scikit-learn-intelex 2024.1.0__py39-none-manylinux1_x86_64.whl → 2024.3.0__py39-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/RECORD +45 -44
- sklearnex/__init__.py +9 -7
- sklearnex/cluster/dbscan.py +6 -4
- sklearnex/conftest.py +63 -0
- sklearnex/{preview/decomposition → covariance}/__init__.py +19 -19
- sklearnex/covariance/incremental_covariance.py +130 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
- sklearnex/decomposition/pca.py +322 -1
- sklearnex/decomposition/tests/test_pca.py +34 -5
- sklearnex/dispatcher.py +91 -59
- sklearnex/ensemble/_forest.py +15 -24
- sklearnex/ensemble/tests/test_forest.py +15 -19
- sklearnex/linear_model/__init__.py +1 -2
- sklearnex/linear_model/linear.py +3 -10
- sklearnex/{preview/linear_model → linear_model}/logistic_regression.py +32 -40
- sklearnex/linear_model/tests/test_logreg.py +70 -7
- sklearnex/neighbors/__init__.py +1 -1
- sklearnex/neighbors/_lof.py +204 -0
- sklearnex/neighbors/knn_classification.py +13 -18
- sklearnex/neighbors/knn_regression.py +12 -17
- sklearnex/neighbors/knn_unsupervised.py +10 -15
- sklearnex/neighbors/tests/test_neighbors.py +12 -16
- sklearnex/preview/__init__.py +1 -1
- sklearnex/preview/cluster/k_means.py +3 -8
- sklearnex/preview/covariance/covariance.py +46 -12
- sklearnex/spmd/__init__.py +1 -0
- sklearnex/{preview/linear_model → spmd/covariance}/__init__.py +5 -5
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/ensemble/forest.py +4 -12
- sklearnex/spmd/linear_model/__init__.py +2 -1
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/svm/nusvc.py +9 -6
- sklearnex/svm/nusvr.py +6 -7
- sklearnex/svm/svc.py +9 -6
- sklearnex/svm/svr.py +3 -4
- sklearnex/tests/_utils.py +155 -0
- sklearnex/tests/test_memory_usage.py +9 -7
- sklearnex/tests/test_monkeypatch.py +179 -138
- sklearnex/tests/test_n_jobs_support.py +71 -9
- sklearnex/tests/test_parallel.py +6 -8
- sklearnex/tests/test_patching.py +321 -82
- sklearnex/neighbors/lof.py +0 -436
- sklearnex/preview/decomposition/pca.py +0 -376
- sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -42
- sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
- sklearnex/tests/_models_info.py +0 -170
- sklearnex/tests/utils/_launch_algorithms.py +0 -118
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/top_level.txt +0 -0
|
@@ -17,6 +17,12 @@
|
|
|
17
17
|
import sklearnex
|
|
18
18
|
from daal4py.sklearn._utils import daal_check_version
|
|
19
19
|
|
|
20
|
+
# General use of patch_sklearn and unpatch_sklearn in pytest is not recommended.
|
|
21
|
+
# It changes global state and can impact the operation of other tests. This file
|
|
22
|
+
# specifically tests patch_sklearn and unpatch_sklearn and is exempt from this.
|
|
23
|
+
# If sklearnex patching is necessary in testing, use the 'with_sklearnex' pytest
|
|
24
|
+
# fixture.
|
|
25
|
+
|
|
20
26
|
|
|
21
27
|
def test_monkey_patching():
|
|
22
28
|
_tokens = sklearnex.get_patch_names()
|
|
@@ -27,129 +33,170 @@ def test_monkey_patching():
|
|
|
27
33
|
for c in v:
|
|
28
34
|
_classes.append(c[0])
|
|
29
35
|
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
"
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
)
|
|
74
|
-
|
|
75
|
-
|
|
36
|
+
try:
|
|
37
|
+
sklearnex.patch_sklearn()
|
|
38
|
+
|
|
39
|
+
for i, _ in enumerate(_tokens):
|
|
40
|
+
t = _tokens[i]
|
|
41
|
+
p = _classes[i][0]
|
|
42
|
+
n = _classes[i][1]
|
|
43
|
+
|
|
44
|
+
class_module = getattr(p, n).__module__
|
|
45
|
+
assert class_module.startswith("daal4py") or class_module.startswith(
|
|
46
|
+
"sklearnex"
|
|
47
|
+
), "Patching has completed with error."
