scikit-learn-intelex 2023.2.1__py311-none-win_amd64.whl → 2024.0.1__py311-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (109) hide show
  1. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
  2. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
  3. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
  4. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
  5. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
  6. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
  7. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
  8. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
  9. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
  10. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
  11. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
  12. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
  13. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
  14. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
  15. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
  16. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
  17. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
  18. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
  19. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
  20. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
  21. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
  22. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
  23. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
  24. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
  25. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
  26. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
  27. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
  28. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
  29. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
  30. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
  31. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
  32. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
  33. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
  34. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
  35. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
  36. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
  37. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
  38. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
  39. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
  40. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
  41. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
  42. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
  43. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
  44. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
  45. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
  46. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
  47. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
  48. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
  49. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
  50. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
  51. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
  52. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
  53. {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
  54. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
  55. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
  56. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
  57. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
  58. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
  59. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
  60. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
  61. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
  62. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
  63. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
  64. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
  65. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
  66. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
  67. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
  68. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
  69. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
  70. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
  71. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
  72. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
  73. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
  74. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
  75. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
  76. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
  77. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
  78. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
  79. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
  80. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
  81. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
  82. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
  83. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
  84. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
  85. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
  86. scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
  87. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
  88. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
  89. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
  90. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
  91. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
  92. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
  93. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
  94. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
  95. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
  96. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
  97. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
  98. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
  99. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
  100. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
  101. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
  102. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
  103. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
  104. scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
  105. scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
  106. {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  107. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
  108. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
  109. {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,50 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+ import pytest
17
+
18
+ from sklearnex import config_context, patch_sklearn
19
+
20
+ patch_sklearn()
21
+
22
+ from sklearn.datasets import make_classification
23
+ from sklearn.ensemble import BaggingClassifier
24
+ from sklearn.svm import SVC
25
+
26
+ try:
27
+ import dpctl
28
+
29
+ dpctl_is_available = True
30
+ gpu_is_available = dpctl.has_gpu_devices()
31
+ except (ImportError, ModuleNotFoundError):
32
+ dpctl_is_available = False
33
+
34
+
35
+ @pytest.mark.skipif(
36
+ not dpctl_is_available or gpu_is_available,
37
+ reason="GPU device should not be available for this test "
38
+ "to see raised 'SyclQueueCreationError'. "
39
+ "'dpctl' module is required for test.",
40
+ )
41
+ def test_config_context_in_parallel():
42
+ x, y = make_classification(random_state=42)
43
+ try:
44
+ with config_context(target_offload="gpu", allow_fallback_to_host=False):
45
+ BaggingClassifier(SVC(), n_jobs=2).fit(x, y)
46
+ raise ValueError(
47
+ "'SyclQueueCreationError' wasn't raised " "for non-existing 'gpu' device"
48
+ )
49
+ except dpctl._sycl_queue.SyclQueueCreationError:
50
+ pass
@@ -1,4 +1,4 @@
1
- # ===============================================================================
1
+ # ==============================================================================
2
2
  # Copyright 2021 Intel Corporation
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -12,7 +12,7 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- # ===============================================================================
15
+ # ==============================================================================
16
16
 
17
17
  import os
18
18
  import pathlib
@@ -99,8 +99,11 @@ def _load_all_models(patched):
99
99
  models = []
100
100
  for patch_infos in get_patch_map().values():
101
101
  maybe_class = getattr(patch_infos[0][0][0], patch_infos[0][0][1])
102
- if maybe_class is not None and isclass(maybe_class) and \
103
- issubclass(maybe_class, BaseEstimator):
102
+ if (
103
+ maybe_class is not None
104
+ and isclass(maybe_class)
105
+ and issubclass(maybe_class, BaseEstimator)
106
+ ):
104
107
  models.append(maybe_class())
105
108
 
106
109
  if patched:
@@ -113,9 +116,7 @@ PATCHED_MODELS = _load_all_models(patched=True)
113
116
  UNPATCHED_MODELS = _load_all_models(patched=False)
114
117
 
