sarkit-convert 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sarkit_convert/__init__.py +17 -0
- sarkit_convert/_utils.py +253 -0
- sarkit_convert/_version.py +1 -0
- sarkit_convert/csk.py +822 -0
- sarkit_convert/iceye.py +885 -0
- sarkit_convert/sentinel.py +1589 -0
- sarkit_convert/tsx.py +906 -0
- sarkit_convert-0.1.0.dist-info/METADATA +69 -0
- sarkit_convert-0.1.0.dist-info/RECORD +12 -0
- sarkit_convert-0.1.0.dist-info/WHEEL +4 -0
- sarkit_convert-0.1.0.dist-info/entry_points.txt +4 -0
- sarkit_convert-0.1.0.dist-info/licenses/LICENSE +22 -0
sarkit_convert/tsx.py
ADDED
|
@@ -0,0 +1,906 @@
|
|
|
1
|
+
"""
|
|
2
|
+
===================
|
|
3
|
+
TSX Complex to SICD
|
|
4
|
+
===================
|
|
5
|
+
|
|
6
|
+
Convert a complex image from the TerraSAR-X COSAR into SICD 1.4
|
|
7
|
+
|
|
8
|
+
During development, the following documents were considered:
|
|
9
|
+
|
|
10
|
+
"Level 1b Product Format Specification", Issue 1.3
|
|
11
|
+
|
|
12
|
+
In addition, SARPy was consulted on how to use the TSX metadata to compute SICD
|
|
13
|
+
metadata that would predict the complex data characteristics
|
|
14
|
+
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
import argparse
|
|
18
|
+
import pathlib
|
|
19
|
+
|
|
20
|
+
import dateutil.parser
|
|
21
|
+
import lxml.builder
|
|
22
|
+
import numpy as np
|
|
23
|
+
import numpy.linalg as npl
|
|
24
|
+
import numpy.polynomial.polynomial as npp
|
|
25
|
+
import sarkit.sicd as sksicd
|
|
26
|
+
import sarkit.verification
|
|
27
|
+
import sarkit.wgs84
|
|
28
|
+
import scipy.constants
|
|
29
|
+
from lxml import etree
|
|
30
|
+
|
|
31
|
+
from sarkit_convert import _utils as utils
|
|
32
|
+
|
|
33
|
+
NSMAP = {
|
|
34
|
+
"sicd": "urn:SICD:1.4.0",
|
|
35
|
+
}
|
|
36
|
+
|
|
37
|
+
COSAR_PIXEL_TYPE = "RE16I_IM16I"
|
|
38
|
+
|
|
39
|
+
MODE_TYPE_MAP = {
|
|
40
|
+
"ST": "SPOTLIGHT",
|
|
41
|
+
"SL": "DYNAMIC STRIPMAP",
|
|
42
|
+
"HS": "DYNAMIC STRIPMAP",
|
|
43
|
+
"SM": "STRIPMAP",
|
|
44
|
+
}
|
|
45
|
+
|
|
46
|
+
INSTRUMENT_CONVERSION_TO_SECONDS = 32 / 3.29658384e8
|
|
47
|
+
INSTRUMENT_CONVERSION_TO_HZ = 1.25e6
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _get_xyz(root, prefix):
|
|
51
|
+
return [
|
|
52
|
+
float(root.findtext(f"{prefix}{component}")) for component in ("X", "Y", "Z")
|
|
53
|
+
]
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
def _parse_to_naive(timestamp_str):
|
|
57
|
+
return dateutil.parser.parse(timestamp_str).replace(tzinfo=None)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def _naive_to_sicd_str(timestamp):
|
|
61
|
+
return timestamp.replace(tzinfo=None).isoformat() + "Z"
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def _boolstr_to_bool(text):
|
|
65
|
+
return text in ("1", "true")
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def _compute_apc_poly(tsx_xml, start_time, stop_time):
|
|
69
|
+
"""Creates an Aperture Phase Center (APC) poly that best fits the provided state vectors
|
|
70
|
+
|
|
71
|
+
Polynomial generates 3D coords in ECF as a function of time from start of collect.
|
|
72
|
+
|
|
73
|
+
Parameters
|
|
74
|
+
----------
|
|
75
|
+
tsx_xml: lxml.Element
|
|
76
|
+
The TSX xml
|
|
77
|
+
start_time: datetime.datetime
|
|
78
|
+
The start time to fit
|
|
79
|
+
stop_time: datetime.datetime
|
|
80
|
+
The end time to fit
|
|
81
|
+
|
|
82
|
+
Returns
|
|
83
|
+
-------
|
|
84
|
+
`numpy.ndarray`, shape=(6, 3)
|
|
85
|
+
APC poly
|
|
86
|
+
"""
|
|
87
|
+
|
|
88
|
+
times = []
|
|
89
|
+
positions = []
|
|
90
|
+
velocities = []
|
|
91
|
+
for state_vec in tsx_xml.findall("./platform/orbit/stateVec"):
|
|
92
|
+
sv_time = _parse_to_naive(state_vec.findtext("./timeUTC"))
|
|
93
|
+
times.append((sv_time - start_time).total_seconds())
|
|
94
|
+
positions.append(_get_xyz(state_vec, "pos"))
|
|
95
|
+
velocities.append(_get_xyz(state_vec, "vel"))
|
|
96
|
+
|
|
97
|
+
start = 0.0
|
|
98
|
+
stop = (stop_time - start_time).total_seconds()
|
|
99
|
+
apc_poly = utils.fit_state_vectors(
|
|
100
|
+
(start, stop),
|
|
101
|
+
times,
|
|
102
|
+
positions,
|
|
103
|
+
velocities,
|
|
104
|
+
order=5,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
return apc_poly
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def read_cosar(cosar_file):
|
|
111
|
+
burst_annot_dtype = np.dtype(
|
|
112
|
+
[
|
|
113
|
+
("BIB", ">i4"),
|
|
114
|
+
("RSRI", ">i4"),
|
|
115
|
+
("RS", ">i4"),
|
|
116
|
+
("AS", ">i4"),
|
|
117
|
+
("BI", ">i4"),
|
|
118
|
+
("RTNB", ">i4"),
|
|
119
|
+
("TNL", ">i4"),
|
|
120
|
+
]
|
|
121
|
+
)
|
|
122
|
+
burst_annot = np.fromfile(cosar_file, dtype=burst_annot_dtype, count=1)
|
|
123
|
+
assert (
|
|
124
|
+
burst_annot["BIB"] == burst_annot["RTNB"] * burst_annot["TNL"]
|
|
125
|
+
) # TODO Handle only one burst for now
|
|
126
|
+
rtnb = burst_annot["RTNB"][0]
|
|
127
|
+
n_rg = burst_annot["RS"][0]
|
|
128
|
+
n_az = burst_annot["AS"][0]
|
|
129
|
+
azim_annot_shape = (3, n_rg + 2)
|
|
130
|
+
azim_info = np.fromfile(
|
|
131
|
+
cosar_file, dtype=">i4", count=np.prod(azim_annot_shape), offset=rtnb
|
|
132
|
+
).reshape(azim_annot_shape)[:, 2:]
|
|
133
|
+
if not np.array_equiv(azim_info[0, 2:], 0):
|
|
134
|
+
raise ValueError("COSAR image data is not deskewed")
|
|
135
|
+
|
|
136
|
+
range_lines_shape = (n_az, n_rg + 2)
|
|
137
|
+
range_lines = np.fromfile(
|
|
138
|
+
cosar_file, dtype=">i4", count=np.prod(range_lines_shape), offset=4 * rtnb
|
|
139
|
+
).reshape(range_lines_shape)
|
|
140
|
+
|
|
141
|
+
range_info = range_lines[:, :2]
|
|
142
|
+
assert np.all(range_info[:, 0] <= range_info[:, 1])
|
|
143
|
+
|
|
144
|
+
view_dtype = sksicd.PIXEL_TYPES[COSAR_PIXEL_TYPE]["dtype"].newbyteorder("big")
|
|
145
|
+
data_arr = range_lines[:, 2:]
|
|
146
|
+
complex_data_arr = np.squeeze(data_arr.view(view_dtype))
|
|
147
|
+
|
|
148
|
+
return complex_data_arr
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def cosar_to_sicd(
|
|
152
|
+
tsx_xml,
|
|
153
|
+
layer_index,
|
|
154
|
+
cosar_file,
|
|
155
|
+
sicd_file,
|
|
156
|
+
classification,
|
|
157
|
+
ostaid,
|
|
158
|
+
chan_index,
|
|
159
|
+
tx_polarizations,
|
|
160
|
+
tx_rcv_pols,
|
|
161
|
+
):
|
|
162
|
+
cal_const_elem = tsx_xml.find(
|
|
163
|
+
f'./calibration/calibrationConstant[@layerIndex="{layer_index}"]'
|
|
164
|
+
)
|
|
165
|
+
pol_layer = cal_const_elem.findtext("./polLayer")
|
|
166
|
+
settings_elem = tsx_xml.xpath(
|
|
167
|
+
f'./instrument/settings/polLayer[text()="{pol_layer}"]/..'
