
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -374
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -170
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -240
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -136
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -118
- scikit_learn_intelex-2024.2.0.dist-info/RECORD +0 -101
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
|
|
19
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
20
|
+
|
|
21
|
+
from .._device_offload import dpnp_available
|
|
22
|
+
|
|
23
|
+
if sklearn_check_version("1.2"):
|
|
24
|
+
from sklearn.utils._array_api import get_namespace as sklearn_get_namespace
|
|
25
|
+
|
|
26
|
+
if dpnp_available:
|
|
27
|
+
import dpnp
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def get_namespace(*arrays):
|
|
31
|
+
"""Get namespace of arrays.
|
|
32
|
+
|
|
33
|
+
Introspect `arrays` arguments and return their common Array API
|
|
34
|
+
compatible namespace object, if any. NumPy 1.22 and later can
|
|
35
|
+
construct such containers using the `numpy.array_api` namespace
|
|
36
|
+
for instance.
|
|
37
|
+
|
|
38
|
+
This function will return the namespace of SYCL-related arrays
|
|
39
|
+
which define the __sycl_usm_array_interface__ attribute
|
|
40
|
+
regardless of array_api support, the configuration of
|
|
41
|
+
array_api_dispatch, or scikit-learn version.
|
|
42
|
+
|
|
43
|
+
See: https://numpy.org/neps/nep-0047-array-api-standard.html
|
|
44
|
+
|
|
45
|
+
If `arrays` are regular numpy arrays, an instance of the
|
|
46
|
+
`_NumPyApiWrapper` compatibility wrapper is returned instead.
|
|
47
|
+
|
|
48
|
+
Namespace support is not enabled by default. To enabled it
|
|
49
|
+
call:
|
|
50
|
+
|
|
51
|
+
sklearn.set_config(array_api_dispatch=True)
|
|
52
|
+
|
|
53
|
+
or:
|
|
54
|
+
|
|
55
|
+
with sklearn.config_context(array_api_dispatch=True):
|
|
56
|
+
# your code here
|
|
57
|
+
|
|
58
|
+
Otherwise an instance of the `_NumPyApiWrapper`
|
|
59
|
+
compatibility wrapper is always returned irrespective of
|
|
60
|
+
the fact that arrays implement the `__array_namespace__`
|
|
61
|
+
protocol or not.
|
|
62
|
+
|
|
63
|
+
Parameters
|
|
64
|
+
----------
|
|
65
|
+
*arrays : array objects
|
|
66
|
+
Array objects.
|
|
67
|
+
|
|
68
|
+
Returns
|
|
69
|
+
-------
|
|
70
|
+
namespace : module
|
|
71
|
+
Namespace shared by array objects.
|
|
72
|
+
|
|
73
|
+
is_array_api : bool
|
|
74
|
+
True of the arrays are containers that implement the Array API spec.
|
|
75
|
+
"""
|
|
76
|
+
|
|
77
|
+
# sycl support designed to work regardless of array_api_dispatch sklearn global value
|
|
78
|
+
sycl_type = {type(x): x for x in arrays if hasattr(x, "__sycl_usm_array_interface__")}
|
|
79
|
+
|
|
80
|
+
if len(sycl_type) > 1:
|
|
81
|
+
raise ValueError(f"Multiple SYCL types for array inputs: {sycl_type}")
|
|
82
|
+
|
|
83
|
+
if sycl_type:
|
|
84
|
+
|
|
85
|
+
(X,) = sycl_type.values()
|
|
86
|
+
|
|
87
|
+
if hasattr(X, "__array_namespace__"):
|
|
88
|
+
return X.__array_namespace__(), True
|
|
89
|
+
elif dpnp_available and isinstance(X, dpnp.ndarray):
|
|
90
|
+
return dpnp, False
|
|
91
|
+
else:
|
|
92
|
+
raise ValueError(f"SYCL type not recognized: {sycl_type}")
|
|
93
|
+
|
|
94
|
+
elif sklearn_check_version("1.2"):
|
|
95
|
+
return sklearn_get_namespace(*arrays)
|
|
96
|
+
else:
|
|
97
|
+
return np, True
|
{scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2024.
|
|
3
|
+
Version: 2024.4.0
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
|
|
|
31
31
|
Requires-Python: >=3.7
|
|
32
32
|
Description-Content-Type: text/markdown
|
|
33
33
|
License-File: LICENSE.txt
|
|
34
|
-
Requires-Dist: daal4py (==2024.
