sarkit-convert 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sarkit_convert/__init__.py +17 -0
- sarkit_convert/_utils.py +253 -0
- sarkit_convert/_version.py +1 -0
- sarkit_convert/csk.py +822 -0
- sarkit_convert/iceye.py +885 -0
- sarkit_convert/sentinel.py +1589 -0
- sarkit_convert/tsx.py +906 -0
- sarkit_convert-0.1.0.dist-info/METADATA +69 -0
- sarkit_convert-0.1.0.dist-info/RECORD +12 -0
- sarkit_convert-0.1.0.dist-info/WHEEL +4 -0
- sarkit_convert-0.1.0.dist-info/entry_points.txt +4 -0
- sarkit_convert-0.1.0.dist-info/licenses/LICENSE +22 -0
sarkit_convert/iceye.py
ADDED
|
@@ -0,0 +1,885 @@
|
|
|
1
|
+
"""
|
|
2
|
+
=====================
|
|
3
|
+
Iceye Complex to SICD
|
|
4
|
+
=====================
|
|
5
|
+
|
|
6
|
+
Convert a complex image from the Iceye HD5 SLC into SICD.
|
|
7
|
+
|
|
8
|
+
Note: In the development of this converter "Iceye Product Metadata" description (v2.1, v2.2, v2.4, v2.5) was considered.
|
|
9
|
+
|
|
10
|
+
"""
|
|
11
|
+
|
|
12
|
+
import argparse
|
|
13
|
+
import copy
|
|
14
|
+
import pathlib
|
|
15
|
+
|
|
16
|
+
import dateutil.parser
|
|
17
|
+
import h5py
|
|
18
|
+
import lxml.builder
|
|
19
|
+
import numpy as np
|
|
20
|
+
import numpy.linalg as npl
|
|
21
|
+
import numpy.polynomial.polynomial as npp
|
|
22
|
+
import sarkit.sicd as sksicd
|
|
23
|
+
import sarkit.wgs84
|
|
24
|
+
from sarkit import _constants
|
|
25
|
+
from sarkit.verification import SicdConsistency
|
|
26
|
+
|
|
27
|
+
from sarkit_convert import _utils as utils
|
|
28
|
+
|
|
29
|
+
NSMAP = {
|
|
30
|
+
"sicd": "urn:SICD:1.4.0",
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
PIXEL_TYPE_MAP = {
|
|
34
|
+
"float32": "RE32F_IM32F",
|
|
35
|
+
"int16": "RE16I_IM16I",
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def _extract_attributes(h5_obj):
|
|
40
|
+
"""Recursively extract all dataset names and values into a dictionary, skipping specified keys and decoding byte strings."""
|
|
41
|
+
result = {}
|
|
42
|
+
|
|
43
|
+
for key in h5_obj: # Iterate over keys in the HDF5 group
|
|
44
|
+
item = h5_obj[key]
|
|
45
|
+
if isinstance(item, h5py.Dataset):
|
|
46
|
+
value = item[...]
|
|
47
|
+
if isinstance(value, bytes):
|
|
48
|
+
value = value.decode("utf-8") # Decode byte string
|
|
49
|
+
elif isinstance(value, np.ndarray) and value.dtype.kind == "S":
|
|
50
|
+
value = value.astype(str).tolist() # Handle ndarrays with type string
|
|
51
|
+
elif isinstance(value, np.ndarray) and value.dtype.kind == "O":
|
|
52
|
+
value = value.item().decode("utf-8") # Handle ndarrays with type object
|
|
53
|
+
elif isinstance(value, np.ndarray) and value.size == 1:
|
|
54
|
+
value = value.item() # Handle single value arrays
|
|
55
|
+
|
|
56
|
+
result[key] = value
|
|
57
|
+
elif isinstance(item, h5py.Group): # If it is a group, recurse into it
|
|
58
|
+
if np.array_equal(item.attrs.get("type"), [b"hickle"]):
|
|
59
|
+
result[key] = None
|
|
60
|
+
else:
|
|
61
|
+
result[key] = _extract_attributes(item)
|
|
62
|
+
|
|
63
|
+
return result
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def compute_apc_poly(h5_attrs, start_time, stop_time):
|
|
67
|
+
"""Creates an Aperture Phase Center (APC) poly that orbits the Earth above the equator.
|
|
68
|
+
|
|
69
|
+
Polynomial generates 3D coords in ECF as a function of time from start of collect.
|
|
70
|
+
|
|
71
|
+
Parameters
|
|
72
|
+
----------
|
|
73
|
+
h5_attrs: dict
|
|
74
|
+
The collection metadata
|
|
75
|
+
start_time: float
|
|
76
|
+
The start time to fit.
|
|
77
|
+
stop_time: float
|
|
78
|
+
The end time to fit.
|
|
79
|
+
|
|
80
|
+
Returns
|
|
81
|
+
-------
|
|
82
|
+
`numpy.ndarray`, shape=(6, 3)
|
|
83
|
+
APC poly
|
|
84
|
+
"""
|
|
85
|
+
times_str = np.array(h5_attrs["state_vector_time_utc"]).flatten()
|
|
86
|
+
state_times = np.asarray(
|
|
87
|
+
[dateutil.parser.parse(entry) for entry in times_str], dtype=np.datetime64
|
|
88
|
+
)
|
|
89
|
+
times = (state_times - np.datetime64(start_time)) / np.timedelta64(1, "s")
|
|
90
|
+
positions = np.zeros((times.size, 3), dtype="float64")
|
|
91
|
+
velocities = np.zeros((times.size, 3), dtype="float64")
|
|
92
|
+
|
|
93
|
+
positions[:, :] = np.stack(
|
|
94
|
+
(h5_attrs["posX"], h5_attrs["posY"], h5_attrs["posZ"]), axis=1
|
|
95
|
+
)
|
|
96
|
+
velocities[:, :] = np.stack(
|
|
97
|
+
(h5_attrs["velX"], h5_attrs["velY"], h5_attrs["velZ"]), axis=1
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
apc_poly = utils.fit_state_vectors(
|
|
101
|
+
(0, (stop_time - start_time).total_seconds()),
|
|
102
|
+
times,
|
|
103
|
+
positions,
|
|
104
|
+
velocities,
|
|
105
|
+
order=5,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
return apc_poly
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def _update_radiometric_node(sicd_xmltree):
|
|
112
|
+
"""Use existing metadata to populate the Radiometric XML node."""