|
|
168
|
+
)[0]
|
|
169
|
+
|
|
170
|
+
# Timeline
|
|
171
|
+
proc_param = tsx_xml.find("./processing/processingParameter")
|
|
172
|
+
collection_start_time = _parse_to_naive(
|
|
173
|
+
proc_param.findtext("./rangeCompression/segmentInfo/dataSegment/startTimeUTC")
|
|
174
|
+
)
|
|
175
|
+
collection_stop_time = _parse_to_naive(
|
|
176
|
+
proc_param.findtext("./rangeCompression/segmentInfo/dataSegment/stopTimeUTC")
|
|
177
|
+
)
|
|
178
|
+
collection_duration = (collection_stop_time - collection_start_time).total_seconds()
|
|
179
|
+
prf = float(settings_elem.findtext("./settingRecord/PRF"))
|
|
180
|
+
num_pulses = int(np.ceil(collection_duration * prf))
|
|
181
|
+
look = {"LEFT": 1, "RIGHT": -1}[
|
|
182
|
+
tsx_xml.findtext("./productInfo/acquisitionInfo/lookDirection")
|
|
183
|
+
]
|
|
184
|
+
|
|
185
|
+
# Collection Info
|
|
186
|
+
collector_name = tsx_xml.findtext("./productInfo/missionInfo/mission")
|
|
187
|
+
core_name = tsx_xml.findtext("./productInfo/sceneInfo/sceneID")
|
|
188
|
+
radar_mode_id = tsx_xml.findtext("./productInfo/acquisitionInfo/imagingMode")
|
|
189
|
+
if radar_mode_id not in MODE_TYPE_MAP:
|
|
190
|
+
raise ValueError(f"Unsupported mode {radar_mode_id}")
|
|
191
|
+
radar_mode_type = MODE_TYPE_MAP[radar_mode_id]
|
|
192
|
+
|
|
193
|
+
# Creation Info
|
|
194
|
+
creation_time = _parse_to_naive(tsx_xml.findtext("./generalHeader/generationTime"))
|
|
195
|
+
generation_system = tsx_xml.find("./generalHeader/generationSystem")
|
|
196
|
+
application = generation_system.text
|
|
197
|
+
version = generation_system.attrib["version"]
|
|
198
|
+
creation_application = f"{application} version {version}"
|
|
199
|
+
creation_site = tsx_xml.findtext(
|
|
200
|
+
"./productInfo/generationInfo/level1ProcessingFacility"
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
# COSAR data has range in the fast dimension, so this is a deliberate transposition
|
|
204
|
+
# Image Data
|
|
205
|
+
num_rows = int(
|
|
206
|
+
tsx_xml.findtext("./productInfo/imageDataInfo/imageRaster/numberOfColumns")
|
|
207
|
+
)
|
|
208
|
+
num_cols = int(
|
|
209
|
+
tsx_xml.findtext("./productInfo/imageDataInfo/imageRaster/numberOfRows")
|
|
210
|
+
)
|
|
211
|
+
first_row = 0
|
|
212
|
+
first_col = 0
|
|
213
|
+
scp_row = int(
|
|
214
|
+
tsx_xml.findtext("./productInfo/sceneInfo/sceneCenterCoord/refColumn")
|
|
215
|
+
)
|
|
216
|
+
ref_col = int(tsx_xml.findtext("./productInfo/sceneInfo/sceneCenterCoord/refRow"))
|
|
217
|
+
if look > 0:
|
|
218
|
+
scp_col = num_cols - 1 - ref_col
|
|
219
|
+
else:
|
|
220
|
+
scp_col = ref_col
|
|
221
|
+
scp_pixel = np.array([scp_row, scp_col])
|
|
222
|
+
|
|
223
|
+
# Position
|
|
224
|
+
apc_poly = _compute_apc_poly(tsx_xml, collection_start_time, collection_stop_time)
|
|
225
|
+
|
|
226
|
+
# Image Formation
|
|
227
|
+
st_beam_comp = "NONE"
|
|
228
|
+
procflags_elem = tsx_xml.find("./processing/processingFlags")
|
|
229
|
+
if _boolstr_to_bool(procflags_elem.findtext("./azimuthPatternCorrectedFlag")):
|
|
230
|
+
st_beam_comp = "GLOBAL"
|
|
231
|
+
if _boolstr_to_bool(
|
|
232
|
+
procflags_elem.findtext("./spotLightBeamCorrectedFlag")
|
|
233
|
+
) or _boolstr_to_bool(procflags_elem.findtext("./scanSARBeamCorrectedFlag")):
|
|
234
|
+
st_beam_comp = "SV"
|
|
235
|
+
|
|
236
|
+
# Radar Collection
|
|
237
|
+
center_frequency = float(
|
|
238
|
+
tsx_xml.findtext("./instrument/radarParameters/centerFrequency")
|
|
239
|
+
)
|
|
240
|
+
chirp_elem = proc_param.find("./rangeCompression/chirps/referenceChirp")
|
|
241
|
+
tx_pulse_length = (
|
|
242
|
+
float(chirp_elem.findtext("./pulseLength")) * INSTRUMENT_CONVERSION_TO_SECONDS
|
|
243
|
+
)
|
|
244
|
+
tx_rf_bw = (
|
|
245
|
+
float(chirp_elem.findtext("./pulseBandwidth")) * INSTRUMENT_CONVERSION_TO_HZ
|
|
246
|
+
)
|
|
247
|
+
tx_fm_rate = (
|
|
248
|
+
{"UP": 1, "DOWN": -1}[chirp_elem.findtext("./chirpSlope")]
|
|
249
|
+
* tx_rf_bw
|
|
250
|
+
/ tx_pulse_length
|
|
251
|
+
)
|
|
252
|
+
tx_freq_min = center_frequency - 0.5 * tx_rf_bw
|
|
253
|
+
tx_freq_max = center_frequency + 0.5 * tx_rf_bw
|
|
254
|
+
tx_freq_start = center_frequency - (tx_pulse_length / 2 * tx_fm_rate)
|
|
255
|
+
adc_sample_rate = float(settings_elem.findtext("./RSF"))
|
|
256
|
+
rcv_window_length = (
|
|
257
|
+
float(settings_elem.findtext("./settingRecord/echowindowLength"))
|
|
258
|
+
/ adc_sample_rate
|
|
259
|
+
)
|
|
260
|
+
tx_rcv_polarization = tx_rcv_pols[chan_index - 1]
|
|
261
|
+
tx_polarization = tx_rcv_polarization[0]
|
|
262
|
+
|
|
263
|
+
# Grid
|
|
264
|
+
orientation = tsx_xml.findtext(
|
|
265
|
+
"./productSpecific/complexImageInfo/imageDataStartWith"
|
|
266
|
+
)
|
|
267
|
+
if orientation != "EARLYAZNEARRG":
|
|
268
|
+
raise ValueError("Image data not in expected orientation")
