sagemaker-core 1.0.62__py3-none-any.whl → 2.3.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sagemaker/__init__.py +2 -0
- sagemaker/core/__init__.py +16 -0
- sagemaker/core/_studio.py +116 -0
- sagemaker/core/_version.py +11 -0
- sagemaker/core/accept_types.py +131 -0
- sagemaker/core/analytics.py +744 -0
- sagemaker/core/apiutils/__init__.py +13 -0
- sagemaker/core/apiutils/_base_types.py +228 -0
- sagemaker/core/apiutils/_boto_functions.py +130 -0
- sagemaker/core/apiutils/_utils.py +34 -0
- sagemaker/core/base_deserializers.py +35 -0
- sagemaker/core/base_serializers.py +35 -0
- sagemaker/core/clarify/__init__.py +2898 -0
- sagemaker/core/collection.py +467 -0
- sagemaker/core/common_utils.py +2399 -0
- sagemaker/core/compute_resource_requirements/__init__.py +18 -0
- sagemaker/core/compute_resource_requirements/resource_requirements.py +94 -0
- sagemaker/core/config/__init__.py +181 -0
- sagemaker/core/config/config.py +238 -0
- sagemaker/core/config/config_manager.py +595 -0
- sagemaker/core/config/config_schema.py +1220 -0
- sagemaker/core/config/config_utils.py +297 -0
- {sagemaker_core/main → sagemaker/core}/config_schema.py +408 -3
- sagemaker/core/constants.py +73 -0
- sagemaker/core/content_types.py +137 -0
- sagemaker/core/debugger/__init__.py +39 -0
- sagemaker/core/debugger/debugger.py +945 -0
- sagemaker/core/debugger/framework_profile.py +292 -0
- sagemaker/core/debugger/metrics_config.py +468 -0
- sagemaker/core/debugger/profiler.py +42 -0
- sagemaker/core/debugger/profiler_config.py +190 -0
- sagemaker/core/debugger/profiler_constants.py +40 -0
- sagemaker/core/debugger/utils.py +148 -0
- sagemaker/core/deprecations.py +254 -0
- sagemaker/core/deserializers/__init__.py +10 -0
- sagemaker/core/deserializers/base.py +424 -0
- sagemaker/core/deserializers/implementations.py +157 -0
- sagemaker/core/drift_check_baselines.py +106 -0
- sagemaker/core/enums.py +51 -0
- sagemaker/core/environment_variables.py +101 -0
- sagemaker/core/exceptions.py +108 -0
- sagemaker/core/experiments/__init__.py +53 -0
- sagemaker/core/experiments/_api_types.py +251 -0
- sagemaker/core/experiments/_environment.py +124 -0
- sagemaker/core/experiments/_helper.py +294 -0
- sagemaker/core/experiments/_metrics.py +333 -0
- sagemaker/core/experiments/_run_context.py +58 -0
- sagemaker/core/experiments/_utils.py +216 -0
- sagemaker/core/experiments/experiment.py +247 -0
- sagemaker/core/experiments/run.py +970 -0
- sagemaker/core/experiments/trial.py +296 -0
- sagemaker/core/experiments/trial_component.py +387 -0
- sagemaker/core/explainer/__init__.py +24 -0
- sagemaker/core/explainer/clarify_explainer_config.py +298 -0
- sagemaker/core/explainer/explainer_config.py +44 -0
- sagemaker/core/fw_utils.py +1220 -0
- sagemaker/core/git_utils.py +415 -0
- sagemaker/core/helper/pipeline_variable.py +82 -0
- sagemaker/core/helper/session_helper.py +2977 -0
- sagemaker/core/hyperparameters.py +172 -0
- sagemaker/core/image_retriever/__init__.py +3 -0
- sagemaker/core/image_retriever/image_retriever.py +640 -0
- sagemaker/core/image_retriever/image_retriever_utils.py +509 -0
- sagemaker/core/image_retriever/test.py +7 -0
- sagemaker/core/image_uri_config/autogluon.json +1335 -0
- sagemaker/core/image_uri_config/blazingtext.json +50 -0
- sagemaker/core/image_uri_config/chainer.json +104 -0
- sagemaker/core/image_uri_config/clarify.json +39 -0
- sagemaker/core/image_uri_config/coach-mxnet.json +70 -0
- sagemaker/core/image_uri_config/coach-tensorflow.json +186 -0
- sagemaker/core/image_uri_config/data-wrangler.json +91 -0