|
|
113
|
+
xmlhelp = sksicd.XmlHelper(copy.deepcopy(sicd_xmltree))
|
|
114
|
+
|
|
115
|
+
def get_slant_plane_area(xmlhelp):
|
|
116
|
+
row_imp_resp_bw = xmlhelp.load("./{*}Grid/{*}Row/{*}ImpRespBW")
|
|
117
|
+
col_imp_resp_bw = xmlhelp.load("./{*}Grid/{*}Col/{*}ImpRespBW")
|
|
118
|
+
range_weight_f = azimuth_weight_f = 1.0
|
|
119
|
+
row_wgt_funct = xmlhelp.load("./{*}Grid/{*}Row/{*}WgtFunct")
|
|
120
|
+
if row_wgt_funct is not None:
|
|
121
|
+
var = np.var(row_wgt_funct)
|
|
122
|
+
mean = np.mean(row_wgt_funct)
|
|
123
|
+
range_weight_f += var / (mean * mean)
|
|
124
|
+
col_wgt_funct = xmlhelp.load("./{*}Grid/{*}Col/{*}WgtFunct")
|
|
125
|
+
if col_wgt_funct is not None:
|
|
126
|
+
var = np.var(col_wgt_funct)
|
|
127
|
+
mean = np.mean(col_wgt_funct)
|
|
128
|
+
azimuth_weight_f += var / (mean * mean)
|
|
129
|
+
return (range_weight_f * azimuth_weight_f) / (row_imp_resp_bw * col_imp_resp_bw)
|
|
130
|
+
|
|
131
|
+
sp_area = get_slant_plane_area(xmlhelp)
|
|
132
|
+
radiometric_node = xmlhelp.element_tree.find("./{*}Radiometric")
|
|
133
|
+
scpcoa_slope_ang = xmlhelp.load("./{*}SCPCOA/{*}SlopeAng")
|
|
134
|
+
scpcoa_graze_ang = xmlhelp.load("./{*}SCPCOA/{*}GrazeAng")
|
|
135
|
+
if radiometric_node.find("{*}BetaZeroSFPoly") is None:
|
|
136
|
+
if radiometric_node.find("{*}RCSSFPoly") is not None:
|
|
137
|
+
beta_zero_sf_poly_coefs = (
|
|
138
|
+
xmlhelp.load_elem(radiometric_node.find("{*}RCSSFPoly")) / sp_area
|
|
139
|
+
)
|
|
140
|
+
elif radiometric_node.find("{*}SigmaZeroSFPoly") is not None:
|
|
141
|
+
beta_zero_sf_poly_coefs = xmlhelp.load_elem(
|
|
142
|
+
radiometric_node.find("{*}SigmaZeroSFPoly")
|
|
143
|
+
) / np.cos(np.deg2rad(scpcoa_slope_ang))
|
|
144
|
+
elif radiometric_node.find("{*}GammaZeroSFPoly") is not None:
|
|
145
|
+
beta_zero_sf_poly_coefs = xmlhelp.load_elem(
|
|
146
|
+
radiometric_node.find("{*}GammaZeroSFPoly")
|
|
147
|
+
) * (
|
|
148
|
+
np.sin(np.deg2rad(scpcoa_graze_ang))
|
|
149
|
+
/ np.cos(np.deg2rad(scpcoa_slope_ang))
|
|
150
|
+
)
|
|
151
|
+
else:
|
|
152
|
+
beta_zero_sf_poly_coefs = xmlhelp.load_elem(
|
|
153
|
+
radiometric_node.find("{*}BetaZeroSFPoly")
|
|
154
|
+
)
|
|
155
|
+
|
|
156
|
+
if beta_zero_sf_poly_coefs is not None:
|
|
157
|
+
# In other words, none of the SF polynomials are populated.
|
|
158
|
+
if radiometric_node.find("{*}RCSSFPoly") is None:
|
|
159
|
+
rcs_sf_poly_coefs = beta_zero_sf_poly_coefs * sp_area
|
|
160
|
+
if radiometric_node.find("{*}SigmaZeroSFPoly") is None:
|
|
161
|
+
sigma_zero_sf_poly_coefs = beta_zero_sf_poly_coefs * np.cos(
|
|
162
|
+
np.deg2rad(scpcoa_slope_ang)
|
|
163
|
+
)
|
|
164
|
+
if radiometric_node.find("{*}GammaZeroSFPoly") is None:
|
|
165
|
+
gamma_zero_sf_poly_coefs = beta_zero_sf_poly_coefs * (
|
|
166
|
+
np.cos(np.deg2rad(scpcoa_slope_ang))
|
|
167
|
+
/ np.sin(np.deg2rad(scpcoa_graze_ang))
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
sicd = lxml.builder.ElementMaker(
|
|
171
|
+
namespace=NSMAP["sicd"], nsmap={None: NSMAP["sicd"]}
|
|
172
|
+
)
|
|
173
|
+
new_radiometric_node = sicd.Radiometric(
|
|
174
|
+
sicd.RCSSFPoly(),
|
|
175
|
+
sicd.SigmaZeroSFPoly(),
|
|
176
|
+
sicd.BetaZeroSFPoly(),
|
|
177
|
+
sicd.GammaZeroSFPoly(),
|
|
178
|
+
)
|
|
179
|
+
sksicd.Poly2dType().set_elem(
|
|
180
|
+
new_radiometric_node.find("./{*}RCSSFPoly"), rcs_sf_poly_coefs
|
|
181
|
+
)
|
|
182
|
+
sksicd.Poly2dType().set_elem(
|
|
183
|
+
new_radiometric_node.find("./{*}SigmaZeroSFPoly"), sigma_zero_sf_poly_coefs
|
|
184
|
+
)
|
|
185
|
+
sksicd.Poly2dType().set_elem(
|
|
186
|
+
new_radiometric_node.find("./{*}BetaZeroSFPoly"), beta_zero_sf_poly_coefs
|
|
187
|
+
)
|
|
188
|
+
sksicd.Poly2dType().set_elem(
|
|
189
|
+
new_radiometric_node.find("./{*}GammaZeroSFPoly"), gamma_zero_sf_poly_coefs
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
return new_radiometric_node
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def _get_x_y_coords(num_row_col, spacing_row_col, scp_pixel, start_row_col):
|
|
196
|
+
"""Create the X, Y coordinates of the full image"""
|
|
197
|
+
full_img_verticies = np.array(
|
|
198
|
+
[
|
|
199
|
+
[0, 0],
|
|
200
|
+
[0, num_row_col[1] - 1],
|
|
201
|
+
[num_row_col[0] - 1, num_row_col[1] - 1],
|
|
202
|
+
[num_row_col[0] - 1, 0],
|
|
203
|
+
],
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
x_coords = spacing_row_col[0] * (
|
|
207
|
+
full_img_verticies[:, 0] - (scp_pixel[0] - start_row_col[0])
|
|
208
|
+
)
|
|
209
|
+
y_coords = spacing_row_col[1] * (
|
|
210
|
+
full_img_verticies[:, 1] - (scp_pixel[1] - start_row_col[1])
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
return x_coords, y_coords
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def _calc_deltaks(x_coords, y_coords, deltak_coa_poly, imp_resp_bw, spacing):
|
|
217
|
+
"""Calculate the minimum and maximum DeltaK values"""
|
|
218
|
+
deltaks = npp.polyval2d(x_coords, y_coords, deltak_coa_poly)
|
|
219
|
+
min_deltak = np.amin(deltaks) - 0.5 * imp_resp_bw
|
|
220
|
+
max_deltak = np.amax(deltaks) + 0.5 * imp_resp_bw
|
|
221
|
+
|
|
222
|
+
if (min_deltak < -0.5 / abs(spacing)) or (max_deltak > 0.5 / abs(spacing)):
|
|
223
|
+
min_deltak = -0.5 / abs(spacing)
|
|
224
|
+
max_deltak = -min_deltak
|
|
225
|
+
|
|
226
|
+
return min_deltak, max_deltak
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
def hdf5_to_sicd(h5_filename, sicd_filename, classification, ostaid="Unknown"):
|
|
230
|
+
"""Converts Iceye native SLC h5 files to NGA standard SICD files.