|
|
34
|
+
Requires-Dist: daal4py (==2024.4.0)
|
|
35
35
|
Requires-Dist: scikit-learn (>=0.22)
|
|
36
36
|
|
|
37
37
|
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
|
|
2
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
3
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=EX9bRBV9tFxQBRf8mS9ntBEmB7tcIfql8sYnb9Zjlto,8639
|
|
5
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
|
|
7
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=Vpoy6kwOR0Y3ISfjpk0S1vEKhDZGLUKeMy-xwCBsCQs,14389
|
|
8
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
|
|
9
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
10
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
|
|
11
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=GarYPjojsyhbOat5vOXF85AofyFa_VretX4Vntc01C8,14992
|
|
12
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
13
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
|
|
14
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
15
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
|
|
16
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
17
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
18
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
|
|
19
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
|
|
20
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
21
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=ffR22wH2n5R8SYflEmOPDPc-QpTomiAMOegV0IMbslg,12654
|
|
22
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
|
|
23
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
24
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
25
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=OHxqhYhkdjzhhEeWLlE0_IXBrWmKCUJoP_B1gQcmTQM,70002
|
|
26
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
|
|
27
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
28
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
|
|
29
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
|
|
30
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
31
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=0A2kCTpsGZK8IVkbIhYoAXqMAxHOyY7dO5JLxbNWmLw,11159
|
|
32
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
33
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=6TRaDJ8nIHxjofIfUvmeJOP9_EwmUgVKKK1sxe9vS5A,14171
|
|
34
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
35
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=kLoOcP9p0iCK2PhU438tGuPGuuBekF37FkA-YBcBMpM,4319
|
|
36
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
|
|
37
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
38
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
39
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
40
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
41
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
|
|
42
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
|
|
43
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
44
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
45
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
46
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
47
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
48
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
|
|
49
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
|
|
50
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
|
|
51
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=YBjvh6h56OaJHSZNGq8ZV8lsB-XpSWduEcVeHRuPorQ,6692
|
|
52
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
|
|
53
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
|
|
54
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
|
|
55
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
56
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
57
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
|
|
58
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
59
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
|
|
60
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
|
|
61
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
62
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
63
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
64
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
65
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
66
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
67
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
68
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
69
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
70
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
71
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