|
|
48
|
+
|
|
49
|
+
for i, _ in enumerate(_tokens):
|
|
50
|
+
t = _tokens[i]
|
|
51
|
+
p = _classes[i][0]
|
|
52
|
+
n = _classes[i][1]
|
|
53
|
+
|
|
54
|
+
sklearnex.unpatch_sklearn(t)
|
|
55
|
+
sklearn_class = getattr(p, n, None)
|
|
56
|
+
if sklearn_class is not None:
|
|
57
|
+
sklearn_class = sklearn_class.__module__
|
|
58
|
+
assert sklearn_class is None or sklearn_class.startswith(
|
|
59
|
+
"sklearn"
|
|
60
|
+
), "Unpatching has completed with error."
|
|
61
|
+
|
|
62
|
+
finally:
|
|
63
|
+
sklearnex.unpatch_sklearn()
|
|
64
|
+
|
|
65
|
+
try:
|
|
66
|
+
for i, _ in enumerate(_tokens):
|
|
67
|
+
t = _tokens[i]
|
|
68
|
+
p = _classes[i][0]
|
|
69
|
+
n = _classes[i][1]
|
|
70
|
+
|
|
71
|
+
sklearn_class = getattr(p, n, None)
|
|
72
|
+
if sklearn_class is not None:
|
|
73
|
+
sklearn_class = sklearn_class.__module__
|
|
74
|
+
assert sklearn_class is None or sklearn_class.startswith(
|
|
75
|
+
"sklearn"
|
|
76
|
+
), "Unpatching has completed with error."
|
|
77
|
+
|
|
78
|
+
finally:
|
|
79
|
+
sklearnex.unpatch_sklearn()
|
|
80
|
+
|
|
81
|
+
try:
|
|
82
|
+
for i, _ in enumerate(_tokens):
|
|
83
|
+
t = _tokens[i]
|
|
84
|
+
p = _classes[i][0]
|
|
85
|
+
n = _classes[i][1]
|
|
86
|
+
|
|
87
|
+
sklearnex.patch_sklearn(t)
|
|
88
|
+
|
|
89
|
+
class_module = getattr(p, n).__module__
|
|
90
|
+
assert class_module.startswith("daal4py") or class_module.startswith(
|
|
91
|
+
"sklearnex"
|
|
92
|
+
), "Patching has completed with error."
|
|
93
|
+
finally:
|
|
94
|
+
sklearnex.unpatch_sklearn()
|
|
76
95
|
|
|
77
96
|
|
|
78
97
|
def test_patch_by_list_simple():
|
|
79
|
-
|
|
98
|
+
try:
|
|
99
|
+
sklearnex.patch_sklearn(["LogisticRegression"])
|
|
80
100
|
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
assert RandomForestRegressor.__module__.startswith("sklearn")
|
|
87
|
-
assert KNeighborsRegressor.__module__.startswith("sklearn")
|
|
88
|
-
assert LogisticRegression.__module__.startswith("daal4py")
|
|
89
|
-
assert SVC.__module__.startswith("sklearn")
|
|
101
|
+
from sklearn.ensemble import RandomForestRegressor
|
|
102
|
+
from sklearn.linear_model import LogisticRegression
|
|
103
|
+
from sklearn.neighbors import KNeighborsRegressor
|
|
104
|
+
from sklearn.svm import SVC
|
|
90
105
|
|
|
91
|
-
|
|
106
|
+
assert RandomForestRegressor.__module__.startswith("sklearn")
|
|
107
|
+
assert KNeighborsRegressor.__module__.startswith("sklearn")
|
|
108
|
+
if daal_check_version((2024, "P", 1)):
|
|
109
|
+
assert LogisticRegression.__module__.startswith("sklearnex")
|
|
110
|
+
else:
|
|
111
|
+
assert LogisticRegression.__module__.startswith("daal4py")
|
|
112
|
+
assert SVC.__module__.startswith("sklearn")
|
|
113
|
+
finally:
|
|
114
|
+
sklearnex.unpatch_sklearn()
|
|
92
115
|
|
|
93
116
|
|
|
94
117
|
def test_patch_by_list_many_estimators():
|
|
95
|
-
|
|
118
|
+
try:
|
|
119
|
+
sklearnex.patch_sklearn(["LogisticRegression", "SVC"])
|
|
96
120
|
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
121
|
+
from sklearn.ensemble import RandomForestRegressor
|
|
122
|
+
from sklearn.linear_model import LogisticRegression
|
|
123
|
+