|
|
231
|
+
|
|
232
|
+
Parameters
|
|
233
|
+
----------
|
|
234
|
+
h5_filename: str
|
|
235
|
+
path of the input HDF5 file
|
|
236
|
+
sicd_filename: str
|
|
237
|
+
path of the output SICD file.
|
|
238
|
+
classification: str
|
|
239
|
+
content of the /SICD/CollectionInfo/Classification node in the SICD XML.
|
|
240
|
+
ostaid: str, optional
|
|
241
|
+
content of the originating station ID (OSTAID) field of the NITF header.
|
|
242
|
+
|
|
243
|
+
"""
|
|
244
|
+
with h5py.File(h5_filename, "r") as h5file:
|
|
245
|
+
h5_attrs = _extract_attributes(h5file)
|
|
246
|
+
|
|
247
|
+
# Timeline
|
|
248
|
+
collect_start = dateutil.parser.parse(h5_attrs["acquisition_start_utc"])
|
|
249
|
+
collect_stop = dateutil.parser.parse(h5_attrs["acquisition_end_utc"])
|
|
250
|
+
collect_duration = (collect_stop - collect_start).total_seconds()
|
|
251
|
+
acq_prf = h5_attrs["acquisition_prf"]
|
|
252
|
+
num_pulses = int(np.round(collect_duration * acq_prf))
|
|
253
|
+
t_start = 0
|
|
254
|
+
t_end = collect_duration
|
|
255
|
+
ipp_start = 0
|
|
256
|
+
ipp_end = int(num_pulses - 1)
|
|
257
|
+
ipp_poly = [0, acq_prf]
|
|
258
|
+
look = {"left": 1, "right": -1}[h5_attrs["look_side"].lower()]
|
|
259
|
+
|
|
260
|
+
# Collection Info
|
|
261
|
+
collector_name = h5_attrs["satellite_name"]
|
|
262
|
+
core_name = h5_attrs["product_name"]
|
|
263
|
+
collect_type = "MONOSTATIC"
|
|
264
|
+
mode_id = h5_attrs["product_type"]
|
|
265
|
+
mode_type = h5_attrs["acquisition_mode"].upper()
|
|
266
|
+
if not mode_type:
|
|
267
|
+
mode_type = "DYNAMIC STRIPMAP"
|
|
268
|
+
|
|
269
|
+
# Creation Info
|
|
270
|
+
creation_application = f"ICEYE_P_{h5_attrs['processor_version']}"
|
|
271
|
+
creation_date_time = dateutil.parser.parse(h5_attrs["processing_time"])
|
|
272
|
+
|
|
273
|
+
# Image Data
|
|
274
|
+
samp_prec = h5_attrs["sample_precision"]
|
|
275
|
+
pixel_type = PIXEL_TYPE_MAP[samp_prec]
|
|
276
|
+
num_rows = int(h5_attrs["number_of_range_samples"])
|
|
277
|
+
num_cols = int(h5_attrs["number_of_azimuth_samples"])
|
|
278
|
+
first_row = 0
|
|
279
|
+
first_col = 0
|
|
280
|
+
scp_pixel = (num_rows // 2, num_cols // 2)
|
|
281
|
+
|
|
282
|
+
# # Geo Data
|
|
283
|
+
coord_center = h5_attrs["coord_center"]
|
|
284
|
+
avg_scene_height = float(h5_attrs["avg_scene_height"])
|
|
285
|
+
init_scp_llh = [coord_center[2], coord_center[3], avg_scene_height]
|
|
286
|
+
|
|
287
|
+
# Position
|
|
288
|
+
apc_poly = compute_apc_poly(h5_attrs, collect_start, collect_stop)
|
|
289
|
+
|
|
290
|
+
# Radar Collection
|
|
291
|
+
center_frequency = h5_attrs["carrier_frequency"]
|
|
292
|
+
tx_rf_bw = h5_attrs["chirp_bandwidth"]
|
|
293
|
+
tx_freq_min = center_frequency - 0.5 * tx_rf_bw
|
|
294
|
+
tx_freq_max = center_frequency + 0.5 * tx_rf_bw
|
|
295
|
+
tx_pulse_length = h5_attrs["chirp_duration"]
|
|
296
|
+
rcv_demod_type = "CHIRP"
|
|
297
|
+
adc_sample_rate = h5_attrs["range_sampling_rate"]
|
|
298
|
+
tx_fm_rate = tx_rf_bw / tx_pulse_length
|
|
299
|
+
tx_polarization = h5_attrs["polarization"][0]
|
|
300
|
+
rcv_polarization = h5_attrs["polarization"][1]
|
|
301
|
+
tx_rcv_polarization = f"{tx_polarization}:{rcv_polarization}"
|
|
302
|
+
|
|
303
|
+
row_bw = 2 * tx_rf_bw / _constants.speed_of_light
|
|
304
|
+
|
|
305
|
+
# Image Formation
|
|
306
|
+
tx_rcv_polarization_proc = tx_rcv_polarization
|
|
307
|
+
image_form_algo = "RMA"
|
|
308
|
+
t_start_proc = 0
|
|
309
|
+
t_end_proc = collect_duration
|
|
310
|
+
tx_freq_proc = (tx_freq_min, tx_freq_max)
|
|
311
|
+
st_beam_comp = "NO"
|
|
312
|
+
image_beam_comp = "SV"
|
|
313
|
+
az_autofocus = "NO"
|
|
314
|
+
rg_autofocus = "NO"
|
|
315
|
+
|
|
316
|
+
def calculate_drate_polys():
|
|
317
|
+
r_ca_coefs = np.array([r_ca_scp, 1], dtype="float64")
|
|
318
|
+
doppler_rate_coefs = h5_attrs["doppler_rate_coeffs"]
|
|
319
|
+
# Prior to ICEYE 1.14 processor, absolute value of Doppler rate was
|
|
320
|
+
# provided, not true Doppler rate. Doppler rate should always be negative
|
|
321
|
+
if doppler_rate_coefs[0] > 0:
|
|
322
|
+
doppler_rate_coefs *= -1
|
|
323
|
+
dop_rate_poly = doppler_rate_coefs
|
|
324
|
+
|
|
325
|
+
def shift(coefs, t_0: float, alpha: float = 1):
|
|
326
|
+
# prepare array workspace
|
|
327
|
+
out = np.copy(coefs)
|
|
328
|
