scikit-learn-intelex 2023.2.1__py311-none-win_amd64.whl → 2024.0.1__py311-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
- scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
|
@@ -1,67 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2023 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
from numpy.testing import assert_allclose
|
|
19
|
-
from sklearn.datasets import make_classification, make_regression
|
|
20
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def test_sklearnex_import_rf_classifier():
|
|
24
|
-
from sklearnex.preview.ensemble import RandomForestClassifier
|
|
25
|
-
X, y = make_classification(n_samples=1000, n_features=4,
|
|
26
|
-
n_informative=2, n_redundant=0,
|
|
27
|
-
random_state=0, shuffle=False)
|
|
28
|
-
rf = RandomForestClassifier(max_depth=2, random_state=0).fit(X, y)
|
|
29
|
-
assert 'sklearnex.preview' in rf.__module__
|
|
30
|
-
assert_allclose([1], rf.predict([[0, 0, 0, 0]]))
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def test_sklearnex_import_rf_regression():
|
|
34
|
-
from sklearnex.preview.ensemble import RandomForestRegressor
|
|
35
|
-
X, y = make_regression(n_features=4, n_informative=2,
|
|
36
|
-
random_state=0, shuffle=False)
|
|
37
|
-
rf = RandomForestRegressor(max_depth=2, random_state=0).fit(X, y)
|
|
38
|
-
assert 'sklearnex.preview' in rf.__module__
|
|
39
|
-
pred = rf.predict([[0, 0, 0, 0]])
|
|
40
|
-
assert_allclose([-6.839], pred, atol=1e-2)
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
def test_sklearnex_import_et_classifier():
|
|
44
|
-
from sklearnex.preview.ensemble import ExtraTreesClassifier
|
|
45
|
-
X, y = make_classification(n_samples=1000, n_features=4,
|
|
46
|
-
n_informative=2, n_redundant=0,
|
|
47
|
-
random_state=0, shuffle=False)
|
|
48
|
-
# For the 2023.2 release, random_state is not supported
|
|
49
|
-
# defaults to seed=777, although it is set to 0
|
|
50
|
-
rf = ExtraTreesClassifier(max_depth=2, random_state=0).fit(X, y)
|
|
51
|
-
assert 'sklearnex' in rf.__module__
|
|
52
|
-
assert_allclose([1], rf.predict([[0, 0, 0, 0]]))
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def test_sklearnex_import_et_regression():
|
|
56
|
-
from sklearnex.preview.ensemble import ExtraTreesRegressor
|
|
57
|
-
X, y = make_regression(n_features=4, n_informative=2,
|
|
58
|
-
random_state=0, shuffle=False)
|
|
59
|
-
# For the 2023.2 release, random_state is not supported
|
|
60
|
-
# defaults to seed=777, although it is set to 0
|
|
61
|
-
rf = ExtraTreesRegressor(max_depth=2, random_state=0).fit(X, y)
|
|
62
|
-
assert 'sklearnex' in rf.__module__
|
|
63
|
-
pred = rf.predict([[0, 0, 0, 0]])
|
|
64
|
-
if daal_check_version((2023, 'P', 200)):
|
|
65
|
-
assert_allclose([27.138], pred, atol=1e-2)
|
|
66
|
-
else:
|
|
67
|
-
assert_allclose([-2.826], pred, atol=1e-2)
|
scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py
DELETED
|
@@ -1,66 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
from abc import ABC
|
|
18
|
-
import numpy as np
|
|
19
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
20
|
-
|
|
21
|
-
from sklearn.model_selection import StratifiedKFold
|
|
22
|
-
from sklearn.preprocessing import LabelEncoder