|
|
269
|
+
# These spacings are within a row/col, so effectively cancel the raster transpose.
|
|
270
|
+
intervals = np.array(
|
|
271
|
+
[
|
|
272
|
+
float(
|
|
273
|
+
tsx_xml.findtext("./productInfo/imageDataInfo/imageRaster/rowSpacing")
|
|
274
|
+
),
|
|
275
|
+
float(
|
|
276
|
+
tsx_xml.findtext(
|
|
277
|
+
"./productInfo/imageDataInfo/imageRaster/columnSpacing"
|
|
278
|
+
)
|
|
279
|
+
),
|
|
280
|
+
]
|
|
281
|
+
)
|
|
282
|
+
spacings = np.array(
|
|
283
|
+
[
|
|
284
|
+
intervals[0] * scipy.constants.speed_of_light / 2,
|
|
285
|
+
float(
|
|
286
|
+
tsx_xml.findtext(
|
|
287
|
+
"./productSpecific/complexImageInfo/projectedSpacingAzimuth"
|
|
288
|
+
)
|
|
289
|
+
),
|
|
290
|
+
]
|
|
291
|
+
)
|
|
292
|
+
row_bw = (
|
|
293
|
+
float(proc_param.findtext("./rangeLookBandwidth"))
|
|
294
|
+
* 2
|
|
295
|
+
/ scipy.constants.speed_of_light
|
|
296
|
+
)
|
|
297
|
+
col_bw = (
|
|
298
|
+
float(proc_param.findtext("./azimuthLookBandwidth"))
|
|
299
|
+
* intervals[1]
|
|
300
|
+
/ spacings[1]
|
|
301
|
+
)
|
|
302
|
+
zd_0_utc = _parse_to_naive(
|
|
303
|
+
tsx_xml.findtext("./productInfo/sceneInfo/start/timeUTC")[:-1]
|
|
304
|
+
)
|
|
305
|
+
zd_az_0 = (zd_0_utc - collection_start_time).total_seconds()
|
|
306
|
+
zd_rg_0 = float(tsx_xml.findtext("./productInfo/sceneInfo/rangeTime/firstPixel"))
|
|
307
|
+
row_wid = 1 / row_bw
|
|
308
|
+
col_wid = 1 / col_bw
|
|
309
|
+
|
|
310
|
+
# Create doppler rate and centroid
|
|
311
|
+
num_grid_pts = 51
|
|
312
|
+
range_times = np.linspace(0, num_rows - 1, num_grid_pts) * intervals[0] + zd_rg_0
|
|
313
|
+
xrow_vals = ((range_times - zd_rg_0) / intervals[0] - scp_pixel[0]) * spacings[0]
|
|
314
|
+
|
|
315
|
+
def get_poly_vals(base_path, rel_poly_path):
|
|
316
|
+
values = []
|
|
317
|
+
azimuth_times = []
|
|
318
|
+
for base_node in tsx_xml.findall(base_path):
|
|
319
|
+
utc_time = _parse_to_naive(base_node.findtext("./timeUTC"))
|
|
320
|
+
azimuth_times.append((utc_time - collection_start_time).total_seconds())
|
|
321
|
+
poly_node = base_node.find(rel_poly_path)
|
|
322
|
+
ref_range_time = float(poly_node.findtext("referencePoint"))
|
|
323
|
+
degree = int(poly_node.findtext("polynomialDegree"))
|
|
324
|
+
poly = np.zeros(degree + 1)
|
|
325
|
+
for coef in poly_node.findall("coefficient"):
|
|
326
|
+
poly[int(coef.attrib["exponent"])] = float(coef.text)
|
|
327
|
+
current_values = npp.polyval(range_times - ref_range_time, poly)
|
|
328
|
+
values.append(current_values)
|
|
329
|
+
values = np.stack(values, axis=1)
|
|
330
|
+
return np.array(azimuth_times), values
|
|
331
|
+
|
|
332
|
+
def zd_times_to_ycol(times):
|
|
333
|
+
indices = (np.asarray(times) - zd_az_0) / intervals[1]
|
|
334
|
+
if look > 0:
|
|
335
|
+
ycol_vals = (num_cols - 1 - indices - scp_pixel[1]) * spacings[1]
|
|
336
|
+
else:
|
|
337
|
+
ycol_vals = (indices - scp_pixel[1]) * spacings[1]
|
|
338
|
+
return ycol_vals
|
|
339
|
+
|
|
340
|
+
drate_times, doppler_rate = get_poly_vals(
|
|
341
|
+
"./processing/geometry/dopplerRate", "dopplerRatePolynomial"
|
|
342
|
+
)
|
|
343
|
+
drate_ycol_vals = zd_times_to_ycol(drate_times)
|
|
344
|
+
drate_grid_coords = np.stack(
|
|
345
|
+
np.meshgrid(xrow_vals, drate_ycol_vals, indexing="ij"), axis=-1
|
|
346
|
+
)
|
|
347
|
+
doppler_rate_poly = utils.polyfit2d_tol(
|
|
348
|
+
drate_grid_coords[..., 0].flatten(),
|
|
349
|
+
drate_grid_coords[..., 1].flatten(),
|
|
350
|
+
doppler_rate.flatten(),
|
|
351
|
+
4,
|
|
352
|
+
4,
|
|
353
|
+
1e-3,
|
|
354
|
+
)
|
|
355
|
+
|
|
356
|
+
centroid_coord_type = tsx_xml.findtext(
|
|
357
|
+
"./processing/doppler/dopplerCentroidCoordinateType"
|
|
358
|
+
)
|
|
359
|
+
dopp_cent_path = (
|
|
360
|
+
f'./processing/doppler/dopplerCentroid[@layerIndex="{layer_index}"]'
|
|
361
|
+
)
|
|
362
|
+
if radar_mode_type == "SPOTLIGHT":
|
|
363
|
+
coa_time = collection_duration / 2
|
|
364
|
+
delta_time = coa_time - np.array(drate_times)
|
|
365
|
+
doppler_centroid = (
|
|
366
|
+
npp.polyval2d(
|
|
367
|
+
drate_grid_coords[..., 0], drate_grid_coords[..., 1], doppler_rate_poly
|
|
368
|
+
)
|
|
369
|
+
* delta_time[np.newaxis, :]
|
|
370
|
+
)
|
|
371
|
+
doppler_centroid_poly = utils.polyfit2d_tol(
|
|
372
|
+
drate_grid_coords[..., 0].flatten(),
|
|
373
|
+
drate_grid_coords[..., 1].flatten(),
|
|
374
|
+
doppler_centroid.flatten(),
|
|
375
|
+
4,
|
|
376
|
+
4,
|
|
377
|
+
1e-2,
|
|
378
|
+
)
|
|
379
|
+
time_coa_poly = np.array([[coa_time]])
|
|
380
|
+
else:
|
|
381
|
+