115
118
 
116
- @pytest.mark.parametrize(
117
- ("patched", "unpatched"), zip(PATCHED_MODELS, UNPATCHED_MODELS)
118
- )
119
+ @pytest.mark.parametrize(("patched", "unpatched"), zip(PATCHED_MODELS, UNPATCHED_MODELS))
119
120
  def test_is_patched_instance(patched, unpatched):
120
121
  assert is_patched_instance(patched), f"{patched} is a patched instance"
121
122
  assert not is_patched_instance(unpatched), f"{unpatched} is an unpatched instance"
@@ -0,0 +1,428 @@
1
+ # ===============================================================================
2
+ # Copyright 2020 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import random
18
+
19
+ import numpy as np
20
+ import pytest
21
+
22
+ import daal4py as d4p
23
+ from sklearnex import patch_sklearn
24
+
25
+ patch_sklearn()
26
+
27
+ from scipy import sparse
28
+ from sklearn.cluster import DBSCAN, KMeans
29
+ from sklearn.datasets import (
30
+ load_breast_cancer,
31
+ load_diabetes,
32
+ load_iris,
33
+ make_classification,
34
+ make_regression,
35
+ )
36
+ from sklearn.decomposition import PCA
37
+ from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
38
+ from sklearn.linear_model import (
39
+ ElasticNet,
40
+ Lasso,
41
+ LinearRegression,
42
+ LogisticRegression,
43
+ LogisticRegressionCV,
44
+ Ridge,
45
+ )
46
+ from sklearn.manifold import TSNE
47
+ from sklearn.metrics import pairwise_distances, roc_auc_score
48
+ from sklearn.model_selection import train_test_split
49
+ from sklearn.neighbors import (
50
+ KNeighborsClassifier,
51
+ KNeighborsRegressor,
52
+ LocalOutlierFactor,
53
+ NearestNeighbors,
54
+ )
55
+ from sklearn.svm import SVC, SVR, NuSVC, NuSVR
56
+
57
+ from daal4py.sklearn._utils import daal_check_version
58
+
59
+ # to reproduce errors even in CI
60
+ d4p.daalinit(nthreads=100)
61
+
62
+
63
+ def get_class_name(x):
64
+ return x.__class__.__name__
65
+
66
+
67
+ def method_processing(X, clf, methods):
68
+ res = []
69
+ name = []
70
+ for i in methods:
71
+ if i == "predict":
72
+ res.append(clf.predict(X))
73
+ name.append(get_class_name(clf) + ".predict(X)")
74
+ elif i == "predict_proba":
75
+ res.append(clf.predict_proba(X))
76
+ name.append(get_class_name(clf) + ".predict_proba(X)")
77
+ elif i == "decision_function":
78
+ res.append(clf.decision_function(X))
79
+ name.append(get_class_name(clf) + ".decision_function(X)")
80
+ elif i == "kneighbors":
81
+ dist, idx = clf.kneighbors(X)
82
+ res.append(dist)
83
+ name.append("dist")
84
+ res.append(idx)
85
+ name.append("idx")
86
+ elif i == "fit_predict":
87
+ predict = clf.fit_predict(X)
88
+ res.append(predict)
89
+ name.append(get_class_name(clf) + ".fit_predict")
90
+ elif i == "fit_transform":
91
+ res.append(clf.fit_transform(X))
92
+ name.append(get_class_name(clf) + ".fit_transform")
93
+ elif i == "transform":
94
+ res.append(clf.transform(X))
95
+ name.append(get_class_name(clf) + ".transform(X)")
96
+ elif i == "get_covariance":
97
+ res.append(clf.get_covariance())
98
+ name.append(get_class_name(clf) + ".get_covariance()")
99
+ elif i == "get_precision":
100
+ res.append(clf.get_precision())
101
+ name.append(get_class_name(clf) + ".get_precision()")
102
+ elif i == "score_samples":
103
+ res.append(clf.score_samples(X))
104
+ name.append(get_class_name(clf) + ".score_samples(X)")
105
+ return res, name
106
+
107
+
108
+ def func(X, Y, clf, methods):
109
+ clf.fit(X, Y)
110
+ res, name = method_processing(X, clf, methods)
111
+
112
+ for i in clf.__dict__.keys():
113
+ ans = getattr(clf, i)
114
+ if isinstance(ans, (bool, float, int, np.ndarray, np.float64)):
115
+ if isinstance(ans, np.ndarray) and None in ans:
116
+ continue
117
+ res.append(ans)
118
+ name.append(get_class_name(clf) + "." + i)
119
+ return res, name
120
+
121
+
122
+ def _run_test(model, methods, dataset):
123
+ datasets = []
124
+ if dataset in ["blobs", "classifier", "sparse"]:
125
+ X1, y1 = load_iris(return_X_y=True)
126
+ if dataset == "sparse":
127
+ X1 = sparse.csr_matrix(X1)
128
+ datasets.append((X1, y1))
129
+ X2, y2 = load_breast_cancer(return_X_y=True)
130
+ if dataset == "sparse":
131
+ X2 = sparse.csr_matrix(X2)
132
+ datasets.append((X2, y2))
133
+ elif dataset == "regression":
134
+ X1, y1 = make_regression(
135
+ n_samples=500, n_features=10, noise=64.0, random_state=42
136
+ )
137
+ datasets.append((X1, y1))
138
+ X2, y2 = load_diabetes(return_X_y=True)
139
+ datasets.append((X2, y2))
140
+ else:
141
+ raise ValueError("Unknown dataset type")
142
+
143
+ for X, y in datasets:
144
+ baseline, name = func(X, y, model, methods)
145