+
if t_0 != 0 and out.size > 1:
|
|
329
|
+
siz = out.size
|
|
330
|
+
for i in range(siz):
|
|
331
|
+
index = siz - i - 1
|
|
332
|
+
if i > 0:
|
|
333
|
+
out[index : siz - 1] -= t_0 * out[index + 1 : siz]
|
|
334
|
+
|
|
335
|
+
if alpha != 1 and out.size > 1:
|
|
336
|
+
out *= np.power(alpha, np.arange(out.size))
|
|
337
|
+
|
|
338
|
+
return out
|
|
339
|
+
|
|
340
|
+
drate_ca_poly_coefs = shift(
|
|
341
|
+
dop_rate_poly,
|
|
342
|
+
t_0=zd_ref_time - rg_time_scp,
|
|
343
|
+
alpha=2 / _constants.speed_of_light,
|
|
344
|
+
)
|
|
345
|
+
|
|
346
|
+
drsf_poly_coefs = (
|
|
347
|
+
-npp.polymul(drate_ca_poly_coefs, r_ca_coefs)
|
|
348
|
+
* _constants.speed_of_light
|
|
349
|
+
/ (2 * center_frequency * vm_ca_sq)
|
|
350
|
+
)
|
|
351
|
+
|
|
352
|
+
return drate_ca_poly_coefs, drsf_poly_coefs
|
|
353
|
+
|
|
354
|
+
def calculate_doppler_polys():
|
|
355
|
+
# define and fit the time coa array
|
|
356
|
+
if mode_type == "SPOTLIGHT":
|
|
357
|
+
coa_time = collect_duration / 2
|
|
358
|
+
alpha = 2.0 / _constants.speed_of_light
|
|
359
|
+
pos = npp.polyval(coa_time, apc_poly)
|
|
360
|
+
vel = npp.polyval(coa_time, npp.polyder(apc_poly))
|
|
361
|
+
speed = np.linalg.norm(vel)
|
|
362
|
+
vel_hat = vel / speed
|
|
363
|
+
scp = sarkit.wgs84.geodetic_to_cartesian(
|
|
364
|
+
[coord_center[2], coord_center[3], avg_scene_height]
|
|
365
|
+
)
|
|
366
|
+
los = scp - pos
|
|
367
|
+
|
|
368
|
+
time_coa_poly_coefs = np.array(
|
|
369
|
+
[
|
|
370
|
+
[
|
|
371
|
+
coa_time,
|
|
372
|
+
],
|
|
373
|
+
]
|
|
374
|
+
)
|
|
375
|
+
dop_centroid_poly_coefs = np.zeros((2, 2), dtype=np.float64)
|
|
376
|
+
dop_centroid_poly_coefs[0, 1] = (
|
|
377
|
+
-look * center_frequency * alpha * speed / r_ca_scp
|
|
378
|
+
)
|
|
379
|
+
dop_centroid_poly_coefs[1, 1] = (
|
|
380
|
+
look * center_frequency * alpha * speed / (r_ca_scp**2)
|
|
381
|
+
)
|
|
382
|
+
dop_centroid_poly_coefs[:, 0] = -look * (
|
|
383
|
+
dop_centroid_poly_coefs[:, 1] * np.dot(los, vel_hat)
|
|
384
|
+
)
|
|
385
|
+
else:
|
|
386
|
+
# extract doppler centroid coefficients
|
|
387
|
+
dc_estimate_coefs = h5_attrs["dc_estimate_coeffs"]
|
|
388
|
+
dc_time_str = h5_attrs["dc_estimate_time_utc"]
|
|
389
|
+
dc_zd_times = np.zeros((len(dc_time_str),), dtype="float64")
|
|
390
|
+
for i, entry in enumerate(dc_time_str):
|
|
391
|
+
dc_zd_times[i] = (
|
|
392
|
+
dateutil.parser.parse(entry[0]) - collect_start
|
|
393
|
+
).total_seconds()
|
|
394
|
+
# create a sampled doppler centroid
|
|
395
|
+
samples = 51
|
|
396
|
+
# create doppler time samples
|
|
397
|
+
diff_time_rg = (
|
|
398
|
+
first_pixel_time
|
|
399
|
+
- zd_ref_time
|
|
400
|
+
+ np.linspace(0, num_rows / adc_sample_rate, samples)
|
|
401
|
+
)
|
|
402
|
+
# doppler centroid samples definition
|
|
403
|
+
dc_sample_array = np.zeros((samples, dc_zd_times.size), dtype="float64")
|
|
404
|
+
for i, coefs in enumerate(dc_estimate_coefs):
|
|
405
|
+
dc_sample_array[:, i] = npp.polyval(diff_time_rg, coefs)
|
|
406
|
+
# create arrays for range/azimuth from scp in meters
|
|
407
|
+
azimuth_scp_m, range_scp_m = np.meshgrid(
|
|
408
|
+
col_ss * (dc_zd_times - zd_time_scp) / ss_zd_s,
|
|
409
|
+
(diff_time_rg + zd_ref_time - rg_time_scp)
|
|
410
|
+
* _constants.speed_of_light
|
|
411
|
+
/ 2,
|
|
412
|
+
)
|
|
413
|
+
|
|
414
|
+
x_order = min(3, range_scp_m.shape[0] - 1)
|
|
415
|
+
y_order = min(3, range_scp_m.shape[1] - 1)
|
|
416
|
+
|
|
417
|
+
# fit the doppler centroid sample array
|
|
418
|
+
dop_centroid_poly_coefs = utils.polyfit2d(
|
|
419
|
+
range_scp_m.flatten(),
|
|
420
|
+
azimuth_scp_m.flatten(),
|
|
421
|
+
dc_sample_array.flatten(),
|
|
422
|
+
x_order,
|
|
423
|
+
y_order,
|
|
424
|
+
)
|
|
425
|
+
doppler_rate_sampled = npp.polyval(azimuth_scp_m, drca_poly_coefs)
|
|
426
|
+
time_coa = dc_zd_times + dc_sample_array / doppler_rate_sampled
|
|
427
|
+
time_coa_poly_coefs = utils.polyfit2d(
|
|
428
|
+
range_scp_m.flatten(),
|
|
429
|
+
azimuth_scp_m.flatten(),
|
|
430
|
+
time_coa.flatten(),
|
|
431
|
+
x_order,
|
|
432
|
+
y_order,
|
|
433
|
+
)
|
|
434
|
+
|
|
435
|
+
return dop_centroid_poly_coefs, time_coa_poly_coefs
|
|
436
|
+
|
|
437
|
+
ss_zd_s = float(h5_attrs["azimuth_time_interval"])
|
|
438
|
+
if look == 1:
|
|
439
|
+
ss_zd_s *= -1
|
|