- sagemaker/core/image_uri_config/debugger.json +34 -0
- sagemaker/core/image_uri_config/detailed-profiler.json +18 -0
- sagemaker/core/image_uri_config/djl-deepspeed.json +385 -0
- sagemaker/core/image_uri_config/djl-fastertransformer.json +167 -0
- sagemaker/core/image_uri_config/djl-lmi.json +136 -0
- sagemaker/core/image_uri_config/djl-neuronx.json +258 -0
- sagemaker/core/image_uri_config/djl-tensorrtllm.json +262 -0
- sagemaker/core/image_uri_config/factorization-machines.json +50 -0
- sagemaker/core/image_uri_config/forecasting-deepar.json +50 -0
- sagemaker/core/image_uri_config/huggingface-llm-neuronx.json +770 -0
- sagemaker/core/image_uri_config/huggingface-llm.json +1267 -0
- sagemaker/core/image_uri_config/huggingface-neuron.json +52 -0
- sagemaker/core/image_uri_config/huggingface-neuronx.json +686 -0
- sagemaker/core/image_uri_config/huggingface-tei-cpu.json +298 -0
- sagemaker/core/image_uri_config/huggingface-tei.json +298 -0
- sagemaker/core/image_uri_config/huggingface-training-compiler.json +195 -0
- sagemaker/core/image_uri_config/huggingface-vllm-neuronx.json +38 -0
- sagemaker/core/image_uri_config/huggingface.json +2287 -0
- sagemaker/core/image_uri_config/hyperpod-recipes-neuron.json +52 -0
- sagemaker/core/image_uri_config/image-classification-neo.json +43 -0
- sagemaker/core/image_uri_config/image-classification.json +50 -0
- sagemaker/core/image_uri_config/inferentia-mxnet.json +88 -0
- sagemaker/core/image_uri_config/inferentia-pytorch.json +127 -0
- sagemaker/core/image_uri_config/inferentia-tensorflow.json +88 -0
- sagemaker/core/image_uri_config/instance_gpu_info.json +782 -0
- sagemaker/core/image_uri_config/ipinsights.json +50 -0
- sagemaker/core/image_uri_config/kmeans.json +50 -0
- sagemaker/core/image_uri_config/knn.json +50 -0
- sagemaker/core/image_uri_config/lda.json +26 -0
- sagemaker/core/image_uri_config/linear-learner.json +50 -0
- sagemaker/core/image_uri_config/model-monitor.json +42 -0
- sagemaker/core/image_uri_config/mxnet.json +1154 -0
- sagemaker/core/image_uri_config/neo-mxnet.json +64 -0
- sagemaker/core/image_uri_config/neo-pytorch.json +341 -0
- sagemaker/core/image_uri_config/neo-tensorflow.json +109 -0
- sagemaker/core/image_uri_config/ntm.json +50 -0
- sagemaker/core/image_uri_config/object-detection.json +50 -0
- sagemaker/core/image_uri_config/object2vec.json +50 -0
- sagemaker/core/image_uri_config/pca.json +50 -0
- sagemaker/core/image_uri_config/pytorch-neuron.json +43 -0
- sagemaker/core/image_uri_config/pytorch-smp.json +218 -0
- sagemaker/core/image_uri_config/pytorch-training-compiler.json +80 -0
- sagemaker/core/image_uri_config/pytorch.json +3101 -0
- sagemaker/core/image_uri_config/randomcutforest.json +50 -0
- sagemaker/core/image_uri_config/ray-pytorch.json +46 -0
- sagemaker/core/image_uri_config/ray-tensorflow.json +194 -0
- sagemaker/core/image_uri_config/sagemaker-base-python.json +46 -0
- sagemaker/core/image_uri_config/sagemaker-distribution.json +37 -0
- sagemaker/core/image_uri_config/sagemaker-geospatial.json +13 -0
- sagemaker/core/image_uri_config/sagemaker-tritonserver.json +252 -0
- sagemaker/core/image_uri_config/semantic-segmentation.json +50 -0
- sagemaker/core/image_uri_config/seq2seq.json +50 -0
- sagemaker/core/image_uri_config/sklearn.json +494 -0
- sagemaker/core/image_uri_config/spark.json +280 -0
- sagemaker/core/image_uri_config/sparkml-serving.json +97 -0
- sagemaker/core/image_uri_config/stabilityai.json +53 -0
- sagemaker/core/image_uri_config/tensorflow.json +5086 -0
- sagemaker/core/image_uri_config/vw.json +25 -0