+ for i in range(10):
146
+ res, _ = func(X, y, model, methods)
147
+
148
+ for a, b, n in zip(res, baseline, name):
149
+ np.testing.assert_allclose(
150
+ a, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
151
+ )
152
+
153
+
154
+ MODELS_INFO = [
155
+ {
156
+ "model": KNeighborsClassifier(
157
+ n_neighbors=10, algorithm="brute", weights="uniform"
158
+ ),
159
+ "methods": ["predict", "predict_proba", "kneighbors"],
160
+ "dataset": "classifier",
161
+ },
162
+ {
163
+ "model": KNeighborsClassifier(
164
+ n_neighbors=10, algorithm="brute", weights="distance"
165
+ ),
166
+ "methods": ["predict", "predict_proba", "kneighbors"],
167
+ "dataset": "classifier",
168
+ },
169
+ {
170
+ "model": KNeighborsClassifier(
171
+ n_neighbors=10, algorithm="kd_tree", weights="uniform"
172
+ ),
173
+ "methods": ["predict", "predict_proba", "kneighbors"],
174
+ "dataset": "classifier",
175
+ },
176
+ {
177
+ "model": KNeighborsClassifier(
178
+ n_neighbors=10, algorithm="kd_tree", weights="distance"
179
+ ),
180
+ "methods": ["predict", "predict_proba", "kneighbors"],
181
+ "dataset": "classifier",
182
+ },
183
+ {
184
+ "model": KNeighborsRegressor(
185
+ n_neighbors=10, algorithm="kd_tree", weights="distance"
186
+ ),
187
+ "methods": ["predict", "kneighbors"],
188
+ "dataset": "regression",
189
+ },
190
+ {
191
+ "model": KNeighborsRegressor(
192
+ n_neighbors=10, algorithm="kd_tree", weights="uniform"
193
+ ),
194
+ "methods": ["predict", "kneighbors"],
195
+ "dataset": "regression",
196
+ },
197
+ {
198
+ "model": KNeighborsRegressor(
199
+ n_neighbors=10, algorithm="brute", weights="distance"
200
+ ),
201
+ "methods": ["predict", "kneighbors"],
202
+ "dataset": "regression",
203
+ },
204
+ {
205
+ "model": KNeighborsRegressor(
206
+ n_neighbors=10, algorithm="brute", weights="uniform"
207
+ ),
208
+ "methods": ["predict", "kneighbors"],
209
+ "dataset": "regression",
210
+ },
211
+ {
212
+ "model": NearestNeighbors(n_neighbors=10, algorithm="brute"),
213
+ "methods": ["kneighbors"],
214
+ "dataset": "blobs",
215
+ },
216
+ {
217
+ "model": NearestNeighbors(n_neighbors=10, algorithm="kd_tree"),
218
+ "methods": ["kneighbors"],
219
+ "dataset": "blobs",
220
+ },
221
+ {
222
+ "model": LocalOutlierFactor(n_neighbors=10, novelty=False),
223
+ "methods": ["fit_predict"],
224
+ "dataset": "blobs",
225
+ },
226
+ {
227
+ "model": LocalOutlierFactor(n_neighbors=10, novelty=True),
228
+ "methods": ["predict"],
229
+ "dataset": "blobs",
230
+ },
231
+ {
232
+ "model": DBSCAN(algorithm="brute", n_jobs=-1),
233
+ "methods": [],
234
+ "dataset": "blobs",
235
+ },
236
+ {
237
+ "model": SVC(kernel="rbf"),
238
+ "methods": ["predict", "decision_function"],
239
+ "dataset": "classifier",
240
+ },
241
+ {
242
+ "model": SVC(kernel="rbf"),
243
+ "methods": ["predict", "decision_function"],
244
+ "dataset": "sparse",
245
+ },
246
+ {
247
+ "model": NuSVC(kernel="rbf"),
248
+ "methods": ["predict", "decision_function"],
249
+ "dataset": "classifier",
250
+ },
251
+ {
252
+ "model": SVR(kernel="rbf"),
253
+ "methods": ["predict"],
254
+ "dataset": "regression",
255
+ },
256
+ {
257
+ "model": NuSVR(kernel="rbf"),
258
+ "methods": ["predict"],
259
+ "dataset": "regression",
260
+ },
261
+ {
262
+ "model": TSNE(random_state=0),
263
+ "methods": ["fit_transform"],
264
+ "dataset": "classifier",
265
+ },
266
+ {
267
+ "model": KMeans(random_state=0, init="k-means++"),
268
+ "methods": ["predict"],
269
+ "dataset": "blobs",
270
+ },
271
+ {
272
+ "model": KMeans(random_state=0, init="random"),
273
+ "methods": ["predict"],
274
+ "dataset": "blobs",
275
+ },
276
+ {
277
+ "model": KMeans(random_state=0, init="k-means++"),
278
+ "methods": ["predict"],
279
+ "dataset": "sparse",
280
+ },
281
+ {
282
+ "model": KMeans(random_state=0, init="random"),
283
+ "methods": ["predict"],
284
+ "dataset": "sparse",
285
+ },
286
+ {
287
+ "model": ElasticNet(random_state=0),
288
+ "methods": ["predict"],
289
+ "dataset": "regression",
290
+ },
291
+ {
292
+ "model": Lasso(random_state=0),
293
+ "methods": ["predict"],
294
+ "dataset": "regression",
295
+ },
296
+ {
297
+ "model": PCA(n_components=0.5, svd_solver="full", random_state=0),
298
+ "methods": ["transform", "get_covariance", "get_precision", "score_samples"],
299
+ "dataset": "classifier",
300
+ },
301
+ {
302
+ "model": RandomForestClassifier(
303
+ random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
304
+ ),
305
+ "methods": ["predict", "predict_proba"],
306
+ "dataset": "classifier",
307
+ },
308
+ {
309
+ "model": LogisticRegression(random_state=0, solver="newton-cg", max_iter=1000),