from sklearn.neighbors import KNeighborsRegressor
|
|
124
|
+
from sklearn.svm import SVC
|
|
101
125
|
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
126
|
+
assert RandomForestRegressor.__module__.startswith("sklearn")
|
|
127
|
+
assert KNeighborsRegressor.__module__.startswith("sklearn")
|
|
128
|
+
if daal_check_version((2024, "P", 1)):
|
|
129
|
+
assert LogisticRegression.__module__.startswith("sklearnex")
|
|
130
|
+
else:
|
|
131
|
+
assert LogisticRegression.__module__.startswith("daal4py")
|
|
132
|
+
assert SVC.__module__.startswith("daal4py") or SVC.__module__.startswith(
|
|
133
|
+
"sklearnex"
|
|
134
|
+
)
|
|
106
135
|
|
|
107
|
-
|
|
136
|
+
finally:
|
|
137
|
+
sklearnex.unpatch_sklearn()
|
|
108
138
|
|
|
109
139
|
|
|
110
140
|
def test_unpatch_by_list_many_estimators():
|
|
111
|
-
|
|
141
|
+
try:
|
|
142
|
+
sklearnex.patch_sklearn()
|
|
143
|
+
|
|
144
|
+
from sklearn.ensemble import RandomForestRegressor
|
|
145
|
+
from sklearn.linear_model import LogisticRegression
|
|
146
|
+
from sklearn.neighbors import KNeighborsRegressor
|
|
147
|
+
from sklearn.svm import SVC
|
|
112
148
|
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
149
|
+
assert RandomForestRegressor.__module__.startswith("sklearnex")
|
|
150
|
+
assert KNeighborsRegressor.__module__.startswith(
|
|
151
|
+
"daal4py"
|
|
152
|
+
) or KNeighborsRegressor.__module__.startswith("sklearnex")
|
|
153
|
+
if daal_check_version((2024, "P", 1)):
|
|
154
|
+
assert LogisticRegression.__module__.startswith("sklearnex")
|
|
155
|
+
else:
|
|
156
|
+
assert LogisticRegression.__module__.startswith("daal4py")
|
|
157
|
+
assert SVC.__module__.startswith("daal4py") or SVC.__module__.startswith(
|
|
158
|
+
"sklearnex"
|
|
159
|
+
)
|
|
117
160
|
|
|
118
|
-
|
|
119
|
-
assert KNeighborsRegressor.__module__.startswith(
|
|
120
|
-
"daal4py"
|
|
121
|
-
) or KNeighborsRegressor.__module__.startswith("sklearnex")
|
|
122
|
-
assert LogisticRegression.__module__.startswith("daal4py")
|
|
123
|
-
assert SVC.__module__.startswith("daal4py") or SVC.__module__.startswith("sklearnex")
|
|
161
|
+
sklearnex.unpatch_sklearn(["KNeighborsRegressor", "RandomForestRegressor"])
|
|
124
162
|
|
|
125
|
-
|
|
163
|
+
from sklearn.ensemble import RandomForestRegressor
|
|
164
|
+
from sklearn.linear_model import LogisticRegression
|
|
165
|
+
from sklearn.neighbors import KNeighborsRegressor
|
|
166
|
+
from sklearn.svm import SVC
|
|
126
167
|
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
168
|
+
assert RandomForestRegressor.__module__.startswith("sklearn")
|
|
169
|
+
assert KNeighborsRegressor.__module__.startswith("sklearn")
|
|
170
|
+
if daal_check_version((2024, "P", 1)):
|
|
171
|
+
assert LogisticRegression.__module__.startswith("sklearnex")
|
|
172
|
+
else:
|
|
173
|
+
assert LogisticRegression.__module__.startswith("daal4py")
|
|
131
174
|
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
175
|
+
assert SVC.__module__.startswith("daal4py") or SVC.__module__.startswith(
|
|
176
|
+
"sklearnex"
|
|
177
|
+
)
|
|
178
|
+
finally:
|
|
179
|
+
sklearnex.unpatch_sklearn()
|
|
136
180
|
|
|
137
181
|
|
|
138
182
|