- sagemaker/core/image_uri_config/xgboost-neo.json +43 -0
- sagemaker/core/image_uri_config/xgboost.json +972 -0
- sagemaker/core/image_uris.py +816 -0
- sagemaker/core/inference_config.py +144 -0
- sagemaker/core/inference_recommender/__init__.py +18 -0
- sagemaker/core/inference_recommender/inference_recommender_mixin.py +622 -0
- sagemaker/core/inputs.py +366 -0
- sagemaker/core/instance_group.py +61 -0
- sagemaker/core/instance_types.py +164 -0
- sagemaker/core/instance_types_gpu_info.py +43 -0
- sagemaker/core/interactive_apps/__init__.py +41 -0
- sagemaker/core/interactive_apps/base_interactive_app.py +204 -0
- sagemaker/core/interactive_apps/detail_profiler_app.py +139 -0
- sagemaker/core/interactive_apps/tensorboard.py +149 -0
- sagemaker/core/iterators.py +197 -0
- sagemaker/core/job.py +380 -0
- sagemaker/core/jumpstart/__init__.py +156 -0
- sagemaker/core/jumpstart/accessors.py +390 -0
- sagemaker/core/jumpstart/artifacts/__init__.py +69 -0
- sagemaker/core/jumpstart/artifacts/environment_variables.py +252 -0
- sagemaker/core/jumpstart/artifacts/hyperparameters.py +120 -0
- sagemaker/core/jumpstart/artifacts/image_uris.py +139 -0
- sagemaker/core/jumpstart/artifacts/incremental_training.py +87 -0
- sagemaker/core/jumpstart/artifacts/instance_types.py +223 -0
- sagemaker/core/jumpstart/artifacts/kwargs.py +289 -0
- sagemaker/core/jumpstart/artifacts/metric_definitions.py +117 -0
- sagemaker/core/jumpstart/artifacts/model_packages.py +202 -0
- sagemaker/core/jumpstart/artifacts/model_uris.py +252 -0
- sagemaker/core/jumpstart/artifacts/payloads.py +96 -0
- sagemaker/core/jumpstart/artifacts/predictors.py +540 -0
- sagemaker/core/jumpstart/artifacts/resource_names.py +86 -0
- sagemaker/core/jumpstart/artifacts/resource_requirements.py +162 -0
- sagemaker/core/jumpstart/artifacts/script_uris.py +172 -0
- sagemaker/core/jumpstart/cache.py +663 -0
- sagemaker/core/jumpstart/configs.py +50 -0
- sagemaker/core/jumpstart/constants.py +198 -0
- sagemaker/core/jumpstart/deserializers.py +81 -0
- sagemaker/core/jumpstart/document.py +76 -0
- sagemaker/core/jumpstart/enums.py +168 -0
- sagemaker/core/jumpstart/exceptions.py +236 -0
- sagemaker/core/jumpstart/factory/utils.py +833 -0
- sagemaker/core/jumpstart/filters.py +597 -0
- sagemaker/core/jumpstart/hub/constants.py +16 -0
- sagemaker/core/jumpstart/hub/hub.py +291 -0
- sagemaker/core/jumpstart/hub/interfaces.py +936 -0
- sagemaker/core/jumpstart/hub/parser_utils.py +70 -0
- sagemaker/core/jumpstart/hub/parsers.py +288 -0
- sagemaker/core/jumpstart/hub/types.py +35 -0
- sagemaker/core/jumpstart/hub/utils.py +260 -0
- sagemaker/core/jumpstart/models.py +501 -0
- sagemaker/core/jumpstart/notebook_utils.py +575 -0
- sagemaker/core/jumpstart/parameters.py +20 -0
- sagemaker/core/jumpstart/payload_utils.py +239 -0
- sagemaker/core/jumpstart/region_config.json +171 -0
- sagemaker/core/jumpstart/search.py +171 -0
- sagemaker/core/jumpstart/serializers.py +81 -0
- sagemaker/core/jumpstart/session_utils.py +234 -0
- sagemaker/core/jumpstart/types.py +3044 -0
- sagemaker/core/jumpstart/utils.py +1731 -0
- sagemaker/core/jumpstart/validators.py +257 -0
- sagemaker/core/lambda_helper.py +312 -0
- sagemaker/core/lineage/__init__.py +42 -0
- sagemaker/core/lineage/_api_types.py +239 -0
- sagemaker/core/lineage/_utils.py +49 -0
- sagemaker/core/lineage/action.py +345 -0
- sagemaker/core/lineage/artifact.py +646 -0
- sagemaker/core/lineage/association.py +190 -0
- sagemaker/core/lineage/context.py +505 -0
- sagemaker/core/lineage/lineage_trial_component.py +191 -0
- sagemaker/core/lineage/query.py +732 -0