72
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
|
|
73
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
74
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
75
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
76
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
77
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
78
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
79
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=52csEWTYWEVgUVWUm3RjX1VD_5VyyawXBvc7lBBp5qY,7010
|
|
80
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=J4F_Tm9oYC-WK1Nf_CNqSnvuYEEZZ9xa3VY-x0G_2cw,9871
|
|
81
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=ZFBnQzMgD4aRSk3BRIxwKfwErVyDJnNoR7vrIMm5WLk,3655
|
|
82
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=u9wQ8dsvQvO4XP_3JSfYFBNJcuDyv3HVG5NY6jZqhZk,11125
|
|
83
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=ldNWehrU4vgqX_0T8splmBjPsQln7w_h8L4XNpIgP6A,3655
|
|
84
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
85
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=hc3LxZDhlncONCGxqvWajQE7iVnSnt98Q9bem-KJDGI,5386
|
|
86
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
87
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
|
|
88
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
|
|
89
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=fNGlQz882qAJoJ56ymbID0hpIsO_7PHLmXxSew2JA_k,4124
|
|
90
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
|
|
91
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=Gc4MChHY6lVUFkm3sgPF4RDd1uOqHQFfh9ac60d4vfQ,14299
|
|
92
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
93
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
|
|
94
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=lWzvzcObxq350A-Ms8JyTbaQStR8rgH4DgQYhWruHL4,3166
|
|
95
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
96
|
+
scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
97
|
+
scikit_learn_intelex-2024.4.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
98
|
+
scikit_learn_intelex-2024.4.0.dist-info/METADATA,sha256=o67KC09tI-M1vRew0u70i6UExD3Vnzu3dYRrbLFSTAo,12448
|
|
99
|
+
scikit_learn_intelex-2024.4.0.dist-info/WHEEL,sha256=_mirCU3VqBkRg05GlFfL1iQhADh7G8CWWIIWBtiop1Q,100
|
|
100
|
+
scikit_learn_intelex-2024.4.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
101
|
+
scikit_learn_intelex-2024.4.0.dist-info/RECORD,,
|
|
@@ -1,17 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2021 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
from daal4py.sklearn.decomposition import PCA
|
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
from numpy.testing import assert_allclose
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def test_sklearnex_import():
|
|
22
|
-
from sklearnex.decomposition import PCA
|
|
23
|
-
|
|
24
|
-
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
25
|
-
pca = PCA(n_components=2, svd_solver="full").fit(X)
|
|
26
|
-
assert "daal4py" in pca.__module__
|
|
27
|
-
assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])
|
|
@@ -1,381 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import logging
|
|
18
|
-
from abc import ABC
|
|
19
|
-
|
|
20
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def get_coef(self):
|
|
24
|
-
return self._coef_
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
def set_coef(self, value):
|
|
28
|
-
self._coef_ = value
|
|
29
|
-
if hasattr(self, "_onedal_estimator"):
|
|
30
|
-
self._onedal_estimator.coef_ = value
|
|
31
|
-
if not self._is_in_fit:
|
|
32
|
-
del self._onedal_estimator._onedal_model
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def get_intercept(self):
|
|
36
|
-
return self._intercept_
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def set_intercept(self, value):
|
|
40
|
-
self._intercept_ = value
|
|
41
|
-
if hasattr(self, "_onedal_estimator"):
|
|
42
|
-
self._onedal_estimator.intercept_ = value
|
|
43
|
-
if not self._is_in_fit:
|
|
44
|
-
del self._onedal_estimator._onedal_model
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
class BaseLinearRegression(ABC):
|
|
48
|
-
def _save_attributes(self):
|
|
49
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
50
|
-
self.fit_status_ = 0
|
|
51
|
-
self._coef_ = self._onedal_estimator.coef_
|
|
52
|
-
self._intercept_ = self._onedal_estimator.intercept_
|
|
53
|
-
self._sparse = False
|
|
54
|
-
|
|
55
|
-
self.coef_ = property(get_coef, set_coef)
|
|
56
|
-
self.intercept_ = property(get_intercept, set_intercept)
|
|
57
|
-
|
|
58
|
-
self._is_in_fit = True
|
|
59
|
-
self.coef_ = self._coef_
|
|
60
|
-
self.intercept_ = self._intercept_