440
|
+
zero_doppler_left = dateutil.parser.parse(h5_attrs["zerodoppler_end_utc"])
|
|
441
|
+
else:
|
|
442
|
+
zero_doppler_left = dateutil.parser.parse(h5_attrs["zerodoppler_start_utc"])
|
|
443
|
+
dop_bw = h5_attrs["total_processed_bandwidth_azimuth"]
|
|
444
|
+
zd_time_scp = (zero_doppler_left - collect_start).total_seconds() + scp_pixel[
|
|
445
|
+
1
|
|
446
|
+
] * ss_zd_s
|
|
447
|
+
first_pixel_time = float(h5_attrs["first_pixel_time"])
|
|
448
|
+
zd_ref_time = first_pixel_time + num_rows / (2 * adc_sample_rate)
|
|
449
|
+
vel_scp = npp.polyval(zd_time_scp, npp.polyder(apc_poly))
|
|
450
|
+
vm_ca_sq = np.sum(vel_scp * vel_scp)
|
|
451
|
+
rg_time_scp = first_pixel_time + scp_pixel[0] / adc_sample_rate
|
|
452
|
+
r_ca_scp = rg_time_scp * _constants.speed_of_light / 2
|
|
453
|
+
drca_poly_coefs, drsf_poly_coefs = calculate_drate_polys()
|
|
454
|
+
|
|
455
|
+
# calculate some doppler dependent grid parameters
|
|
456
|
+
col_ss = float(np.sqrt(vm_ca_sq) * abs(ss_zd_s) * drsf_poly_coefs[0])
|
|
457
|
+
col_bw = dop_bw * abs(ss_zd_s) / col_ss
|
|
458
|
+
time_ca_poly_coefs = [zd_time_scp, ss_zd_s / col_ss]
|
|
459
|
+
|
|
460
|
+
# RMA
|
|
461
|
+
dop_centroid_poly_coefs, time_coa_poly_coefs = calculate_doppler_polys()
|
|
462
|
+
if mode_type == "SPOTLIGHT":
|
|
463
|
+
dop_centroid_poly = np.array([[0]])
|
|
464
|
+
dop_centroid_coa = "false"
|
|
465
|
+
else:
|
|
466
|
+
dop_centroid_poly = dop_centroid_poly_coefs
|
|
467
|
+
dop_centroid_coa = "true"
|
|
468
|
+
first_pixel_time = h5_attrs["first_pixel_time"]
|
|
469
|
+
rg_time_scp = first_pixel_time + adc_sample_rate
|
|
470
|
+
freq_zero = center_frequency
|
|
471
|
+
dr_sf_poly = drsf_poly_coefs[:, np.newaxis]
|
|
472
|
+
time_ca_poly = time_ca_poly_coefs
|
|
473
|
+
rma_algo_type = "OMEGA_K"
|
|
474
|
+
image_type = "INCA"
|
|
475
|
+
|
|
476
|
+
# Grid
|
|
477
|
+
image_plane = "SLANT"
|
|
478
|
+
grid_type = "RGZERO"
|
|
479
|
+
row_ss = _constants.speed_of_light / (2 * adc_sample_rate)
|
|
480
|
+
row_imp_res_bw = row_bw
|
|
481
|
+
row_sgn = -1
|
|
482
|
+
row_kctr = str(center_frequency / (_constants.speed_of_light / 2))
|
|
483
|
+
row_deltak_coa_poly = np.array([[0]])
|
|
484
|
+
|
|
485
|
+
col_ss = col_ss
|
|
486
|
+
col_imp_res_bw = col_bw
|
|
487
|
+
col_sgn = -1
|
|
488
|
+
col_kctr = 0
|
|
489
|
+
time_coa_poly = time_coa_poly_coefs
|
|
490
|
+
col_deltak_coa_poly = dop_centroid_poly_coefs * ss_zd_s / col_ss
|
|
491
|
+
|
|
492
|
+
row_win = h5_attrs["window_function_range"]
|
|
493
|
+
col_win = h5_attrs["window_function_azimuth"]
|
|
494
|
+
if row_win == "NONE":
|
|
495
|
+
row_win = "UNIFORM"
|
|
496
|
+
if col_win == "NONE":
|
|
497
|
+
col_win = "UNIFORM"
|
|
498
|
+
row_brodening_factor = utils.broadening_from_amp(np.ones(256))
|
|
499
|
+
col_brodening_factor = utils.broadening_from_amp(np.ones(256))
|
|
500
|
+
row_imp_res_wid = row_brodening_factor / row_imp_res_bw
|
|
501
|
+
col_imp_res_wid = col_brodening_factor / col_imp_res_bw
|
|
502
|
+
|
|
503
|
+
x_coords, y_coords = _get_x_y_coords(
|
|
504
|
+
[num_rows, num_cols], [row_ss, col_ss], scp_pixel, [first_row, first_col]
|
|
505
|
+
)
|
|
506
|
+
|
|
507
|
+
row_delta_k1, row_delta_k2 = _calc_deltaks(
|
|
508
|
+
x_coords, y_coords, row_deltak_coa_poly, row_imp_res_bw, row_ss
|
|
509
|
+
)
|
|
510
|
+
col_delta_k1, col_delta_k2 = _calc_deltaks(
|
|
511
|
+
x_coords, y_coords, col_deltak_coa_poly, col_imp_res_bw, col_ss
|
|
512
|
+
)
|
|
513
|
+
|
|
514
|
+
# Adjust SCP
|
|
515
|
+
scp_drsf = dr_sf_poly[0, 0]
|
|
516
|
+
scp_tca = time_ca_poly[0]
|
|
517
|
+
scp_tcoa = time_coa_poly[0, 0]
|
|
518
|
+
scp_delta_t_coa = scp_tcoa - scp_tca
|
|
519
|
+
scp_varp_ca_mag = npl.norm(npp.polyval(scp_tca, npp.polyder(apc_poly)))
|
|
520
|
+
scp_rcoa = np.sqrt(r_ca_scp**2 + scp_drsf * scp_varp_ca_mag**2 * scp_delta_t_coa**2)
|
|
521
|
+
scp_rratecoa = scp_drsf / scp_rcoa * scp_varp_ca_mag**2 * scp_delta_t_coa
|
|
522
|
+
scp_set = sksicd.projection.ProjectionSetsMono(
|
|
523
|
+
t_COA=np.array([scp_tcoa]),
|
|
524
|
+
ARP_COA=np.array([npp.polyval(scp_tcoa, apc_poly)]),
|
|
525
|
+
VARP_COA=np.array([npp.polyval(scp_tcoa, npp.polyder(apc_poly))]),
|
|
526
|
+
R_COA=np.array([scp_rcoa]),
|
|
527
|
+
Rdot_COA=np.array([scp_rratecoa]),
|
|
528
|
+
)
|
|
529
|