- sagemaker/core/lineage/visualizer.py +346 -0
- sagemaker/core/local/__init__.py +18 -0
- sagemaker/core/local/data.py +423 -0
- sagemaker/core/local/entities.py +678 -0
- sagemaker/core/local/exceptions.py +17 -0
- sagemaker/core/local/image.py +1243 -0
- sagemaker/core/local/local_session.py +739 -0
- sagemaker/core/local/utils.py +246 -0
- sagemaker/core/logs.py +181 -0
- sagemaker/core/metadata_properties.py +56 -0
- sagemaker/core/metric_definitions.py +91 -0
- sagemaker/core/mlflow/__init__.py +38 -0
- sagemaker/core/mlflow/forward_sagemaker_metrics.py +44 -0
- sagemaker/core/model_card/__init__.py +26 -0
- sagemaker/core/model_life_cycle.py +51 -0
- sagemaker/core/model_metrics.py +160 -0
- sagemaker/core/model_monitor/__init__.py +66 -0
- sagemaker/core/model_monitor/clarify_model_monitoring.py +1497 -0
- sagemaker/core/model_monitor/cron_expression_generator.py +82 -0
- sagemaker/core/model_monitor/data_capture_config.py +115 -0
- sagemaker/core/model_monitor/data_quality_monitoring_config.py +66 -0
- sagemaker/core/model_monitor/dataset_format.py +102 -0
- sagemaker/core/model_monitor/model_monitoring.py +4266 -0
- sagemaker/core/model_monitor/monitoring_alert.py +76 -0
- sagemaker/core/model_monitor/monitoring_files.py +506 -0
- sagemaker/core/model_monitor/utils.py +793 -0
- sagemaker/core/model_registry.py +480 -0
- sagemaker/core/model_uris.py +97 -0
- sagemaker/core/modules/__init__.py +19 -0
- sagemaker/core/modules/configs.py +239 -0
- sagemaker/core/modules/constants.py +37 -0
- sagemaker/core/modules/distributed.py +182 -0
- sagemaker/core/modules/local_core/local_container.py +605 -0
- sagemaker/core/modules/templates.py +83 -0
- sagemaker/core/modules/train/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/common/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/common/utils.py +205 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/basic_script_driver.py +81 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/mpi_driver.py +123 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/mpi_utils.py +302 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/torchrun_driver.py +129 -0
- sagemaker/core/modules/train/container_drivers/scripts/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/scripts/environment.py +305 -0
- sagemaker/core/modules/train/sm_recipes/__init__.py +0 -0
- sagemaker/core/modules/train/sm_recipes/utils.py +330 -0
- sagemaker/core/modules/types.py +19 -0
- sagemaker/core/modules/utils.py +194 -0
- sagemaker/core/network.py +185 -0
- sagemaker/core/parameter.py +173 -0
- sagemaker/core/payloads.py +185 -0
- sagemaker/core/processing.py +1599 -0
- sagemaker/core/remote_function/__init__.py +19 -0
- sagemaker/core/remote_function/checkpoint_location.py +47 -0
- sagemaker/core/remote_function/client.py +1310 -0
- sagemaker/core/remote_function/core/__init__.py +0 -0
- sagemaker/core/remote_function/core/_custom_dispatch_table.py +72 -0
- sagemaker/core/remote_function/core/pipeline_variables.py +347 -0
- sagemaker/core/remote_function/core/serialization.py +410 -0
- sagemaker/core/remote_function/core/stored_function.py +223 -0
- sagemaker/core/remote_function/custom_file_filter.py +128 -0
- sagemaker/core/remote_function/errors.py +102 -0
- sagemaker/core/remote_function/invoke_function.py +167 -0
- sagemaker/core/remote_function/job.py +2121 -0
- sagemaker/core/remote_function/logging_config.py +38 -0
- sagemaker/core/remote_function/runtime_environment/__init__.py +14 -0
- sagemaker/core/remote_function/runtime_environment/bootstrap_runtime_environment.py +605 -0