|
|
61
|
-
self._is_in_fit = False
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
if daal_check_version((2023, "P", 100)):
|
|
65
|
-
import numpy as np
|
|
66
|
-
from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
|
|
67
|
-
|
|
68
|
-
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
69
|
-
from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
|
|
70
|
-
|
|
71
|
-
from .._device_offload import dispatch, wrap_output_data
|
|
72
|
-
from .._utils import (
|
|
73
|
-
PatchingConditionsChain,
|
|
74
|
-
get_patch_message,
|
|
75
|
-
register_hyperparameters,
|
|
76
|
-
)
|
|
77
|
-
from ..utils.validation import _assert_all_finite
|
|
78
|
-
|
|
79
|
-
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
80
|
-
from sklearn.linear_model._base import _deprecate_normalize
|
|
81
|
-
|
|
82
|
-
from scipy.sparse import issparse
|
|
83
|
-
from sklearn.exceptions import NotFittedError
|
|
84
|
-
from sklearn.utils.validation import _deprecate_positional_args, check_X_y
|
|
85
|
-
|
|
86
|
-
from onedal.common.hyperparameters import get_hyperparameters
|
|
87
|
-
from onedal.linear_model import LinearRegression as onedal_LinearRegression
|
|
88
|
-
from onedal.utils import _num_features, _num_samples
|
|
89
|
-
|
|
90
|
-
@register_hyperparameters({"fit": get_hyperparameters("linear_regression", "train")})
|
|
91
|
-
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
92
|
-
class LinearRegression(sklearn_LinearRegression, BaseLinearRegression):
|
|
93
|
-
__doc__ = sklearn_LinearRegression.__doc__
|
|
94
|
-
intercept_, coef_ = None, None
|
|
95
|
-
|
|
96
|
-
if sklearn_check_version("1.2"):
|
|
97
|
-
_parameter_constraints: dict = {
|
|
98
|
-
**sklearn_LinearRegression._parameter_constraints
|
|
99
|
-
}
|
|
100
|
-
|
|
101
|
-
def __init__(
|
|
102
|
-
self,
|
|
103
|
-
fit_intercept=True,
|
|
104
|
-
copy_X=True,
|
|
105
|
-
n_jobs=None,
|
|
106
|
-
positive=False,
|
|
107
|
-
):
|
|
108
|
-
super().__init__(
|
|
109
|
-
fit_intercept=fit_intercept,
|
|
110
|
-
copy_X=copy_X,
|
|
111
|
-
n_jobs=n_jobs,
|
|
112
|
-
positive=positive,
|
|
113
|
-
)
|
|
114
|
-
|
|
115
|
-
elif sklearn_check_version("0.24"):
|
|
116
|
-
|
|
117
|
-
def __init__(
|
|
118
|
-
self,
|
|
119
|
-
fit_intercept=True,
|
|
120
|
-
normalize="deprecated" if sklearn_check_version("1.0") else False,
|
|
121
|
-
copy_X=True,
|
|
122
|
-
n_jobs=None,
|
|
123
|
-
positive=False,
|
|
124
|
-
):
|
|
125
|
-
super().__init__(
|
|
126
|
-
fit_intercept=fit_intercept,
|
|
127
|
-
normalize=normalize,
|
|
128
|
-
copy_X=copy_X,
|
|
129
|
-
n_jobs=n_jobs,
|
|
130
|
-
positive=positive,
|
|
131
|
-
)
|
|
132
|
-
|
|
133
|
-
else:
|
|
134
|
-
|
|
135
|
-
def __init__(
|
|
136
|
-
self,
|
|
137
|
-
fit_intercept=True,
|
|
138
|
-
normalize=False,
|
|
139
|
-
copy_X=True,
|
|
140
|
-
n_jobs=None,
|
|
141
|
-
):
|
|
142
|
-
super().__init__(
|
|
143
|
-
fit_intercept=fit_intercept,
|
|
144
|
-
normalize=normalize,
|
|
145
|
-
copy_X=copy_X,
|
|
146
|
-
n_jobs=n_jobs,
|
|
147
|
-
)
|
|
148
|
-
|
|
149
|
-
def fit(self, X, y, sample_weight=None):
|
|
150
|
-
"""
|
|
151
|
-
Fit linear model.
|
|
152
|
-
Parameters
|
|
153
|
-
----------
|
|
154
|
-
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
155
|
-
Training data.
|
|
156
|
-
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
|
157
|
-
Target values. Will be cast to X's dtype if necessary.
|
|
158
|
-
sample_weight : array-like of shape (n_samples,), default=None
|
|
159
|
-
Individual weights for each sample.
|
|
160
|
-
.. versionadded:: 0.17
|
|
161
|
-
parameter *sample_weight* support to LinearRegression.
|
|
162
|
-
Returns
|
|
163
|
-
-------
|
|
164
|
-
self : object
|
|
165
|
-
Fitted Estimator.
|
|
166
|
-
"""
|
|
167
|
-
if sklearn_check_version("1.0"):
|
|
168
|
-
self._check_feature_names(X, reset=True)
|
|
169
|
-
if sklearn_check_version("1.2"):
|
|
170
|
-
self._validate_params()
|
|
171
|
-
|
|
172
|
-
dispatch(
|
|
173
|
-
self,
|
|
174
|
-
"fit",
|
|
175
|
-
{
|
|
176
|
-
"onedal": self.__class__._onedal_fit,
|
|
177
|
-
"sklearn": sklearn_LinearRegression.fit,
|
|
178
|
-
},
|
|
179
|
-
X,
|
|
180
|
-
y,
|
|
181
|
-
sample_weight,
|
|
182
|
-
)
|
|
183
|
-
return self
|
|
184
|
-
|
|
185
|
-
@wrap_output_data
|
|
186
|
-
def predict(self, X):
|
|
187
|
-
"""
|
|
188
|
-
Predict using the linear model.
|
|
189
|
-
Parameters
|
|
190
|
-
----------
|
|
191
|
-
X : array-like or sparse matrix, shape (n_samples, n_features)
|
|
192
|
-
Samples.
|
|
193
|
-
Returns
|
|
194
|
-
-------
|
|
195
|
-
C : array, shape (n_samples, n_targets)
|
|
196
|
-
Returns predicted values.