|
|
23
|
-
from sklearn.calibration import CalibratedClassifierCV
|
|
24
|
-
|
|
25
|
-
from onedal.datatypes.validation import _column_or_1d
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
def get_coef(self):
|
|
29
|
-
return self._coef_
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
def set_coef(self, value):
|
|
33
|
-
self._coef_ = value
|
|
34
|
-
if hasattr(self, '_onedal_estimator'):
|
|
35
|
-
self._onedal_estimator.coef_ = value
|
|
36
|
-
if not self._is_in_fit:
|
|
37
|
-
del self._onedal_estimator._onedal_model
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def get_intercept(self):
|
|
41
|
-
return self._intercept_
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def set_intercept(self, value):
|
|
45
|
-
self._intercept_ = value
|
|
46
|
-
if hasattr(self, '_onedal_estimator'):
|
|
47
|
-
self._onedal_estimator.intercept_ = value
|
|
48
|
-
if not self._is_in_fit:
|
|
49
|
-
del self._onedal_estimator._onedal_model
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
class BaseLinearRegression(ABC):
|
|
53
|
-
def _save_attributes(self):
|
|
54
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
55
|
-
self.fit_status_ = 0
|
|
56
|
-
self._coef_ = self._onedal_estimator.coef_
|
|
57
|
-
self._intercept_ = self._onedal_estimator.intercept_
|
|
58
|
-
self._sparse = False
|
|
59
|
-
|
|
60
|
-
self.coef_ = property(get_coef, set_coef)
|
|
61
|
-
self.intercept_ = property(get_intercept, set_intercept)
|
|
62
|
-
|
|
63
|
-
self._is_in_fit = True
|
|
64
|
-
self.coef_ = self._coef_
|
|
65
|
-
self.intercept_ = self._intercept_
|
|
66
|
-
self._is_in_fit = False
|
|
@@ -1,23 +0,0 @@
|
|
|
1
|
-
#===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
#===============================================================================
|
|
16
|
-
|
|
17
|
-
__all__ = [
|
|
18
|
-
'basic_statistics',
|
|
19
|
-
'cluster',
|
|
20
|
-
'decomposition',
|
|
21
|
-
'ensemble',
|
|
22
|
-
'linear_model',
|
|
23
|
-
'neighbors']
|
|
@@ -1,63 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
#===============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
#===============================================================================
|
|
17
|
-
|
|
18
|
-
import numpy as np
|
|
19
|
-
from numpy.testing import assert_allclose
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
def test_sklearnex_import_svc():
|
|
23
|
-
from sklearnex.svm import SVC
|
|
24
|
-
X = np.array([[-2, -1], [-1, -1], [-1, -2],
|
|
25
|
-
[+1, +1], [+1, +2], [+2, +1]])
|
|
26
|
-
y = np.array([1, 1, 1, 2, 2, 2])
|
|
27
|
-
svc = SVC(kernel='linear').fit(X, y)
|
|
28
|
-
assert 'daal4py' in svc.__module__ or 'sklearnex' in svc.__module__
|
|
29
|
-
assert_allclose(svc.dual_coef_, [[-0.25, .25]])
|
|
30
|
-
assert_allclose(svc.support_, [1, 3])
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def test_sklearnex_import_nusvc():
|
|
34
|
-
from sklearnex.svm import NuSVC
|
|
35
|
-
X = np.array([[-2, -1], [-1, -1], [-1, -2],
|
|
36
|
-
[+1, +1], [+1, +2], [+2, +1]])
|
|
37
|
-
y = np.array([1, 1, 1, 2, 2, 2])
|
|
38
|
-
svc = NuSVC(kernel='linear').fit(X, y)
|
|
39
|
-