+
scp_ecf = sksicd.projection.r_rdot_to_ground_plane_mono(
|
|
530
|
+
look,
|
|
531
|
+
scp_set,
|
|
532
|
+
sarkit.wgs84.geodetic_to_cartesian(init_scp_llh),
|
|
533
|
+
sarkit.wgs84.up(init_scp_llh),
|
|
534
|
+
)[0]
|
|
535
|
+
scp_llh = sarkit.wgs84.cartesian_to_geodetic(scp_ecf)
|
|
536
|
+
|
|
537
|
+
# Calc unit vectors
|
|
538
|
+
scp_ca_pos = npp.polyval(scp_tca, apc_poly)
|
|
539
|
+
scp_ca_vel = npp.polyval(scp_tca, npp.polyder(apc_poly))
|
|
540
|
+
los = scp_ecf - scp_ca_pos
|
|
541
|
+
row_uvect_ecf = los / npl.norm(los)
|
|
542
|
+
left = np.cross(scp_ca_pos, scp_ca_vel)
|
|
543
|
+
look = np.sign(np.dot(left, row_uvect_ecf))
|
|
544
|
+
spz = -look * np.cross(row_uvect_ecf, scp_ca_vel)
|
|
545
|
+
uspz = spz / npl.norm(spz)
|
|
546
|
+
col_uvect_ecf = np.cross(uspz, row_uvect_ecf)
|
|
547
|
+
|
|
548
|
+
# Radiometric
|
|
549
|
+
beta_zero_sf_poly = [
|
|
550
|
+
[
|
|
551
|
+
float(h5_attrs["calibration_factor"]),
|
|
552
|
+
],
|
|
553
|
+
]
|
|
554
|
+
|
|
555
|
+
# Build XML
|
|
556
|
+
sicd = lxml.builder.ElementMaker(
|
|
557
|
+
namespace=NSMAP["sicd"], nsmap={None: NSMAP["sicd"]}
|
|
558
|
+
)
|
|
559
|
+
collection_info = sicd.CollectionInfo(
|
|
560
|
+
sicd.CollectorName(collector_name),
|
|
561
|
+
sicd.CoreName(core_name),
|
|
562
|
+
sicd.CollectType(collect_type),
|
|
563
|
+
sicd.RadarMode(sicd.ModeType(mode_type), sicd.ModeID(mode_id)),
|
|
564
|
+
sicd.Classification(classification),
|
|
565
|
+
)
|
|
566
|
+
image_creation = sicd.ImageCreation(
|
|
567
|
+
sicd.Application(creation_application),
|
|
568
|
+
sicd.DateTime(creation_date_time.isoformat() + "Z"),
|
|
569
|
+
sicd.Site(ostaid),
|
|
570
|
+
)
|
|
571
|
+
image_data = sicd.ImageData(
|
|
572
|
+
sicd.PixelType(pixel_type),
|
|
573
|
+
sicd.NumRows(str(num_rows)),
|
|
574
|
+
sicd.NumCols(str(num_cols)),
|
|
575
|
+
sicd.FirstRow(str(first_row)),
|
|
576
|
+
sicd.FirstCol(str(first_col)),
|
|
577
|
+
sicd.FullImage(sicd.NumRows(str(num_rows)), sicd.NumCols(str(num_cols))),
|
|
578
|
+
sicd.SCPPixel(sicd.Row(str(scp_pixel[0])), sicd.Col(str(scp_pixel[1]))),
|
|
579
|
+
)
|
|
580
|
+
|
|
581
|
+
def make_xyz(arr):
|
|
582
|
+
return [sicd.X(str(arr[0])), sicd.Y(str(arr[1])), sicd.Z(str(arr[2]))]
|
|
583
|
+
|
|
584
|
+
def make_llh(arr):
|
|
585
|
+
return [sicd.Lat(str(arr[0])), sicd.Lon(str(arr[1])), sicd.HAE(str(arr[2]))]
|
|
586
|
+
|
|
587
|
+
def make_ll(arr):
|
|
588
|
+
return [sicd.Lat(str(arr[0])), sicd.Lon(str(arr[1]))]
|
|
589
|
+
|
|
590
|
+
# Add GeoData with placeholder corners
|
|
591
|
+
geo_data = sicd.GeoData(
|
|
592
|
+
sicd.EarthModel("WGS_84"),
|
|
593
|
+
sicd.SCP(sicd.ECF(*make_xyz(scp_ecf)), sicd.LLH(*make_llh(scp_llh))),
|
|
594
|
+
sicd.ImageCorners(
|
|
595
|
+
sicd.ICP({"index": "1:FRFC"}, *make_ll([0, 0])),
|
|
596
|
+
sicd.ICP({"index": "2:FRLC"}, *make_ll([0, 0])),
|
|
597
|
+
sicd.ICP({"index": "3:LRLC"}, *make_ll([0, 0])),
|
|
598
|
+
sicd.ICP({"index": "4:LRFC"}, *make_ll([0, 0])),
|
|
599
|
+
),
|
|
600
|
+
)
|
|
601
|
+
|
|
602
|
+
grid = sicd.Grid(
|
|
603
|
+
sicd.ImagePlane(image_plane),
|
|
604
|
+
sicd.Type(grid_type),
|
|
605
|
+
sicd.TimeCOAPoly(),
|
|
606
|
+
sicd.Row(
|
|
607
|
+
sicd.UVectECF(*make_xyz(row_uvect_ecf)),
|
|
608
|
+
sicd.SS(str(row_ss)),
|
|
609
|
+
sicd.ImpRespWid(str(row_imp_res_wid)),
|
|
610
|
+
sicd.Sgn(str(row_sgn)),
|
|
611
|
+
sicd.ImpRespBW(str(row_imp_res_bw)),
|
|
612
|
+
sicd.KCtr(str(row_kctr)),
|
|
613
|
+
sicd.DeltaK1(str(row_delta_k1)),
|
|
614
|
+
sicd.DeltaK2(str(row_delta_k2)),
|
|
615
|
+
sicd.DeltaKCOAPoly(),
|
|
616
|
+
sicd.WgtType(
|
|
617
|
+
sicd.WindowName(
|
|
618
|
+
str(row_win),
|
|
619
|
+
)
|
|
620
|
+
),
|
|
621
|
+
),
|
|
622
|
+
sicd.Col(
|
|
623
|
+
sicd.UVectECF(*make_xyz(col_uvect_ecf)),
|
|
624
|
+
sicd.SS(str(col_ss)),
|
|
625
|
+
sicd.ImpRespWid(str(col_imp_res_wid)),
|
|
626
|
+
sicd.Sgn(str(col_sgn)),
|
|
627
|
+
sicd.ImpRespBW(str(col_imp_res_bw)),
|
|
628
|
+
sicd.KCtr(str(col_kctr)),
|
|
629
|
+
sicd.DeltaK1(str(col_delta_k1)),
|
|
630
|
+
sicd.DeltaK2(str(col_delta_k2)),
|
|
631
|
+
sicd.DeltaKCOAPoly(),
|
|
632
|
+
sicd.WgtType(
|
|
633
|
+
sicd.WindowName(
|
|
634
|
+
str(col_win),
|
|
635
|
+
)
|
|
636
|
+
),
|
|
637
|
+
),
|
|
638
|
+
)
|
|
639
|
+
sksicd.Poly2dType().set_elem(grid.find("./{*}TimeCOAPoly"), time_coa_poly)