|
|
197
|
-
"""
|
|
198
|
-
if sklearn_check_version("1.0"):
|
|
199
|
-
self._check_feature_names(X, reset=False)
|
|
200
|
-
return dispatch(
|
|
201
|
-
self,
|
|
202
|
-
"predict",
|
|
203
|
-
{
|
|
204
|
-
"onedal": self.__class__._onedal_predict,
|
|
205
|
-
"sklearn": sklearn_LinearRegression.predict,
|
|
206
|
-
},
|
|
207
|
-
X,
|
|
208
|
-
)
|
|
209
|
-
|
|
210
|
-
def _test_type_and_finiteness(self, X_in):
|
|
211
|
-
X = X_in if isinstance(X_in, np.ndarray) else np.asarray(X_in)
|
|
212
|
-
|
|
213
|
-
dtype = X.dtype
|
|
214
|
-
if "complex" in str(type(dtype)):
|
|
215
|
-
return False
|
|
216
|
-
|
|
217
|
-
try:
|
|
218
|
-
_assert_all_finite(X)
|
|
219
|
-
except BaseException:
|
|
220
|
-
return False
|
|
221
|
-
return True
|
|
222
|
-
|
|
223
|
-
def _onedal_fit_supported(self, method_name, *data):
|
|
224
|
-
assert method_name == "fit"
|
|
225
|
-
assert len(data) == 3
|
|
226
|
-
X, y, sample_weight = data
|
|
227
|
-
|
|
228
|
-
class_name = self.__class__.__name__
|
|
229
|
-
patching_status = PatchingConditionsChain(
|
|
230
|
-
f"sklearn.linear_model.{class_name}.fit"
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
normalize_is_set = (
|
|
234
|
-
hasattr(self, "normalize")
|
|
235
|
-
and self.normalize
|
|
236
|
-
and self.normalize != "deprecated"
|
|
237
|
-
)
|
|
238
|
-
positive_is_set = hasattr(self, "positive") and self.positive
|
|
239
|
-
|
|
240
|
-
n_samples = _num_samples(X)
|
|
241
|
-
n_features = _num_features(X, fallback_1d=True)
|
|
242
|
-
|
|
243
|
-
# Check if equations are well defined
|
|
244
|
-
is_good_for_onedal = n_samples > (n_features + int(self.fit_intercept))
|
|
245
|
-
|
|
246
|
-
dal_ready = patching_status.and_conditions(
|
|
247
|
-
[
|
|
248
|
-
(sample_weight is None, "Sample weight is not supported."),
|
|
249
|
-
(
|
|
250
|
-
not issparse(X) and not issparse(y),
|
|
251
|
-
"Sparse input is not supported.",
|
|
252
|
-
),
|
|
253
|
-
(not normalize_is_set, "Normalization is not supported."),
|
|
254
|
-
(
|
|
255
|
-
not positive_is_set,
|
|
256
|
-
"Forced positive coefficients are not supported.",
|
|
257
|
-
),
|
|
258
|
-
(
|
|
259
|
-
is_good_for_onedal,
|
|
260
|
-
"The shape of X (fitting) does not satisfy oneDAL requirements:."
|
|
261
|
-
"Number of features + 1 >= number of samples.",
|
|
262
|
-
),
|
|
263
|
-
]
|
|
264
|
-
)
|
|
265
|
-
if not dal_ready:
|
|
266
|
-
return patching_status
|
|
267
|
-
|
|
268
|
-
if not patching_status.and_condition(
|
|
269
|
-
self._test_type_and_finiteness(X), "Input X is not supported."
|
|
270
|
-
):
|
|
271
|
-
return patching_status
|
|
272
|
-
|
|
273
|
-
patching_status.and_condition(
|
|
274
|
-
self._test_type_and_finiteness(y), "Input y is not supported."
|
|
275
|
-
)
|
|
276
|
-
|
|
277
|
-
return patching_status
|
|
278
|
-
|
|
279
|
-
def _onedal_predict_supported(self, method_name, *data):
|
|
280
|
-
assert method_name == "predict"
|
|
281
|
-
assert len(data) == 1
|
|
282
|
-
|
|
283
|
-
class_name = self.__class__.__name__
|
|
284
|
-
patching_status = PatchingConditionsChain(
|
|
285
|
-
f"sklearn.linear_model.{class_name}.predict"
|
|
286
|
-
)
|
|
287
|
-
|
|
288
|
-
n_samples = _num_samples(*data)
|
|
289
|
-
model_is_sparse = issparse(self.coef_) or (
|
|
290
|
-
self.fit_intercept and issparse(self.intercept_)
|
|
291
|
-
)
|
|
292
|
-
dal_ready = patching_status.and_conditions(
|
|
293
|
-
[
|
|
294
|
-
(n_samples > 0, "Number of samples is less than 1."),
|
|
295
|
-
(not issparse(*data), "Sparse input is not supported."),
|
|
296
|
-
(not model_is_sparse, "Sparse coefficients are not supported."),
|
|
297
|
-
(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."),
|
|
298
|
-
]
|
|
299
|
-
)
|
|
300
|
-
if not dal_ready:
|
|
301
|
-
return patching_status
|
|
302
|
-
|
|
303
|
-
patching_status.and_condition(
|
|
304
|
-
self._test_type_and_finiteness(*data), "Input X is not supported."