if centroid_coord_type == "RAW":
|
|
382
|
+
coa_times, doppler_centroid = get_poly_vals(
|
|
383
|
+
dopp_cent_path + "/dopplerEstimate", "./combinedDoppler"
|
|
384
|
+
)
|
|
385
|
+
coa_times = np.tile(coa_times, (doppler_centroid.shape[0], 1))
|
|
386
|
+
zd_times = coa_times - doppler_centroid / doppler_rate_poly[0, 0]
|
|
387
|
+
dcent_ycol_vals = zd_times_to_ycol(zd_times)
|
|
388
|
+
dcent_xrow_vals = np.tile(
|
|
389
|
+
xrow_vals[:, np.newaxis], (1, dcent_ycol_vals.shape[1])
|
|
390
|
+
)
|
|
391
|
+
dcent_grid_coords = np.stack((dcent_xrow_vals, dcent_ycol_vals), axis=-1)
|
|
392
|
+
doppler_centroid_poly = utils.polyfit2d_tol(
|
|
393
|
+
dcent_grid_coords[..., 0].flatten(),
|
|
394
|
+
dcent_grid_coords[..., 1].flatten(),
|
|
395
|
+
doppler_centroid.flatten(),
|
|
396
|
+
4,
|
|
397
|
+
4,
|
|
398
|
+
1e-2,
|
|
399
|
+
)
|
|
400
|
+
elif centroid_coord_type == "ZERODOPPLER":
|
|
401
|
+
zd_times, doppler_centroid = get_poly_vals(
|
|
402
|
+
dopp_cent_path + "/dopplerEstimate", "./combinedDoppler"
|
|
403
|
+
)
|
|
404
|
+
zd_times = np.tile(zd_times, (doppler_centroid.shape[0], 1))
|
|
405
|
+
coa_times = zd_times + doppler_centroid / doppler_rate_poly[0, 0]
|
|
406
|
+
dcent_ycol_vals = zd_times_to_ycol(zd_times)
|
|
407
|
+
dcent_xrow_vals = np.tile(
|
|
408
|
+
xrow_vals[:, np.newaxis], (1, dcent_ycol_vals.shape[1])
|
|
409
|
+
)
|
|
410
|
+
dcent_grid_coords = np.stack((dcent_xrow_vals, dcent_ycol_vals), axis=-1)
|
|
411
|
+
doppler_centroid_poly = utils.polyfit2d_tol(
|
|
412
|
+
dcent_grid_coords[..., 0].flatten(),
|
|
413
|
+
dcent_grid_coords[..., 1].flatten(),
|
|
414
|
+
doppler_centroid.flatten(),
|
|
415
|
+
4,
|
|
416
|
+
4,
|
|
417
|
+
1e-2,
|
|
418
|
+
)
|
|
419
|
+
else:
|
|
420
|
+
raise ValueError(
|
|
421
|
+
f"Unknown dopplerCentroidCoordinateType: {centroid_coord_type}"
|
|
422
|
+
)
|
|
423
|
+
time_coa_poly = utils.polyfit2d_tol(
|
|
424
|
+
dcent_grid_coords[..., 0].flatten(),
|
|
425
|
+
dcent_grid_coords[..., 1].flatten(),
|
|
426
|
+
coa_times.flatten(),
|
|
427
|
+
4,
|
|
428
|
+
4,
|
|
429
|
+
1e-3,
|
|
430
|
+
)
|
|
431
|
+
|
|
432
|
+
range_rate_per_hz = -scipy.constants.speed_of_light / (2 * center_frequency)
|
|
433
|
+
range_rate_rate = doppler_rate * range_rate_per_hz
|
|
434
|
+
|
|
435
|
+
if look > 0:
|
|
436
|
+
scp_tca = (num_cols - 1 - scp_col) * intervals[1] + zd_az_0
|
|
437
|
+
else:
|
|
438
|
+
scp_tca = scp_col * intervals[1] + zd_az_0
|
|
439
|
+
scp_rca = (
|
|
440
|
+
(zd_rg_0 + scp_pixel[0] * intervals[0]) * scipy.constants.speed_of_light / 2
|
|
441
|
+
)
|
|
442
|
+
time_ca_poly = np.array([scp_tca, -look * intervals[1] / spacings[1]])
|
|
443
|
+
range_ca = range_times * scipy.constants.speed_of_light / 2
|
|
444
|
+
speed_ca = npl.norm(npp.polyval(drate_times, npp.polyder(apc_poly)), axis=0)
|
|
445
|
+
drsf = range_rate_rate * range_ca[:, np.newaxis] / speed_ca[np.newaxis, :] ** 2
|
|
446
|
+
drsf_poly = utils.polyfit2d_tol(
|
|
447
|
+
drate_grid_coords[..., 0].flatten(),
|
|
448
|
+
drate_grid_coords[..., 1].flatten(),
|
|
449
|
+
drsf.flatten(),
|
|
450
|
+
4,
|
|
451
|
+
4,
|
|
452
|
+
1e-6,
|
|
453
|
+
)
|
|
454
|
+
|
|
455
|
+
si_elem = tsx_xml.find("./productInfo/sceneInfo")
|
|
456
|
+
scc_llh = np.array(
|
|
457
|
+
[
|
|
458
|
+
float(si_elem.findtext("./sceneCenterCoord/lat")),
|
|
459
|
+
float(si_elem.findtext("./sceneCenterCoord/lon")),
|
|
460
|
+
float(si_elem.findtext("./sceneAverageHeight")),
|
|
461
|
+
]
|
|
462
|
+
)
|
|
463
|
+
scc_ecf = sarkit.wgs84.geodetic_to_cartesian(scc_llh)
|
|
464
|
+
|
|
465
|
+
scp_drsf = drsf_poly[0, 0]
|
|
466
|
+
scp_tcoa = time_coa_poly[0, 0]
|
|
467
|
+
scp_delta_t_coa = scp_tcoa - scp_tca
|
|
468
|
+
scp_varp_ca_mag = npl.norm(npp.polyval(scp_tca, npp.polyder(apc_poly)))
|
|
469
|
+
scp_rcoa = np.sqrt(scp_rca**2 + scp_drsf * scp_varp_ca_mag**2 * scp_delta_t_coa**2)
|
|
470
|
+
scp_rratecoa = scp_drsf / scp_rcoa * scp_varp_ca_mag**2 * scp_delta_t_coa
|
|
471
|
+
|
|
472
|
+
scp_set = sksicd.projection.ProjectionSetsMono(
|
|
473
|
+
t_COA=np.array([scp_tcoa]),
|
|
474
|
+
ARP_COA=np.array([npp.polyval(scp_tcoa, apc_poly)]),
|
|
475
|
+
VARP_COA=np.array([npp.polyval(scp_tcoa, npp.polyder(apc_poly))]),
|
|
476
|
+
R_COA=np.array([scp_rcoa]),
|
|
477
|
+
Rdot_COA=np.array([scp_rratecoa]),
|
|
478
|
+
)
|
|
479
|
+
scp_ecf, _, _ = sksicd.projection.r_rdot_to_constant_hae_surface(
|
|
480
|
+
look, scc_ecf, scp_set, scc_llh[2]
|
|
481
|
+
)
|
|
482
|
+
scp_ecf = scp_ecf[0]
|
|
483
|
+
scp_llh = sarkit.wgs84.cartesian_to_geodetic(scp_ecf)