def test_patching_checker():
|
|
139
183
|
for name in [None, "SVC", "PCA"]:
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
assert
|
|
184
|
+
try:
|
|
185
|
+
sklearnex.patch_sklearn(name=name)
|
|
186
|
+
assert sklearnex.sklearn_is_patched(name=name)
|
|
187
|
+
|
|
188
|
+
finally:
|
|
189
|
+
sklearnex.unpatch_sklearn(name=name)
|
|
190
|
+
assert not sklearnex.sklearn_is_patched(name=name)
|
|
191
|
+
try:
|
|
192
|
+
sklearnex.patch_sklearn()
|
|
193
|
+
patching_status_map = sklearnex.sklearn_is_patched(return_map=True)
|
|
194
|
+
assert len(patching_status_map) == len(sklearnex.get_patch_names())
|
|
195
|
+
for status in patching_status_map.values():
|
|
196
|
+
assert status
|
|
197
|
+
finally:
|
|
198
|
+
sklearnex.unpatch_sklearn()
|
|
151
199
|
|
|
152
|
-
sklearnex.unpatch_sklearn()
|
|
153
200
|
patching_status_map = sklearnex.sklearn_is_patched(return_map=True)
|
|
154
201
|
assert len(patching_status_map) == len(sklearnex.get_patch_names())
|
|
155
202
|
for status in patching_status_map.values():
|
|
@@ -161,67 +208,61 @@ def test_preview_namespace():
|
|
|
161
208
|
from sklearn.cluster import DBSCAN
|
|
162
209
|
from sklearn.decomposition import PCA
|
|
163
210
|
from sklearn.ensemble import RandomForestClassifier
|
|
164
|
-
from sklearn.linear_model import LinearRegression
|
|
211
|
+
from sklearn.linear_model import LinearRegression
|
|
165
212
|
from sklearn.svm import SVC
|
|
166
213
|
|
|
167
214
|
return (
|
|
168
215
|
LinearRegression(),
|
|
169
|
-
LogisticRegression(),
|
|
170
216
|
PCA(),
|
|
171
217
|
DBSCAN(),
|
|
172
218
|
SVC(),
|
|
173
219
|
RandomForestClassifier(),
|
|
174
220
|
)
|
|
175
221
|
|
|
176
|
-
# BUG: previous patching tests force PCA to be patched with daal4py.
|
|
177
|
-
# This unpatching returns behavior to expected
|
|
178
|
-
sklearnex.unpatch_sklearn()
|
|
179
|
-
# behavior with enabled preview
|
|
180
|
-
sklearnex.patch_sklearn(preview=True)
|
|
181
222
|
from sklearnex.dispatcher import _is_preview_enabled
|
|
182
223
|
|
|
183
|
-
|
|
224
|
+
try:
|
|
225
|
+
sklearnex.patch_sklearn(preview=True)
|
|
226
|
+
|
|
227
|
+
assert _is_preview_enabled()
|
|
184
228
|
|
|
185
|
-
|
|
186
|
-
|
|
229
|
+
lr, pca, dbscan, svc, rfc = get_estimators()
|
|
230
|
+
assert "sklearnex" in rfc.__module__
|
|
187
231
|
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
232
|
+
if daal_check_version((2023, "P", 100)):
|
|
233
|
+
assert "sklearnex" in lr.__module__
|
|
234
|
+
else:
|
|
235
|
+
assert "daal4py" in lr.__module__
|
|
192
236
|
|
|
193
|
-
|
|
194
|
-
assert "sklearnex" in
|
|
195
|
-
|
|
196
|
-
assert "daal4py" in log_reg.__module__
|
|
237
|
+
assert "sklearnex" in pca.__module__
|
|
238
|
+
assert "sklearnex" in dbscan.__module__
|
|
239
|
+
assert "sklearnex" in svc.__module__
|
|
197
240
|
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
assert "sklearnex" in svc.__module__
|
|
201
|
-
sklearnex.unpatch_sklearn()
|
|
241
|
+
finally:
|
|
242
|
+
sklearnex.unpatch_sklearn()
|
|
202
243
|
|
|
203
244
|
# no patching behavior
|
|
204
|
-
lr,
|
|
245
|
+
lr, pca, dbscan, svc, rfc = get_estimators()
|
|
205
246
|