|
|
305
|
-
)
|
|
306
|
-
|
|
307
|
-
return patching_status
|
|
308
|
-
|
|
309
|
-
def _onedal_supported(self, method_name, *data):
|
|
310
|
-
if method_name == "fit":
|
|
311
|
-
return self._onedal_fit_supported(method_name, *data)
|
|
312
|
-
if method_name == "predict":
|
|
313
|
-
return self._onedal_predict_supported(method_name, *data)
|
|
314
|
-
raise RuntimeError(
|
|
315
|
-
f"Unknown method {method_name} in {self.__class__.__name__}"
|
|
316
|
-
)
|
|
317
|
-
|
|
318
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
319
|
-
return self._onedal_supported(method_name, *data)
|
|
320
|
-
|
|
321
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
322
|
-
return self._onedal_supported(method_name, *data)
|
|
323
|
-
|
|
324
|
-
def _initialize_onedal_estimator(self):
|
|
325
|
-
onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
|
|
326
|
-
self._onedal_estimator = onedal_LinearRegression(**onedal_params)
|
|
327
|
-
|
|
328
|
-
def _onedal_fit(self, X, y, sample_weight, queue=None):
|
|
329
|
-
assert sample_weight is None
|
|
330
|
-
|
|
331
|
-
check_params = {
|
|
332
|
-
"X": X,
|
|
333
|
-
"y": y,
|
|
334
|
-
"dtype": [np.float64, np.float32],
|
|
335
|
-
"accept_sparse": ["csr", "csc", "coo"],
|
|
336
|
-
"y_numeric": True,
|
|
337
|
-
"multi_output": True,
|
|
338
|
-
"force_all_finite": False,
|
|
339
|
-
}
|
|
340
|
-
if sklearn_check_version("1.2"):
|
|
341
|
-
X, y = self._validate_data(**check_params)
|
|
342
|
-
else:
|
|
343
|
-
X, y = check_X_y(**check_params)
|
|
344
|
-
|
|
345
|
-
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
346
|
-
self._normalize = _deprecate_normalize(
|
|
347
|
-
self.normalize,
|
|
348
|
-
default=False,
|
|
349
|
-
estimator_name=self.__class__.__name__,
|
|
350
|
-
)
|
|
351
|
-
|
|
352
|
-
self._initialize_onedal_estimator()
|
|
353
|
-
try:
|
|
354
|
-
self._onedal_estimator.fit(X, y, queue=queue)
|
|
355
|
-
self._save_attributes()
|
|
356
|
-
|
|
357
|
-
except RuntimeError:
|
|
358
|
-
logging.getLogger("sklearnex").info(
|
|
359
|
-
f"{self.__class__.__name__}.fit "
|
|
360
|
-
+ get_patch_message("sklearn_after_onedal")
|
|
361
|
-
)
|
|
362
|
-
|
|
363
|
-
del self._onedal_estimator
|
|
364
|
-
super().fit(X, y)
|
|
365
|
-
|
|
366
|
-
def _onedal_predict(self, X, queue=None):
|
|
367
|
-
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
368
|
-
if not hasattr(self, "_onedal_estimator"):
|
|
369
|
-
self._initialize_onedal_estimator()
|
|
370
|
-
self._onedal_estimator.coef_ = self.coef_
|
|
371
|
-
self._onedal_estimator.intercept_ = self.intercept_
|
|
372
|
-
|
|
373
|
-
return self._onedal_estimator.predict(X, queue=queue)
|
|
374
|
-
|
|
375
|
-
else:
|
|
376
|
-
from daal4py.sklearn.linear_model import LinearRegression
|
|
377
|
-
|
|
378
|
-
logging.warning(
|
|
379
|
-
"Sklearnex LinearRegression requires oneDAL version >= 2023.1 "
|
|
380
|
-
"but it was not found"
|
|
381
|
-
)
|