assert 'daal4py' in svc.__module__ or 'sklearnex' in svc.__module__
|
|
40
|
-
assert_allclose(svc.dual_coef_, [[-0.04761905, -0.0952381, 0.0952381, 0.04761905]])
|
|
41
|
-
assert_allclose(svc.support_, [0, 1, 3, 4])
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
def test_sklearnex_import_svr():
|
|
45
|
-
from sklearnex.svm import SVR
|
|
46
|
-
X = np.array([[-2, -1], [-1, -1], [-1, -2],
|
|
47
|
-
[+1, +1], [+1, +2], [+2, +1]])
|
|
48
|
-
y = np.array([1, 1, 1, 2, 2, 2])
|
|
49
|
-
svc = SVR(kernel='linear').fit(X, y)
|
|
50
|
-
assert 'daal4py' in svc.__module__ or 'sklearnex' in svc.__module__
|
|
51
|
-
assert_allclose(svc.dual_coef_, [[-0.1, 0.1]])
|
|
52
|
-
assert_allclose(svc.support_, [1, 3])
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def test_sklearnex_import_nusvr():
|
|
56
|
-
from sklearnex.svm import NuSVR
|
|
57
|
-
X = np.array([[-2, -1], [-1, -1], [-1, -2],
|
|
58
|
-
[+1, +1], [+1, +2], [+2, +1]])
|
|
59
|
-
y = np.array([1, 1, 1, 2, 2, 2])
|
|
60
|
-
svc = NuSVR(kernel='linear', nu=0.9).fit(X, y)
|
|
61
|
-
assert 'daal4py' in svc.__module__ or 'sklearnex' in svc.__module__
|
|
62
|
-
assert_allclose(svc.dual_coef_, [[-1., 0.611111, 1., -0.611111]], rtol=1e-3)
|
|
63
|
-
assert_allclose(svc.support_, [1, 2, 3, 5])
|
|
@@ -1,159 +0,0 @@
|
|
|
1
|
-
#===============================================================================
|
|
2
|
-
# Copyright 2021 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
#===============================================================================
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
|
|
19
|
-
from sklearn.svm import SVC
|
|
20
|
-
from sklearn.ensemble import (RandomForestClassifier, RandomForestRegressor)
|
|
21
|
-
from sklearn.neighbors import (
|
|
22
|
-
KNeighborsClassifier,
|
|
23
|
-
KNeighborsRegressor,
|
|
24
|
-
NearestNeighbors,
|
|
25
|
-
LocalOutlierFactor)
|
|
26
|
-
from sklearn.linear_model import (
|
|
27
|
-
LogisticRegression,
|
|
28
|
-
LogisticRegressionCV,
|
|
29
|
-
LinearRegression,
|
|
30
|
-
Ridge,
|
|
31
|
-
ElasticNet,
|
|
32
|
-
Lasso)
|
|
33
|
-
from sklearn.cluster import (KMeans, DBSCAN)
|
|
34
|
-
from sklearn.manifold import TSNE
|
|
35
|
-
from sklearn.decomposition import PCA
|
|
36
|
-
|
|
37
|
-
MODELS_INFO = [
|
|
38
|
-
{
|
|
39
|
-
'model': KNeighborsClassifier(algorithm='brute'),
|
|
40
|
-
'methods': ['kneighbors', 'predict', 'predict_proba', 'score'],
|
|
41
|
-
'dataset': 'classifier',
|
|
42
|
-
},
|
|
43
|
-
{
|
|
44
|
-
'model': KNeighborsRegressor(algorithm='brute'),
|
|
45
|
-
'methods': ['kneighbors', 'predict', 'score'],
|
|
46
|
-
'dataset': 'regression',
|
|
47
|
-
},
|
|
48
|
-
{
|
|
49
|
-
'model': NearestNeighbors(algorithm='brute'),
|
|
50
|
-
'methods': ['kneighbors'],
|
|
51
|
-
'dataset': 'blobs',
|
|
52
|
-
},
|
|
53
|
-
{
|
|
54
|
-
'model': LocalOutlierFactor(novelty=False),
|
|
55
|
-
'methods': ['fit_predict'],
|
|
56
|
-
'dataset': 'blobs',
|
|
57
|
-
},
|
|
58
|
-
{
|
|
59
|
-
'model': LocalOutlierFactor(novelty=True),
|
|
60
|
-
'methods': ['predict'],
|
|
61
|
-
'dataset': 'blobs',
|
|
62
|
-
},
|
|
63
|
-
{
|
|
64
|
-
'model': DBSCAN(),
|
|
65
|
-
'methods': ['fit_predict'],
|
|
66
|
-