assert "sklearn." in lr.__module__ and "daal4py" not in lr.__module__
|
|
206
|
-
assert "sklearn." in log_reg.__module__ and "daal4py" not in log_reg.__module__
|
|
207
247
|
assert "sklearn." in pca.__module__ and "daal4py" not in pca.__module__
|
|
208
248
|
assert "sklearn." in dbscan.__module__ and "daal4py" not in dbscan.__module__
|
|
209
249
|
assert "sklearn." in svc.__module__ and "daal4py" not in svc.__module__
|
|
210
250
|
assert "sklearn." in rfc.__module__ and "daal4py" not in rfc.__module__
|
|
211
251
|
|
|
212
252
|
# default patching behavior
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
253
|
+
try:
|
|
254
|
+
sklearnex.patch_sklearn()
|
|
255
|
+
assert not _is_preview_enabled()
|
|
256
|
+
|
|
257
|
+
lr, pca, dbscan, svc, rfc = get_estimators()
|
|
258
|
+
if daal_check_version((2023, "P", 100)):
|
|
259
|
+
assert "sklearnex" in lr.__module__
|
|
260
|
+
else:
|
|
261
|
+
assert "daal4py" in lr.__module__
|
|
262
|
+
|
|
263
|
+
assert "sklearnex" in pca.__module__
|
|
264
|
+
assert "sklearnex" in rfc.__module__
|
|
265
|
+
assert "sklearnex" in dbscan.__module__
|
|
266
|
+
assert "sklearnex" in svc.__module__
|
|
267
|
+
finally:
|
|
268
|
+
sklearnex.unpatch_sklearn()
|
|
@@ -14,18 +14,80 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
# ==============================================================================
|
|
16
16
|
|
|
17
|
+
import inspect
|
|
18
|
+
import logging
|
|
19
|
+
from multiprocessing import cpu_count
|
|
20
|
+
|
|
17
21
|
import pytest
|
|
22
|
+
from sklearn.base import BaseEstimator
|
|
23
|
+
from sklearn.datasets import make_classification
|
|
24
|
+
|
|
25
|
+
from sklearnex.dispatcher import get_patch_map
|
|
26
|
+
from sklearnex.svm import SVC, NuSVC
|
|
27
|
+
|
|
28
|
+
ESTIMATORS = set(
|
|
29
|
+
filter(
|
|
30
|
+
lambda x: inspect.isclass(x) and issubclass(x, BaseEstimator),
|
|
31
|
+
[value[0][0][2] for value in get_patch_map().values()],
|
|
32
|
+
)
|
|
33
|
+
)
|
|
34
|
+
|
|
35
|
+
X, Y = make_classification(n_samples=40, n_features=4, random_state=42)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
@pytest.mark.parametrize("estimator_class", ESTIMATORS)
|
|
39
|
+
@pytest.mark.parametrize("n_jobs", [None, -1, 1, 2])
|
|
40
|
+
def test_n_jobs_support(caplog, estimator_class, n_jobs):
|
|
41
|
+
def check_estimator_doc(estimator):
|
|
42
|
+
if estimator.__doc__ is not None:
|
|
43
|
+
assert "n_jobs" in estimator.__doc__
|
|
44
|
+
|
|
45
|
+
def check_n_jobs_entry_in_logs(caplog, function_name, n_jobs):
|
|
46
|
+
for rec in caplog.records:
|
|
47
|
+
if function_name in rec.message and "threads" in rec.message:
|
|
48
|
+
expected_n_jobs = n_jobs if n_jobs > 0 else cpu_count() + 1 + n_jobs
|
|
49
|
+
logging.info(f"{function_name}: setting {expected_n_jobs} threads")
|
|
50
|
+
if f"{function_name}: setting {expected_n_jobs} threads" in rec.message:
|
|
51
|
+
return True
|
|
52
|
+
# False if n_jobs is set and not found in logs
|
|
53
|
+
return n_jobs is None
|
|
18
54
|
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
55
|
+
def check_method(*args, method, caplog):
|
|
56
|
+
method(*args)
|
|
57
|
+