|
|
640
|
+
sksicd.Poly2dType().set_elem(
|
|
641
|
+
grid.find("./{*}Row/{*}DeltaKCOAPoly"), row_deltak_coa_poly
|
|
642
|
+
)
|
|
643
|
+
sksicd.Poly2dType().set_elem(
|
|
644
|
+
grid.find("./{*}Col/{*}DeltaKCOAPoly"), col_deltak_coa_poly
|
|
645
|
+
)
|
|
646
|
+
|
|
647
|
+
timeline = sicd.Timeline(
|
|
648
|
+
sicd.CollectStart(collect_start.isoformat() + "Z"),
|
|
649
|
+
sicd.CollectDuration(str(collect_duration)),
|
|
650
|
+
sicd.IPP(
|
|
651
|
+
{"size": "1"},
|
|
652
|
+
sicd.Set(
|
|
653
|
+
{"index": "1"},
|
|
654
|
+
sicd.TStart(str(t_start)),
|
|
655
|
+
sicd.TEnd(str(t_end)),
|
|
656
|
+
sicd.IPPStart(str(ipp_start)),
|
|
657
|
+
sicd.IPPEnd(str(ipp_end)),
|
|
658
|
+
sicd.IPPPoly(),
|
|
659
|
+
),
|
|
660
|
+
),
|
|
661
|
+
)
|
|
662
|
+
sksicd.PolyType().set_elem(timeline.find("./{*}IPP/{*}Set/{*}IPPPoly"), ipp_poly)
|
|
663
|
+
|
|
664
|
+
position = sicd.Position(sicd.ARPPoly())
|
|
665
|
+
sksicd.XyzPolyType().set_elem(position.find("./{*}ARPPoly"), apc_poly)
|
|
666
|
+
|
|
667
|
+
radar_collection = sicd.RadarCollection(
|
|
668
|
+
sicd.TxFrequency(sicd.Min(str(tx_freq_min)), sicd.Max(str(tx_freq_max))),
|
|
669
|
+
sicd.Waveform(
|
|
670
|
+
{"size": "1"},
|
|
671
|
+
sicd.WFParameters(
|
|
672
|
+
{"index": "1"},
|
|
673
|
+
sicd.TxPulseLength(str(tx_pulse_length)),
|
|
674
|
+
sicd.TxRFBandwidth(str(tx_rf_bw)),
|
|
675
|
+
sicd.TxFreqStart(str(tx_freq_min)),
|
|
676
|
+
sicd.TxFMRate(str(tx_fm_rate)),
|
|
677
|
+
sicd.RcvDemodType(rcv_demod_type),
|
|
678
|
+
sicd.ADCSampleRate(str(adc_sample_rate)),
|
|
679
|
+
sicd.RcvFMRate(str(0)),
|
|
680
|
+
),
|
|
681
|
+
),
|
|
682
|
+
sicd.TxPolarization(tx_polarization),
|
|
683
|
+
sicd.RcvChannels(
|
|
684
|
+
{"size": "1"},
|
|
685
|
+
sicd.ChanParameters(
|
|
686
|
+
{"index": "1"},
|
|
687
|
+
sicd.TxRcvPolarization(tx_rcv_polarization),
|
|
688
|
+
),
|
|
689
|
+
),
|
|
690
|
+
)
|
|
691
|
+
|
|
692
|
+
image_formation = sicd.ImageFormation(
|
|
693
|
+
sicd.RcvChanProc(sicd.NumChanProc("1"), sicd.ChanIndex("1")),
|
|
694
|
+
sicd.TxRcvPolarizationProc(tx_rcv_polarization_proc),
|
|
695
|
+
sicd.TStartProc(str(t_start_proc)),
|
|
696
|
+
sicd.TEndProc(str(t_end_proc)),
|
|
697
|
+
sicd.TxFrequencyProc(
|
|
698
|
+
sicd.MinProc(str(tx_freq_proc[0])), sicd.MaxProc(str(tx_freq_proc[1]))
|
|
699
|
+
),
|
|
700
|
+
sicd.ImageFormAlgo(image_form_algo),
|
|
701
|
+
sicd.STBeamComp(st_beam_comp),
|
|
702
|
+
sicd.ImageBeamComp(image_beam_comp),
|
|
703
|
+
sicd.AzAutofocus(az_autofocus),
|
|
704
|
+
sicd.RgAutofocus(rg_autofocus),
|
|
705
|
+
)
|
|
706
|
+
|
|
707
|
+
radiometric = sicd.Radiometric(
|
|
708
|
+
sicd.BetaZeroSFPoly(),
|
|
709
|
+
)
|
|
710
|
+
sksicd.Poly2dType().set_elem(
|
|
711
|
+
radiometric.find("./{*}BetaZeroSFPoly"), beta_zero_sf_poly
|
|
712
|
+
)
|
|
713
|
+
|
|
714
|
+
rma = sicd.RMA(
|
|
715
|
+
sicd.RMAlgoType(rma_algo_type),
|
|
716
|
+
sicd.ImageType(image_type),
|
|
717
|
+
sicd.INCA(
|
|
718
|
+
sicd.TimeCAPoly(),
|
|
719
|
+
sicd.R_CA_SCP(str(r_ca_scp)),
|
|
720
|
+
sicd.FreqZero(str(freq_zero)),
|
|
721
|
+
sicd.DRateSFPoly(),
|
|
722
|
+
sicd.DopCentroidPoly(),
|
|
723
|
+
sicd.DopCentroidCOA(dop_centroid_coa),
|
|
724
|
+
),
|
|
725
|
+
)
|
|
726
|
+
sksicd.PolyType().set_elem(rma.find("./{*}INCA/{*}TimeCAPoly"), time_ca_poly)
|
|
727
|
+
sksicd.Poly2dType().set_elem(rma.find("./{*}INCA/{*}DRateSFPoly"), dr_sf_poly)
|
|
728
|
+
sksicd.Poly2dType().set_elem(
|
|
729
|
+
rma.find("./{*}INCA/{*}DopCentroidPoly"), dop_centroid_poly
|
|
730
|
+
)
|
|
731
|
+
|
|
732
|
+
sicd_xml_obj = sicd.SICD(
|
|
733
|
+
collection_info,
|
|
734
|
+
image_creation,
|
|
735
|
+
image_data,
|
|
736
|
+
geo_data,
|
|
737
|
+
grid,
|
|
738
|
+
timeline,
|
|
739
|
+
position,
|
|
740
|
+
radar_collection,
|
|
741
|
+
image_formation,
|
|
742
|
+
rma,
|
|
743
|
+
)
|
|
744
|
+
|
|
745
|
+
scp_coa = sksicd.compute_scp_coa(sicd_xml_obj.getroottree())
|
|
746
|
+
sicd_xml_obj = sicd.SICD(
|
|
747
|
+
collection_info,
|
|
748
|
+
image_creation,
|
|
749
|
+
image_data,
|
|
750
|
+
geo_data,
|
|
751
|
+
grid,
|
|
752
|
+
timeline,
|
|
753
|
+
position,
|
|
754
|
+
radar_collection,
|
|
755
|
+
image_formation,
|
|
756
|
+
scp_coa,
|
|
757
|
+
radiometric,
|
|
758
|
+
rma,
|
|
759
|
+
)
|