310
+ "methods": ["predict", "predict_proba"],
311
+ "dataset": "classifier",
312
+ },
313
+ {
314
+ "model": LogisticRegression(random_state=0, solver="lbfgs", max_iter=1000),
315
+ "methods": ["predict", "predict_proba"],
316
+ "dataset": "classifier",
317
+ },
318
+ {
319
+ "model": LogisticRegressionCV(
320
+ random_state=0, solver="newton-cg", n_jobs=-1, max_iter=1000
321
+ ),
322
+ "methods": ["predict", "predict_proba"],
323
+ "dataset": "classifier",
324
+ },
325
+ {
326
+ "model": LogisticRegressionCV(
327
+ random_state=0, solver="lbfgs", n_jobs=-1, max_iter=1000
328
+ ),
329
+ "methods": ["predict", "predict_proba"],
330
+ "dataset": "classifier",
331
+ },
332
+ {
333
+ "model": RandomForestRegressor(
334
+ random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
335
+ ),
336
+ "methods": ["predict"],
337
+ "dataset": "regression",
338
+ },
339
+ {
340
+ "model": LinearRegression(),
341
+ "methods": ["predict"],
342
+ "dataset": "regression",
343
+ },
344
+ {
345
+ "model": Ridge(random_state=0),
346
+ "methods": ["predict"],
347
+ "dataset": "regression",
348
+ },
349
+ ]
350
+
351
+ TO_SKIP = [
352
+ "TSNE", # Absolute diff is 1e-10, potential problem in KNN,
353
+ # will be fixed for next release. (UPD. KNN is fixed but there is a problem
354
+ # with stability of stock sklearn. It is already stable in master, so, we
355
+ # need to wait for the next sklearn release)
356
+ "LogisticRegression", # Absolute diff is 1e-8, will be fixed for next release
357
+ "LogisticRegressionCV", # Absolute diff is 1e-10, will be fixed for next release
358
+ "RandomForestRegressor", # Absolute diff is 1e-14 in OOB score,
359
+ # will be fixed for next release
360
+ ]
361
+
362
+
363
+ @pytest.mark.parametrize("model_head", MODELS_INFO)
364
+ def test_models(model_head):
365
+ stable_algos = []
366
+ if get_class_name(model_head["model"]) in stable_algos and daal_check_version(
367
+ (2021, "P", 300)
368
+ ):
369
+ try:
370
+ TO_SKIP.remove(get_class_name(model_head["model"]))
371
+ except ValueError:
372
+ pass
373
+ if get_class_name(model_head["model"]) in TO_SKIP:
374
+ pytest.skip("Unstable", allow_module_level=False)
375
+ _run_test(model_head["model"], model_head["methods"], model_head["dataset"])
376
+
377
+
378
+ @pytest.mark.parametrize("features", range(5, 10))
379
+ def test_train_test_split(features):
380
+ X, y = make_classification(
381
+ n_samples=4000,
382
+ n_features=features,
383
+ n_informative=features,
384
+ n_redundant=0,
385
+ n_clusters_per_class=8,
386
+ random_state=0,
387
+ )
388
+ (
389
+ baseline_X_train,
390
+ baseline_X_test,
391
+ baseline_y_train,
392
+ baseline_y_test,
393
+ ) = train_test_split(X, y, test_size=0.33, random_state=0)
394
+ baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
395
+ for _ in range(10):
396
+ X_train, X_test, y_train, y_test = train_test_split(
397
+ X, y, test_size=0.33, random_state=0
398
+ )
399
+ res = [X_train, X_test, y_train, y_test]
400
+ for a, b in zip(res, baseline):
401
+ np.testing.assert_allclose(
402
+ a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
403
+ )
404
+
405
+
406
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
407
+ def test_pairwise_distances(metric):
408
+ X = np.random.rand(1000)
409
+ X = np.array(X, dtype=np.float64)
410
+ baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
411
+ for _ in range(5):
412
+ res = pairwise_distances(X.reshape(1, -1), metric=metric)
413
+ for a, b in zip(res, baseline):
414
+ np.testing.assert_allclose(
415
+ a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
416
+ )
417
+
418
+
419
+ @pytest.mark.parametrize("array_size", [100, 1000, 10000])
420
+ def test_roc_auc(array_size):
421
+ a = [random.randint(0, 1) for i in range(array_size)]
422
+ b = [random.randint(0, 1) for i in range(array_size)]
423
+ baseline = roc_auc_score(a, b)
424
+ for _ in range(5):
425
+ res = roc_auc_score(a, b)
426
+ np.testing.assert_allclose(
427
+ baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
428
+ )
@@ -1,4 +1,4 @@
1
- #===============================================================================
1
+ # ==============================================================================
2
2
  # Copyright 2021 Intel Corporation
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -12,25 +12,25 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- #===============================================================================
15
+ # ==============================================================================
16
16
 