assert check_n_jobs_entry_in_logs(caplog, method.__name__, n_jobs)
|
|
22
58
|
|
|
23
|
-
|
|
59
|
+
def check_methods_decoration(estimator):
|
|
60
|
+
funcs = {
|
|
61
|
+
i: getattr(estimator, i)
|
|
62
|
+
for i in dir(estimator)
|
|
63
|
+
if hasattr(estimator, i) and callable(getattr(estimator, i))
|
|
64
|
+
}
|
|
24
65
|
|
|
66
|
+
for func_name, func in funcs.items():
|
|
67
|
+
assert hasattr(func, "__onedal_n_jobs_decorated__") == (
|
|
68
|
+
func_name in estimator._n_jobs_supported_onedal_methods
|
|
69
|
+
), f"{estimator}.{func_name} n_jobs decoration does not match {estimator} n_jobs supported methods"
|
|
25
70
|
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
#
|
|
29
|
-
|
|
71
|
+
caplog.set_level(logging.DEBUG, logger="sklearnex")
|
|
72
|
+
estimator_kwargs = {"n_jobs": n_jobs}
|
|
73
|
+
# by default, [Nu]SVC.predict_proba is restricted by @available_if decorator
|
|
74
|
+
if estimator_class in [SVC, NuSVC]:
|
|
75
|
+
estimator_kwargs["probability"] = True
|
|
76
|
+
estimator_instance = estimator_class(**estimator_kwargs)
|
|
30
77
|
# check `n_jobs` parameter doc entry
|
|
31
|
-
|
|
78
|
+
check_estimator_doc(estimator_class)
|
|
79
|
+
check_estimator_doc(estimator_instance)
|
|
80
|
+
# check `n_jobs` log entry for supported methods
|
|
81
|
+
# `fit` call is required before other methods
|
|
82
|
+
check_method(X, Y, method=estimator_instance.fit, caplog=caplog)
|
|
83
|
+
for method_name in estimator_instance._n_jobs_supported_onedal_methods:
|
|
84
|
+
if method_name == "fit":
|
|
85
|
+
continue
|
|
86
|
+
method = getattr(estimator_instance, method_name)
|
|
87
|
+
if len(inspect.signature(method).parameters) == 0:
|
|
88
|
+
check_method(method=method, caplog=caplog)
|
|
89
|
+
else:
|
|
90
|
+
check_method(X, method=method, caplog=caplog)
|
|
91
|
+
# check if correct methods were decorated
|
|
92
|
+
check_methods_decoration(estimator_class)
|
|
93
|
+
check_methods_decoration(estimator_instance)
|
sklearnex/tests/test_parallel.py
CHANGED
|
@@ -15,13 +15,7 @@
|
|
|
15
15
|
# ==============================================================================
|
|
16
16
|
import pytest
|
|
17
17
|
|
|
18
|
-
from sklearnex import config_context
|
|
19
|
-
|
|
20
|
-
patch_sklearn()
|
|
21
|
-
|
|
22
|
-
from sklearn.datasets import make_classification
|
|
23
|
-
from sklearn.ensemble import BaggingClassifier
|
|
24
|
-
from sklearn.svm import SVC
|
|
18
|
+
from sklearnex import config_context
|
|
25
19
|
|
|
26
20
|
try:
|
|
27
21
|
import dpctl
|
|
@@ -38,7 +32,11 @@ except (ImportError, ModuleNotFoundError):
|
|
|
38
32
|
"to see raised 'SyclQueueCreationError'. "
|
|
39
33
|
"'dpctl' module is required for test.",
|
|
40
34
|
)
|
|
41
|
-
def test_config_context_in_parallel():
|
|
35
|
+
def test_config_context_in_parallel(with_sklearnex):
|
|
36
|
+
from sklearn.datasets import make_classification
|
|
37
|
+
from sklearn.ensemble import BaggingClassifier
|
|
38
|
+
from sklearn.svm import SVC
|
|
39
|
+
|
|
42
40
|
x, y = make_classification(random_state=42)
|
|
43
41
|
try:
|
|
44
42
|
with config_context(target_offload="gpu", allow_fallback_to_host=False):
|