- sagemaker/core/remote_function/runtime_environment/mpi_utils_remote.py +252 -0
- sagemaker/core/remote_function/runtime_environment/runtime_environment_manager.py +554 -0
- sagemaker/core/remote_function/runtime_environment/spark_app.py +18 -0
- sagemaker/core/remote_function/spark_config.py +149 -0
- sagemaker/core/resource_requirements.py +168 -0
- {sagemaker_core/main → sagemaker/core}/resources.py +19098 -10895
- sagemaker/core/s3/__init__.py +41 -0
- sagemaker/core/s3/client.py +367 -0
- sagemaker/core/s3/utils.py +175 -0
- sagemaker/core/script_uris.py +93 -0
- sagemaker/core/serializers/__init__.py +11 -0
- sagemaker/core/serializers/base.py +510 -0
- sagemaker/core/serializers/implementations.py +159 -0
- sagemaker/core/serializers/utils.py +223 -0
- sagemaker/core/serverless_inference_config.py +63 -0
- sagemaker/core/session_settings.py +55 -0
- sagemaker/core/shapes/__init__.py +3 -0
- sagemaker/core/shapes/model_card_shapes.py +159 -0
- {sagemaker_core/main → sagemaker/core/shapes}/shapes.py +5810 -1806
- sagemaker/core/spark/__init__.py +16 -0
- sagemaker/core/spark/defaults.py +16 -0
- sagemaker/core/spark/processing.py +1380 -0
- sagemaker/core/telemetry/__init__.py +23 -0
- sagemaker/core/telemetry/constants.py +82 -0
- sagemaker/core/telemetry/telemetry_logging.py +285 -0
- sagemaker/core/tools/__init__.py +1 -0
- {sagemaker_core → sagemaker/core}/tools/codegen.py +4 -4
- {sagemaker_core → sagemaker/core}/tools/constants.py +23 -15
- {sagemaker_core → sagemaker/core}/tools/data_extractor.py +1 -1
- {sagemaker_core → sagemaker/core}/tools/method.py +1 -1
- sagemaker/core/tools/model_card/generate_model_card_from_schema.py +562 -0
- {sagemaker_core → sagemaker/core}/tools/resources_codegen.py +165 -98
- {sagemaker_core → sagemaker/core}/tools/resources_extractor.py +5 -13
- {sagemaker_core → sagemaker/core}/tools/shapes_codegen.py +16 -17
- {sagemaker_core → sagemaker/core}/tools/shapes_extractor.py +29 -67
- {sagemaker_core → sagemaker/core}/tools/templates.py +39 -17
- sagemaker/core/training/__init__.py +14 -0
- sagemaker/core/training/configs.py +345 -0
- sagemaker/core/training/constants.py +37 -0
- sagemaker/core/training/utils.py +77 -0
- sagemaker/core/training_compiler/__init__.py +16 -0
- sagemaker/core/training_compiler/config.py +197 -0
- sagemaker/core/training_compiler_config.py +197 -0
- sagemaker/core/transformer.py +793 -0
- sagemaker/core/user_agent.py +76 -0
- sagemaker/core/utilities/__init__.py +24 -0
- sagemaker/core/utilities/cache.py +169 -0
- sagemaker/core/utilities/search_expression.py +133 -0
- sagemaker/core/utils/__init__.py +48 -0
- sagemaker/core/utils/code_injection/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/codec.py +2 -2
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/shape_dag.py +5979 -176
- {sagemaker_core/main → sagemaker/core/utils}/exceptions.py +8 -8
- sagemaker_core/main/default_configs_helper.py → sagemaker/core/utils/intelligent_defaults_helper.py +5 -6
- {sagemaker_core/main → sagemaker/core/utils}/logs.py +1 -2
- {sagemaker_core/main → sagemaker/core/utils}/utils.py +27 -22
- sagemaker/core/workflow/__init__.py +152 -0
- sagemaker/core/workflow/conditions.py +313 -0
- sagemaker/core/workflow/entities.py +58 -0
- sagemaker/core/workflow/execution_variables.py +89 -0
- sagemaker/core/workflow/functions.py +193 -0
- sagemaker/core/workflow/parameters.py +222 -0
- sagemaker/core/workflow/pipeline_context.py +394 -0
- sagemaker/core/workflow/pipeline_definition_config.py +31 -0
- sagemaker/core/workflow/properties.py +285 -0
- sagemaker/core/workflow/step_outputs.py +65 -0