17
- import numpy as np
18
17
  import logging
19
18
  import random
20
19
 
20
+ import numpy as np
21
+
21
22
  from sklearnex import patch_sklearn
23
+
22
24
  patch_sklearn()
23
25
 
26
+ import pathlib
27
+ import sys
28
+
29
+ from sklearn.datasets import load_diabetes, load_iris, make_regression
24
30
  from sklearn.metrics import pairwise_distances, roc_auc_score
25
- from sklearn.datasets import (
26
- make_regression,
27
- load_iris,
28
- load_diabetes)
29
31
 
30
- import sys
31
- import pathlib
32
32
  absolute_path = str(pathlib.Path(__file__).parent.absolute())
33
- sys.path.append(absolute_path + '/../')
33
+ sys.path.append(absolute_path + "/../")
34
34
  from _models_info import MODELS_INFO, TYPES
35
35
 
36
36
 
@@ -39,80 +39,80 @@ def get_class_name(x):
39
39
 
40
40
 
41
41
  def generate_dataset(name, dtype, model_name):
42
- if model_name == 'LinearRegression':
42
+ if model_name == "LinearRegression":
43
43
  X, y = make_regression(n_samples=1000, n_features=5)
44
- elif name in ['blobs', 'classifier']:
44
+ elif name in ["blobs", "classifier"]:
45
45
  X, y = load_iris(return_X_y=True)
46
- elif name == 'regression':
46
+ elif name == "regression":
47
47
  X, y = load_diabetes(return_X_y=True)
48
48
  else:
49
- raise ValueError('Unknown dataset type')
49
+ raise ValueError("Unknown dataset type")
50
50
  X = np.array(X, dtype=dtype)
51
51
  y = np.array(y, dtype=dtype)
52
52
  return (X, y)
53
53
 