'dataset': 'blobs',
|
|
67
|
-
},
|
|
68
|
-
{
|
|
69
|
-
'model': SVC(probability=True),
|
|
70
|
-
'methods': ['decision_function', 'predict', 'predict_proba', 'score'],
|
|
71
|
-
'dataset': 'classifier',
|
|
72
|
-
},
|
|
73
|
-
{
|
|
74
|
-
'model': KMeans(),
|
|
75
|
-
'methods': ['fit_predict', 'fit_transform', 'transform', 'predict', 'score'],
|
|
76
|
-
'dataset': 'blobs',
|
|
77
|
-
},
|
|
78
|
-
{
|
|
79
|
-
'model': ElasticNet(),
|
|
80
|
-
'methods': ['predict', 'score'],
|
|
81
|
-
'dataset': 'regression',
|
|
82
|
-
},
|
|
83
|
-
{
|
|
84
|
-
'model': Lasso(),
|
|
85
|
-
'methods': ['predict', 'score'],
|
|
86
|
-
'dataset': 'regression',
|
|
87
|
-
},
|
|
88
|
-
{
|
|
89
|
-
'model': PCA(),
|
|
90
|
-
'methods': ['fit_transform', 'transform', 'score'],
|
|
91
|
-
'dataset': 'classifier',
|
|
92
|
-
},
|
|
93
|
-
{
|
|
94
|
-
'model': LogisticRegression(max_iter=100, multi_class='multinomial'),
|
|
95
|
-
'methods': ['decision_function', 'predict', 'predict_proba',
|
|
96
|
-
'predict_log_proba', 'score'],
|
|
97
|
-
'dataset': 'classifier',
|
|
98
|
-
},
|
|
99
|
-
{
|
|
100
|
-
'model': LogisticRegressionCV(max_iter=100),
|
|
101
|
-
'methods': ['decision_function', 'predict', 'predict_proba',
|
|
102
|
-
'predict_log_proba', 'score'],
|
|
103
|
-
'dataset': 'classifier',
|
|
104
|
-
},
|
|
105
|
-
{
|
|
106
|
-
'model': RandomForestClassifier(n_estimators=10),
|
|
107
|
-
'methods': ['predict', 'predict_proba', 'predict_log_proba', 'score'],
|
|
108
|
-
'dataset': 'classifier',
|
|
109
|
-
},
|
|
110
|
-
{
|
|
111
|
-
'model': RandomForestRegressor(n_estimators=10),
|
|
112
|
-
'methods': ['predict', 'score'],
|
|
113
|
-
'dataset': 'regression',
|
|
114
|
-
},
|
|
115
|
-
{
|
|
116
|
-
'model': LinearRegression(),
|
|
117
|
-
'methods': ['predict', 'score'],
|
|
118
|
-
'dataset': 'regression',
|
|
119
|
-
},
|
|
120
|
-
{
|
|
121
|
-
'model': Ridge(),
|
|
122
|
-
'methods': ['predict', 'score'],
|
|
123
|
-
'dataset': 'regression',
|
|
124
|
-
},
|
|
125
|
-
]
|
|
126
|
-
|
|
127
|
-
TYPES = [
|
|
128
|
-
np.int8,
|
|
129
|
-
np.int16,
|
|
130
|
-
np.int32,
|
|
131
|
-
np.int64,
|
|
132
|
-
np.float16,
|
|
133
|
-
np.float32,
|
|
134
|
-
np.float64,
|
|
135
|
-
np.uint8,
|
|
136
|
-
np.uint16,
|
|
137
|
-
np.uint32,
|
|
138
|
-
np.uint64,
|
|
139
|
-
]
|
|
140
|
-
|
|
141
|
-
TO_SKIP = [
|
|
142
|
-
# --------------- NO INFO ---------------
|
|
143
|
-
r'KMeans .*transform',
|
|
144
|
-
r'KMeans .*score',
|
|
145
|
-
r'PCA .*score',
|
|
146
|
-
r'LogisticRegression .*decision_function',
|
|
147
|
-
r'LogisticRegressionCV .*decision_function',
|
|
148
|
-
r'LogisticRegressionCV .*predict',
|
|
149
|
-
r'LogisticRegressionCV .*predict_proba',
|
|
150
|
-
r'LogisticRegressionCV .*predict_log_proba',
|
|
151
|
-
r'LogisticRegressionCV .*score',
|
|
152
|
-
# --------------- Scikit ---------------
|
|
153
|
-
r'Ridge float16 predict',
|
|
154
|
-
r'Ridge float16 score',
|
|
155
|
-
r'RandomForestClassifier .*predict_proba',
|
|
156
|
-
r'RandomForestClassifier .*predict_log_proba',
|
|
157
|
-
r'pairwise_distances .*pairwise_distances', # except float64
|
|
158
|
-
r'roc_auc_score .*roc_auc_score'
|
|
159
|
-
]
|