|
760
|
+
|
|
761
|
+
new_radiometric = _update_radiometric_node(sicd_xml_obj.getroottree())
|
|
762
|
+
sicd_xml_obj = sicd.SICD(
|
|
763
|
+
collection_info,
|
|
764
|
+
image_creation,
|
|
765
|
+
image_data,
|
|
766
|
+
geo_data,
|
|
767
|
+
grid,
|
|
768
|
+
timeline,
|
|
769
|
+
position,
|
|
770
|
+
radar_collection,
|
|
771
|
+
image_formation,
|
|
772
|
+
scp_coa,
|
|
773
|
+
new_radiometric,
|
|
774
|
+
rma,
|
|
775
|
+
)
|
|
776
|
+
|
|
777
|
+
sicd_xmltree = sicd_xml_obj.getroottree()
|
|
778
|
+
|
|
779
|
+
# Update ImageCorners
|
|
780
|
+
image_grid_locations = (
|
|
781
|
+
np.array(
|
|
782
|
+
[[0, 0], [0, num_cols - 1], [num_rows - 1, num_cols - 1], [num_rows - 1, 0]]
|
|
783
|
+
)
|
|
784
|
+
- scp_pixel
|
|
785
|
+
) * [row_ss, col_ss]
|
|
786
|
+
icp_ecef, _, _ = sksicd.image_to_ground_plane(
|
|
787
|
+
sicd_xmltree,
|
|
788
|
+
image_grid_locations,
|
|
789
|
+
scp_ecf,
|
|
790
|
+
sarkit.wgs84.up(sarkit.wgs84.cartesian_to_geodetic(scp_ecf)),
|
|
791
|
+
)
|
|
792
|
+
icp_llh = sarkit.wgs84.cartesian_to_geodetic(icp_ecef)
|
|
793
|
+
xml_helper = sksicd.XmlHelper(sicd_xmltree)
|
|
794
|
+
xml_helper.set("./{*}GeoData/{*}ImageCorners", icp_llh[:, :2])
|
|
795
|
+
|
|
796
|
+
# Check for XML consistency
|
|
797
|
+
sicd_con = SicdConsistency(sicd_xmltree)
|
|
798
|
+
sicd_con.check()
|
|
799
|
+
sicd_con.print_result(fail_detail=True)
|
|
800
|
+
|
|
801
|
+
# Grab the data
|
|
802
|
+
real_part = h5_attrs["s_i"]
|
|
803
|
+
imag_part = h5_attrs["s_q"]
|
|
804
|
+
complex_data_arr = np.dstack((real_part, imag_part))
|
|
805
|
+
dtype = complex_data_arr.dtype
|
|
806
|
+
view_dtype = sksicd.PIXEL_TYPES[pixel_type]["dtype"].newbyteorder(dtype.byteorder)
|
|
807
|
+
complex_data_arr = complex_data_arr.view(dtype=view_dtype).reshape(
|
|
808
|
+
complex_data_arr.shape[:2]
|
|
809
|
+
)
|
|
810
|
+
|
|
811
|
+
complex_data_arr = np.transpose(complex_data_arr)
|
|
812
|
+
if look > 0:
|
|
813
|
+
complex_data_arr = np.fliplr(complex_data_arr)
|
|
814
|
+
|
|
815
|
+
metadata = sksicd.NitfMetadata(
|
|
816
|
+
xmltree=sicd_xmltree,
|
|
817
|
+
file_header_part={
|
|
818
|
+
"ostaid": ostaid,
|
|
819
|
+
"ftitle": core_name,
|
|
820
|
+
"security": {
|
|
821
|
+
"clas": classification[0].upper(),
|
|
822
|
+
"clsy": "US",
|
|
823
|
+
},
|
|
824
|
+
},
|
|
825
|
+
im_subheader_part={
|
|
826
|
+
"iid2": core_name,
|
|
827
|
+
"security": {
|
|
828
|
+
"clas": classification[0].upper(),
|
|
829
|
+
"clsy": "US",
|
|
830
|
+
},
|
|
831
|
+
"isorce": collector_name,
|
|
832
|
+
},
|
|
833
|
+
de_subheader_part={
|
|
834
|
+
"security": {
|
|
835
|
+
"clas": classification[0].upper(),
|
|
836
|
+
"clsy": "US",
|
|
837
|
+
},
|
|
838
|
+
},
|
|
839
|
+
)
|
|
840
|
+
|
|
841
|
+
with sicd_filename.open("wb") as f:
|
|
842
|
+
with sksicd.NitfWriter(f, metadata) as writer:
|
|
843
|
+
writer.write_image(complex_data_arr)
|
|
844
|
+
|
|
845
|
+
|
|
846
|
+
def main(args=None):
|
|
847
|
+
"""CLI for converting Iceye SLC to SICD"""
|
|
848
|
+
parser = argparse.ArgumentParser(
|
|
849
|
+
description="Converts an Iceye HDF5 file into a SICD.",
|
|
850
|
+
fromfile_prefix_chars="@",
|
|
851
|
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
|
852
|
+
)
|
|
853
|
+
parser.add_argument(
|
|
854
|
+
"input_h5_file",
|
|
855
|
+
type=pathlib.Path,
|
|
856
|
+
help="path of the input HDF5 file",
|
|
857
|
+
)
|
|
858
|
+
parser.add_argument(
|
|
859
|
+
"classification",
|
|
860
|
+
type=str,
|
|
861
|
+
help="content of the /SICD/CollectionInfo/Classification node in the SICD XML",
|
|
862
|
+
)
|
|
863
|
+
parser.add_argument(
|
|
864
|
+
"output_sicd_file",
|
|
865
|
+
type=pathlib.Path,
|
|
866
|
+
help="path of the output SICD file",
|
|
867
|
+
)
|
|
868
|
+
parser.add_argument(
|
|
869
|
+
"--ostaid",
|
|
870
|
+
type=str,
|
|
871
|
+
help="content of the originating station ID (OSTAID) field of the NITF header",
|
|
872
|
+
default="Unknown",
|
|
873
|
+
)
|
|
874
|
+
config = parser.parse_args(args)
|
|
875
|
+
|
|
876
|
+
hdf5_to_sicd(
|
|
877
|
+
config.input_h5_file,
|
|
878
|
+
config.output_sicd_file,
|
|
879
|
+
classification=config.classification,
|
|
880
|
+
ostaid=config.ostaid,
|
|
881
|
+
)
|
|
882
|
+
|
|
883
|
+
|
|
884
|
+
if __name__ == "__main__":
|
|
885
|
+
main()
|