|
|
484
|
+
scp_ca_pos = npp.polyval(scp_tca, apc_poly)
|
|
485
|
+
scp_ca_vel = npp.polyval(scp_tca, npp.polyder(apc_poly))
|
|
486
|
+
los = scp_ecf - scp_ca_pos
|
|
487
|
+
u_row = los / npl.norm(los)
|
|
488
|
+
left = np.cross(scp_ca_pos, scp_ca_vel)
|
|
489
|
+
look = np.sign(np.dot(left, u_row))
|
|
490
|
+
spz = -look * np.cross(u_row, scp_ca_vel)
|
|
491
|
+
uspz = spz / npl.norm(spz)
|
|
492
|
+
u_col = np.cross(uspz, u_row)
|
|
493
|
+
|
|
494
|
+
# Build XML
|
|
495
|
+
sicd = lxml.builder.ElementMaker(
|
|
496
|
+
namespace=NSMAP["sicd"], nsmap={None: NSMAP["sicd"]}
|
|
497
|
+
)
|
|
498
|
+
collection_info = sicd.CollectionInfo(
|
|
499
|
+
sicd.CollectorName(collector_name),
|
|
500
|
+
sicd.CoreName(core_name),
|
|
501
|
+
sicd.CollectType("MONOSTATIC"),
|
|
502
|
+
sicd.RadarMode(sicd.ModeType(radar_mode_type), sicd.ModeID(radar_mode_id)),
|
|
503
|
+
sicd.Classification(classification),
|
|
504
|
+
)
|
|
505
|
+
image_creation = sicd.ImageCreation(
|
|
506
|
+
sicd.Application(creation_application),
|
|
507
|
+
sicd.DateTime(_naive_to_sicd_str(creation_time)),
|
|
508
|
+
sicd.Site(creation_site),
|
|
509
|
+
)
|
|
510
|
+
image_data = sicd.ImageData(
|
|
511
|
+
sicd.PixelType(COSAR_PIXEL_TYPE),
|
|
512
|
+
sicd.NumRows(str(num_rows)),
|
|
513
|
+
sicd.NumCols(str(num_cols)),
|
|
514
|
+
sicd.FirstRow(str(first_row)),
|
|
515
|
+
sicd.FirstCol(str(first_col)),
|
|
516
|
+
sicd.FullImage(sicd.NumRows(str(num_rows)), sicd.NumCols(str(num_cols))),
|
|
517
|
+
sicd.SCPPixel(sicd.Row(str(scp_pixel[0])), sicd.Col(str(scp_pixel[1]))),
|
|
518
|
+
)
|
|
519
|
+
|
|
520
|
+
def make_xyz(arr):
|
|
521
|
+
return [sicd.X(str(arr[0])), sicd.Y(str(arr[1])), sicd.Z(str(arr[2]))]
|
|
522
|
+
|
|
523
|
+
def make_llh(arr):
|
|
524
|
+
return [sicd.Lat(str(arr[0])), sicd.Lon(str(arr[1])), sicd.HAE(str(arr[2]))]
|
|
525
|
+
|
|
526
|
+
# Will add ImageCorners later
|
|
527
|
+
geo_data = sicd.GeoData(
|
|
528
|
+
sicd.EarthModel("WGS_84"),
|
|
529
|
+
sicd.SCP(sicd.ECF(*make_xyz(scp_ecf)), sicd.LLH(*make_llh(scp_llh))),
|
|
530
|
+
)
|
|
531
|
+
|
|
532
|
+
dc_sgn = np.sign(-doppler_rate_poly[0, 0])
|
|
533
|
+
col_deltakcoa_poly = (
|
|
534
|
+
-look * dc_sgn * doppler_centroid_poly * intervals[1] / spacings[1]
|
|
535
|
+
)
|
|
536
|
+
vertices = [
|
|
537
|
+
(0, 0),
|
|
538
|
+
(0, num_cols - 1),
|
|
539
|
+
(num_rows - 1, num_cols - 1),
|
|
540
|
+
(num_rows - 1, 0),
|
|
541
|
+
]
|
|
542
|
+
coords = (vertices - scp_pixel) * spacings
|
|
543
|
+
deltaks = npp.polyval2d(coords[:, 0], coords[:, 1], col_deltakcoa_poly)
|
|
544
|
+
dk1 = deltaks.min() - col_bw / 2
|
|
545
|
+
dk2 = deltaks.max() + col_bw / 2
|
|
546
|
+
if dk1 < -0.5 / spacings[1] or dk2 > 0.5 / spacings[1]:
|
|
547
|
+
dk1 = -0.5 / spacings[1]
|
|
548
|
+
dk2 = -dk1
|
|
549
|
+
|
|
550
|
+
row_window_name = proc_param.findtext("./rangeWindowID")
|
|
551
|
+
row_window_coeff = float(proc_param.findtext("./rangeWindowCoefficient"))
|
|
552
|
+
col_window_name = proc_param.findtext("./azimuthWindowID")
|
|
553
|
+
col_window_coeff = float(proc_param.findtext("./azimuthWindowCoefficient"))
|
|
554
|
+
|
|
555
|
+
grid = sicd.Grid(
|
|
556
|
+
sicd.ImagePlane("SLANT"),
|
|
557
|
+
sicd.Type("RGZERO"),
|
|
558
|
+
sicd.TimeCOAPoly(),
|
|
559
|
+
sicd.Row(
|
|
560
|
+
sicd.UVectECF(*make_xyz(u_row)),
|
|
561
|
+
sicd.SS(str(spacings[0])),
|
|
562
|
+
sicd.ImpRespWid(str(row_wid)),
|
|
563
|
+
sicd.Sgn("-1"),
|
|
564
|
+
sicd.ImpRespBW(str(row_bw)),
|
|
565
|
+
sicd.KCtr(str(center_frequency / (scipy.constants.speed_of_light / 2))),
|
|
566
|
+
sicd.DeltaK1(str(-row_bw / 2)),
|
|
567
|
+
sicd.DeltaK2(str(row_bw / 2)),
|
|
568
|
+
sicd.DeltaKCOAPoly(),
|
|
569
|
+
sicd.WgtType(
|
|
570
|
+
sicd.WindowName(row_window_name),
|
|
571
|
+
sicd.Parameter({"name": "COEFFICIENT"}, str(row_window_coeff)),
|
|
572
|
+
),
|
|
573
|
+
),
|
|
574
|
+
sicd.Col(
|
|
575
|
+
sicd.UVectECF(*make_xyz(u_col)),
|
|
576
|
+
sicd.SS(str(spacings[1])),
|
|
577
|
+
sicd.ImpRespWid(str(col_wid)),
|
|
578
|
+
sicd.Sgn("-1"),
|
|
579
|
+
sicd.ImpRespBW(str(col_bw)),
|
|
580
|
+
sicd.KCtr("0"),
|
|
581
|
+
sicd.DeltaK1(str(dk1)),
|
|
582
|
+
sicd.DeltaK2(str(dk2)),
|
|
583
|
+
sicd.DeltaKCOAPoly(),
|
|
584
|
+
sicd.WgtType(
|
|
585
|
+
sicd.WindowName(col_window_name),
|
|
586
|
+
sicd.Parameter({"name": "COEFFICIENT"}, str(col_window_coeff)),
|
|
587
|
+
),
|
|
588
|
+
),
|
|
589
|
+
)
|
|
590
|
+
sksicd.Poly2dType().set_elem(grid.find("./{*}TimeCOAPoly"), time_coa_poly)