54
54
 
55
55
  def run_patch(model_info, dtype):
56
- print(get_class_name(model_info['model']), dtype.__name__)
57
- X, y = generate_dataset(model_info['dataset'],
58
- dtype,
59
- get_class_name(model_info['model']))
60
- model = model_info['model']
56
+ print(get_class_name(model_info["model"]), dtype.__name__)
57
+ X, y = generate_dataset(
58
+ model_info["dataset"], dtype, get_class_name(model_info["model"])
59
+ )
60
+ model = model_info["model"]
61
61
  model.fit(X, y)
62
- logging.info('fit')
63
- for i in model_info['methods']:
64
- if i == 'predict':
62
+ logging.info("fit")
63
+ for i in model_info["methods"]:
64
+ if i == "predict":
65
65
  model.predict(X)
66
- elif i == 'predict_proba':
66
+ elif i == "predict_proba":
67
67
  model.predict_proba(X)
68
- elif i == 'predict_log_proba':
68
+ elif i == "predict_log_proba":
69
69
  model.predict_log_proba(X)
70
- elif i == 'decision_function':
70
+ elif i == "decision_function":
71
71
  model.decision_function(X)
72
- elif i == 'fit_predict':
72
+ elif i == "fit_predict":
73
73
  model.fit_predict(X)
74
- elif i == 'transform':
74
+ elif i == "transform":
75
75
  model.transform(X)
76
- elif i == 'fit_transform':
76
+ elif i == "fit_transform":
77
77
  model.fit_transform(X)
78
- elif i == 'kneighbors':
78
+ elif i == "kneighbors":
79
79
  model.kneighbors(X)
80
- elif i == 'score':
80
+ elif i == "score":
81
81
  model.score(X, y)
82
82
  else:
83
- raise ValueError(i + ' is wrong method')
83
+ raise ValueError(i + " is wrong method")
84
84
  logging.info(i)
85
85
 
86
86
 
87
87
  def run_algotithms():
88
88
  for info in MODELS_INFO:
89
89
  for t in TYPES:
90
- model_name = get_class_name(info['model'])
91
- if model_name in ['Ridge', 'LinearRegression'] and t.__name__ == 'uint32':
90
+ model_name = get_class_name(info["model"])
91
+ if model_name in ["Ridge", "LinearRegression"] and t.__name__ == "uint32":
92
92
  continue
93
93
  run_patch(info, t)
94
94
 
95
95
 
96
96
  def run_utils():
97
97
  # pairwise_distances
98
- for metric in ['cosine', 'correlation']:
98
+ for metric in ["cosine", "correlation"]:
99
99
  for t in TYPES:
100
100
  X = np.random.rand(1000)
101
101
  X = np.array(X, dtype=t)
102
- print('pairwise_distances', t.__name__)
102
+ print("pairwise_distances", t.__name__)
103
103
  _ = pairwise_distances(X.reshape(1, -1), metric=metric)
104
- logging.info('pairwise_distances')
104
+ logging.info("pairwise_distances")
105
105
  # roc_auc_score
106
106
  for t in [np.float32, np.float64]:
107
107
  a = [random.randint(0, 1) for i in range(1000)]
108
108
  b = [random.randint(0, 1) for i in range(1000)]
109
109
  a = np.array(a, dtype=t)
110
110
  b = np.array(b, dtype=t)
111
- print('roc_auc_score', t.__name__)
111
+ print("roc_auc_score", t.__name__)
112
112
  _ = roc_auc_score(a, b)
113
- logging.info('roc_auc_score')
113
+ logging.info("roc_auc_score")
114
114
 
115
115
 
116
- if __name__ == '__main__':
116
+ if __name__ == "__main__":
117
117
  run_algotithms()
118
118
  run_utils()
@@ -1,4 +1,4 @@
1
- #===============================================================================
1
+ # ===============================================================================
2
2
  # Copyright 2022 Intel Corporation
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -12,8 +12,8 @@
12
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
- #===============================================================================
15
+ # ===============================================================================
16
16
 
17
17
  from .validation import _assert_all_finite
18
18
 
19
- __all__ = ['_assert_all_finite']
19
+ __all__ = ["_assert_all_finite"]