|
|
591
|
+
sksicd.Poly2dType().set_elem(grid.find("./{*}Row/{*}DeltaKCOAPoly"), [[0]])
|
|
592
|
+
sksicd.Poly2dType().set_elem(
|
|
593
|
+
grid.find("./{*}Col/{*}DeltaKCOAPoly"), col_deltakcoa_poly
|
|
594
|
+
)
|
|
595
|
+
rcs_row_sf = None
|
|
596
|
+
rcs_col_sf = None
|
|
597
|
+
if row_window_name == "Hamming":
|
|
598
|
+
wgts = scipy.signal.windows.general_hamming(512, row_window_coeff, sym=True)
|
|
599
|
+
wgtfunc = sicd.WgtFunct()
|
|
600
|
+
sksicd.TRANSCODERS["Grid/Row/WgtFunct"].set_elem(wgtfunc, wgts)
|
|
601
|
+
grid.find("./{*}Row").append(wgtfunc)
|
|
602
|
+
row_broadening_factor = utils.broadening_from_amp(wgts)
|
|
603
|
+
row_wid = row_broadening_factor / row_bw
|
|
604
|
+
sksicd.DblType().set_elem(grid.find("./{*}Row/{*}ImpRespWid"), row_wid)
|
|
605
|
+
rcs_row_sf = 1 + np.var(wgts) / np.mean(wgts) ** 2
|
|
606
|
+
if col_window_name == "Hamming":
|
|
607
|
+
wgts = scipy.signal.windows.general_hamming(512, col_window_coeff, sym=True)
|
|
608
|
+
wgtfunc = sicd.WgtFunct()
|
|
609
|
+
sksicd.TRANSCODERS["Grid/Col/WgtFunct"].set_elem(wgtfunc, wgts)
|
|
610
|
+
grid.find("./{*}Col").append(wgtfunc)
|
|
611
|
+
col_broadening_factor = utils.broadening_from_amp(wgts)
|
|
612
|
+
col_wid = col_broadening_factor / col_bw
|
|
613
|
+
sksicd.DblType().set_elem(grid.find("./{*}Col/{*}ImpRespWid"), col_wid)
|
|
614
|
+
rcs_col_sf = 1 + np.var(wgts) / np.mean(wgts) ** 2
|
|
615
|
+
|
|
616
|
+
timeline = sicd.Timeline(
|
|
617
|
+
sicd.CollectStart(_naive_to_sicd_str(collection_start_time)),
|
|
618
|
+
sicd.CollectDuration(str(collection_duration)),
|
|
619
|
+
sicd.IPP(
|
|
620
|
+
{"size": "1"},
|
|
621
|
+
sicd.Set(
|
|
622
|
+
{"index": "1"},
|
|
623
|
+
sicd.TStart(str(0)),
|
|
624
|
+
sicd.TEnd(str(num_pulses / prf)),
|
|
625
|
+
sicd.IPPStart(str(0)),
|
|
626
|
+
sicd.IPPEnd(str(num_pulses - 1)),
|
|
627
|
+
sicd.IPPPoly(),
|
|
628
|
+
),
|
|
629
|
+
),
|
|
630
|
+
)
|
|
631
|
+
sksicd.PolyType().set_elem(timeline.find("./{*}IPP/{*}Set/{*}IPPPoly"), [0, prf])
|
|
632
|
+
|
|
633
|
+
position = sicd.Position(sicd.ARPPoly())
|
|
634
|
+
sksicd.XyzPolyType().set_elem(position.find("./{*}ARPPoly"), apc_poly)
|
|
635
|
+
|
|
636
|
+
rcv_channels = sicd.RcvChannels(
|
|
637
|
+
{"size": str(len(tx_rcv_pols))},
|
|
638
|
+
)
|
|
639
|
+
for ndx, tx_rcv_pol in enumerate(tx_rcv_pols):
|
|
640
|
+
rcv_channels.append(
|
|
641
|
+
sicd.ChanParameters(
|
|
642
|
+
{"index": str(ndx + 1)}, sicd.TxRcvPolarization(tx_rcv_pol)
|
|
643
|
+
)
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
radar_collection = sicd.RadarCollection(
|
|
647
|
+
sicd.TxFrequency(sicd.Min(str(tx_freq_min)), sicd.Max(str(tx_freq_max))),
|
|
648
|
+
sicd.Waveform(
|
|
649
|
+
{"size": "1"},
|
|
650
|
+
sicd.WFParameters(
|
|
651
|
+
{"index": "1"},
|
|
652
|
+
sicd.TxPulseLength(str(tx_pulse_length)),
|
|
653
|
+
sicd.TxRFBandwidth(str(tx_rf_bw)),
|
|
654
|
+
sicd.TxFreqStart(str(tx_freq_start)),
|
|
655
|
+
sicd.TxFMRate(str(tx_fm_rate)),
|
|
656
|
+
sicd.RcvWindowLength(str(rcv_window_length)),
|
|
657
|
+
sicd.ADCSampleRate(str(adc_sample_rate)),
|
|
658
|
+
),
|
|
659
|
+
),
|
|
660
|
+
sicd.TxPolarization(tx_polarization),
|
|
661
|
+
rcv_channels,
|
|
662
|
+
)
|
|
663
|
+
if len(tx_polarizations) > 1:
|
|
664
|
+
radar_collection.find("./{*}TxPolarization").text = "SEQUENCE"
|
|
665
|
+
tx_sequence = sicd.TxSequence({"size": str(len(tx_polarizations))})
|
|
666
|
+
for ndx, tx_pol in enumerate(tx_polarizations):
|
|
667
|
+
tx_sequence.append(
|
|
668
|
+
sicd.TxStep({"index": str(ndx + 1)}, sicd.TxPolarization(tx_pol))
|
|
669
|
+
)
|
|
670
|
+
rcv_channels.addprevious(tx_sequence)
|
|
671
|
+
|
|
672
|
+
image_formation = sicd.ImageFormation(
|
|
673
|
+
sicd.RcvChanProc(sicd.NumChanProc("1"), sicd.ChanIndex(str(chan_index))),
|
|
674
|
+
sicd.TxRcvPolarizationProc(tx_rcv_polarization),
|
|
675
|
+
sicd.TStartProc(str(0)),
|
|
676
|
+
sicd.TEndProc(str(collection_duration)),
|
|
677
|
+
sicd.TxFrequencyProc(
|
|
678
|
+
sicd.MinProc(str(tx_freq_min)), sicd.MaxProc(str(tx_freq_max))
|
|
679
|
+
),
|
|
680
|
+
sicd.ImageFormAlgo("RMA"),
|
|
681
|
+
sicd.STBeamComp(st_beam_comp),
|
|
682
|
+
sicd.ImageBeamComp("SV"),
|
|
683
|
+
sicd.AzAutofocus("NO"),
|
|
684
|
+
sicd.RgAutofocus("NO"),
|
|
685
|
+
)
|
|
686
|
+
|
|
687
|
+
rma = sicd.RMA(
|
|
688
|
+
sicd.RMAlgoType("OMEGA_K"),
|
|
689
|
+
sicd.ImageType("INCA"),
|
|
690
|
+
sicd.INCA(
|
|
691
|
+
sicd.TimeCAPoly(),
|
|
692
|
+
sicd.R_CA_SCP(str(scp_rca)),
|
|
693
|
+
sicd.FreqZero(str(center_frequency)),
|
|
694
|
+
sicd.DRateSFPoly(),
|
|
695
|
+
sicd.DopCentroidPoly(),
|
|
696
|
+
),
|
|
697
|
+
)
|
|
698
|
+
sksicd.PolyType().set_elem(rma.find("./{*}INCA/{*}TimeCAPoly"), time_ca_poly)
|
|
699
|
+
sksicd.Poly2dType().set_elem(rma.find("./{*}INCA/{*}DRateSFPoly"), drsf_poly)
|
|
700
|
+
sksicd.Poly2dType().set_elem(
|
|
701
|
+
rma.find("./{*}INCA/{*}DopCentroidPoly"), doppler_centroid_poly
|
|
702
|
+
)
|
|
703
|
+
sicd_xml_obj = sicd.SICD(
|
|
704
|
+
collection_info,
|
|
705
|
+
image_creation,
|
|
706
|
+
image_data,
|
|
707
|
+
geo_data,
|
|
708
|
+
grid,
|
|
709
|
+
timeline,
|
|
710
|
+
position,
|
|
711
|
+
radar_collection,
|
|
712
|
+
image_formation,
|
|
713
|
+
rma,
|
|
714
|
+
)
|
|
715
|
+
|
|
716
|
+
image_formation.addnext(sksicd.compute_scp_coa(sicd_xml_obj.getroottree()))
|
|
717
|
+
|
|
718
|
+
# Add Radiometric
|
|
719
|
+
cal_constant = float(cal_const_elem.findtext("./calFactor"))
|
|
720
|
+
betazero_poly = np.array([[cal_constant]])
|
|
721
|
+
graze = np.deg2rad(float(sicd_xml_obj.findtext("./{*}SCPCOA/{*}GrazeAng")))
|
|
722
|
+
twist = np.deg2rad(float(sicd_xml_obj.findtext("./{*}SCPCOA/{*}TwistAng")))
|
|
723
|
+
sigmazero_poly = betazero_poly * np.cos(graze) * np.cos(twist)
|
|
724
|
+
gammazero_poly = betazero_poly / np.tan(graze) * np.cos(twist)
|
|
725
|
+
|
|
726
|
+
noise_path = f'./noise[@layerIndex="{layer_index}"]'
|
|
727
|
+
noise_times, noise_vals = get_poly_vals(f"{noise_path}/imageNoise", "noiseEstimate")
|
|
728
|
+
noise_ycol_vals = zd_times_to_ycol(np.tile(noise_times, (noise_vals.shape[0], 1)))
|
|
729
|
+
noise_xrow_vals = np.tile(xrow_vals[:, np.newaxis], (1, noise_ycol_vals.shape[1]))
|
|
730
|
+
noise_grid_coords = np.stack((noise_xrow_vals, noise_ycol_vals), axis=-1)
|
|
731
|
+
fit_noise_vals = 10 * np.log10(noise_vals)
|
|
732
|
+
noise_poly = utils.polyfit2d_tol(
|
|
733
|
+
noise_grid_coords[..., 0].flatten(),
|
|
734
|
+
noise_grid_coords[..., 1].flatten(),
|
|
735
|
+
fit_noise_vals.flatten(),
|
|
736
|
+
min(fit_noise_vals.shape[0] - 1, 4),
|
|
737
|
+
min(fit_noise_vals.shape[1] - 1, 4),
|
|
738
|
+
1e-2,
|
|
739
|
+
)
|
|
740
|
+
|
|
741
|
+
radiometric = sicd.Radiometric(
|
|
742
|
+
sicd.NoiseLevel(sicd.NoiseLevelType("ABSOLUTE"), sicd.NoisePoly()),
|
|
743
|
+
sicd.SigmaZeroSFPoly(),
|
|
744
|
+
sicd.BetaZeroSFPoly(),
|
|
745
|
+
sicd.GammaZeroSFPoly(),
|
|
746
|
+
)
|
|
747
|
+
sksicd.Poly2dType().set_elem(
|
|
748
|
+
radiometric.find("./{*}NoiseLevel/{*}NoisePoly"), noise_poly
|
|
749
|
+
)
|
|
750
|
+
sksicd.Poly2dType().set_elem(
|
|
751
|
+
radiometric.find("./{*}SigmaZeroSFPoly"), sigmazero_poly
|
|
752
|
+
)
|
|
753
|
+
sksicd.Poly2dType().set_elem(radiometric.find("./{*}BetaZeroSFPoly"), betazero_poly)
|
|
754
|
+
sksicd.Poly2dType().set_elem(
|
|
755
|
+
radiometric.find("./{*}GammaZeroSFPoly"), gammazero_poly
|
|
756
|
+
)
|
|
757
|
+
if rcs_row_sf and rcs_col_sf:
|
|
758
|
+
rcssf_poly = betazero_poly * (rcs_row_sf * rcs_col_sf / (row_bw * col_bw))
|
|
759
|
+
radiometric.find("./{*}SigmaZeroSFPoly").addprevious(sicd.RCSSFPoly())
|
|
760
|
+
sksicd.Poly2dType().set_elem(radiometric.find("./{*}RCSSFPoly"), rcssf_poly)
|
|
761
|
+
|
|
762
|
+
sicd_xml_obj.find("./{*}RMA").addprevious(radiometric)
|
|
763
|
+
|
|
764
|
+
# Add Geodata Corners
|
|
765
|
+
sicd_xmltree = sicd_xml_obj.getroottree()
|
|
766
|
+
image_grid_locations = (
|
|
767
|
+
np.array(
|
|
768
|
+
[[0, 0], [0, num_cols - 1], [num_rows - 1, num_cols - 1], [num_rows - 1, 0]]
|
|
769
|
+
)
|
|
770
|
+
- scp_pixel
|
|
771
|
+
) * spacings
|
|
772
|
+
icp_ecef, _, _ = sksicd.image_to_ground_plane(
|
|
773
|
+
sicd_xmltree,
|
|
774
|
+
image_grid_locations,
|
|
775
|
+
scp_ecf,
|
|
776
|
+
sarkit.wgs84.up(sarkit.wgs84.cartesian_to_geodetic(scp_ecf)),
|
|
777
|
+
)
|
|
778
|
+
icp_llh = sarkit.wgs84.cartesian_to_geodetic(icp_ecef)
|
|
779
|
+
image_corners = sicd.ImageCorners()
|
|
780
|
+
sksicd.ImageCornersType().set_elem(image_corners, icp_llh[:, :2])
|
|
781
|
+
geo_data.append(image_corners)
|
|
782
|
+
|
|
783
|
+
# Add RNIIRS
|
|
784
|
+
xml_helper = sksicd.XmlHelper(sicd_xmltree)
|
|
785
|
+
inf_density, pred_rniirs = utils.get_rniirs_estimate(xml_helper)
|
|
786
|
+
collection_info.append(
|
|
787
|
+
sicd.Parameter({"name": "INFORMATION_DENSITY"}, f"{inf_density:.2g}")
|
|
788
|
+
)
|
|
789
|
+
collection_info.append(
|
|
790
|
+
sicd.Parameter({"name": "PREDICTED_RNIIRS"}, f"{pred_rniirs:.2g}")
|
|
791
|
+
)
|
|
792
|
+
|
|
793
|
+
# Validate XML
|
|
794
|
+
sicd_con = sarkit.verification.SicdConsistency(sicd_xmltree)
|
|
795
|
+
sicd_con.check()
|
|
796
|
+
sicd_con.print_result(fail_detail=True)
|
|
797
|
+
|
|
798
|
+
# Grab the data
|
|
799
|
+
complex_data_arr = np.transpose(read_cosar(cosar_file))
|
|
800
|
+
if look > 0:
|
|
801
|
+
complex_data_arr = complex_data_arr[:, ::-1]
|
|
802
|
+
|
|
803
|
+
metadata = sksicd.NitfMetadata(
|
|
804
|
+
xmltree=sicd_xmltree,
|
|
805
|
+
file_header_part={
|
|
806
|
+
"ostaid": ostaid,
|
|
807
|
+
"ftitle": core_name,
|
|
808
|
+
"security": {
|
|
809
|
+
"clas": classification[0].upper(),
|
|
810
|
+
"clsy": "US",
|
|
811
|
+
},
|
|
812
|
+
},
|
|
813
|
+
im_subheader_part={
|
|
814
|
+
"tgtid": "",
|
|
815
|
+
"iid2": core_name,
|
|
816
|
+
"security": {
|
|
817
|
+
"clas": classification[0].upper(),
|
|
818
|
+
"clsy": "US",
|
|
819
|
+
},
|
|
820
|
+
"isorce": collector_name,
|
|
821
|
+
},
|
|
822
|
+
de_subheader_part={
|
|
823
|
+
"security": {
|
|
824
|
+
"clas": classification[0].upper(),
|
|
825
|
+
"clsy": "US",
|
|
826
|
+
},
|
|
827
|
+
},
|
|
828
|
+
)
|
|
829
|
+
|
|
830
|
+
with sicd_file.open("wb") as f:
|
|
831
|
+
with sksicd.NitfWriter(f, metadata) as writer:
|
|
832
|
+
writer.write_image(complex_data_arr)
|
|
833
|
+
|
|
834
|
+
|
|
835
|
+
def main(args=None):
|
|
836
|
+
parser = argparse.ArgumentParser(description="Converts a TSX dataset into a SICD.")
|
|
837
|
+
|
|
838
|
+
parser.add_argument(
|
|
839
|
+
"input_xml_file", type=pathlib.Path, help="path of the input XML file"
|
|
840
|
+
)
|
|
841
|
+
parser.add_argument(
|
|
842
|
+
"classification",
|
|
843
|
+
help="content of the /SICD/CollectionInfo/Classification node in the SICD XML",
|
|
844
|
+
)
|
|
845
|
+
parser.add_argument(
|
|
846
|
+
"output_sicd_file",
|
|
847
|
+
type=pathlib.Path,
|
|
848
|
+
help='path of the output SICD file. The string "{pol}" will be replaced with polarization for multiple images',
|
|
849
|
+
)
|
|
850
|
+
parser.add_argument(
|
|
851
|
+
"--ostaid",
|
|
852
|
+
help="content of the originating station ID (OSTAID) field of the NITF header",
|
|
853
|
+
default="Unknown",
|
|
854
|
+
)
|
|
855
|
+
config = parser.parse_args(args)
|
|
856
|
+
|
|
857
|
+
if not config.input_xml_file.is_file():
|
|
858
|
+
raise ValueError(f"Input XML file {str(config.input_xml_file)} is not a file")
|
|
859
|
+
|
|
860
|
+
tsx_xml = etree.parse(config.input_xml_file).getroot()
|
|
861
|
+
|
|
862
|
+
images = dict()
|
|
863
|
+
img_ndx = 1
|
|
864
|
+
tx_polarizations = []
|
|
865
|
+
tx_rcv_pols = []
|
|
866
|
+
for imagedata_elem in tsx_xml.findall("./productComponents/imageData"):
|
|
867
|
+
layer_index = imagedata_elem.attrib["layerIndex"]
|
|
868
|
+
pol_layer = imagedata_elem.findtext("./polLayer")
|
|
869
|
+
assert imagedata_elem.findtext("./file/location/host") == "."
|
|
870
|
+
path = imagedata_elem.findtext("./file/location/path")
|
|
871
|
+
fname = imagedata_elem.findtext("./file/location/filename")
|
|
872
|
+
cosar_filename = config.input_xml_file.parent / path / fname
|
|
873
|
+
if not cosar_filename.is_file():
|
|
874
|
+
raise ValueError(f"Input COSAR file {str(cosar_filename)} is not a file")
|
|
875
|
+
|
|
876
|
+
sicd_filename = pathlib.Path(str(config.output_sicd_file).format(pol=pol_layer))
|
|
877
|
+
images[layer_index] = {
|
|
878
|
+
"pol_layer": pol_layer,
|
|
879
|
+
"chan_index": img_ndx,
|
|
880
|
+
"cosar_filename": cosar_filename,
|
|
881
|
+
"sicd_filename": sicd_filename,
|
|
882
|
+
}
|
|
883
|
+
tx_rcv_pols.append(f"{pol_layer[0]}:{pol_layer[1]}")
|
|
884
|
+
if (tx_polarization := pol_layer[0]) not in tx_polarizations:
|
|
885
|
+
tx_polarizations.append(tx_polarization)
|
|
886
|
+
img_ndx += 1
|
|
887
|
+
|
|
888
|
+
if len(images) != len(set([image["sicd_filename"] for image in images.values()])):
|
|
889
|
+
raise ValueError("Output filename does not include necessary polarization slug")
|
|
890
|
+
|
|
891
|
+
for layer_index, img_info in images.items():
|
|
892
|
+
cosar_to_sicd(
|
|
893
|
+
tsx_xml=tsx_xml,
|
|
894
|
+
layer_index=layer_index,
|
|
895
|
+
cosar_file=img_info["cosar_filename"],
|
|
896
|
+
sicd_file=img_info["sicd_filename"],
|
|
897
|
+
classification=config.classification,
|
|
898
|
+
ostaid=config.ostaid,
|
|
899
|
+
chan_index=img_info["chan_index"],
|
|
900
|
+
tx_polarizations=tx_polarizations,
|
|
901
|
+
tx_rcv_pols=tx_rcv_pols,
|
|
902
|
+
)
|
|
903
|
+
|
|
904
|
+
|
|
905
|
+
if __name__ == "__main__":
|
|
906
|
+
main()
|