- sagemaker/core/workflow/utilities.py +514 -0
- sagemaker/lineage/__init__.py +33 -0
- sagemaker/lineage/action.py +28 -0
- sagemaker/lineage/artifact.py +28 -0
- sagemaker/lineage/context.py +28 -0
- sagemaker/lineage/lineage_trial_component.py +28 -0
- {sagemaker_core-1.0.62.dist-info → sagemaker_core-2.3.1.dist-info}/METADATA +28 -9
- sagemaker_core-2.3.1.dist-info/RECORD +351 -0
- sagemaker_core-2.3.1.dist-info/top_level.txt +1 -0
- sagemaker_core/_version.py +0 -3
- sagemaker_core/helper/session_helper.py +0 -769
- sagemaker_core/resources/__init__.py +0 -1
- sagemaker_core/shapes/__init__.py +0 -1
- sagemaker_core/tools/__init__.py +0 -1
- sagemaker_core-1.0.62.dist-info/RECORD +0 -35
- sagemaker_core-1.0.62.dist-info/top_level.txt +0 -1
- {sagemaker_core → sagemaker/core/helper}/__init__.py +0 -0
- {sagemaker_core/helper → sagemaker/core/jumpstart/factory}/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/jumpstart/hub}/__init__.py +0 -0
- {sagemaker_core/main/code_injection → sagemaker/core/modules/local_core}/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/base.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/constants.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/user_agent.py +0 -0
- {sagemaker_core-1.0.62.dist-info → sagemaker_core-2.3.1.dist-info}/WHEEL +0 -0
- {sagemaker_core-1.0.62.dist-info → sagemaker_core-2.3.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,345 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""This module provides the configuration classes used in ``sagemaker.modules``.
|
|
14
|
+
|
|
15
|
+
Some of these classes are re-exported from ``sagemaker.core.shapes``. For convinence,
|
|
16
|
+
users can import these classes directly from ``sagemaker.modules.configs``.
|
|
17
|
+
|
|
18
|
+
For more documentation on ``sagemaker.core.shapes``, see:
|
|
19
|
+
- https://sagemaker-core.readthedocs.io/en/stable/#sagemaker-core-shapes
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
from __future__ import absolute_import
|
|
23
|
+
|
|
24
|
+
from typing import Optional, Union, List
|
|
25
|
+
from pydantic import BaseModel, model_validator, ConfigDict
|
|
26
|
+
|
|
27
|
+
import sagemaker.core.shapes as shapes
|
|
28
|
+
from sagemaker.core.helper.pipeline_variable import StrPipeVar
|
|
29
|
+
|
|
30
|
+
# TODO: Can we add custom logic to some of these to set better defaults?
|
|
31
|
+
from sagemaker.core.shapes import (
|
|
32
|
+
StoppingCondition,
|
|
33
|
+
RetryStrategy,
|
|
34
|
+
Channel,
|
|
35
|
+
ShuffleConfig,
|
|
36
|
+
DataSource,
|
|
37
|
+
S3DataSource,
|
|
38
|
+
FileSystemDataSource,
|
|
39
|
+
TrainingImageConfig,
|
|
40
|
+
TrainingRepositoryAuthConfig,
|
|
41
|
+
Tag,
|
|
42
|
+
InfraCheckConfig,
|
|
43
|
+
RemoteDebugConfig,
|
|
44
|
+
SessionChainingConfig,
|
|
45
|
+
InstanceGroup,
|
|
46
|
+
HubAccessConfig,
|
|
47
|
+
ModelAccessConfig,
|
|
48
|
+
MetricDefinition,
|
|
49
|
+
DatasetSource,
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
from sagemaker.core.training.utils import convert_unassigned_to_none
|
|
53
|
+
|
|
54
|
+
__all__ = [
|
|
55
|
+
"BaseConfig",
|
|
56
|
+
"SourceCode",
|
|
57
|
+
"StoppingCondition",
|
|
58
|
+
"RetryStrategy",
|
|
59
|
+
"OutputDataConfig",
|
|
60
|
+
"Channel",
|
|
61
|
+
"ShuffleConfig",
|
|
62
|
+
"DataSource",
|
|
63
|
+
"S3DataSource",
|
|
64
|
+
"FileSystemDataSource",
|
|
65
|
+
"TrainingImageConfig",
|
|
66
|
+
"TrainingRepositoryAuthConfig",
|
|
67
|
+
"Tag",
|
|
68
|
+
"InfraCheckConfig",
|
|
69
|
+
"RemoteDebugConfig",
|
|
70
|
+
"SessionChainingConfig",
|
|
71
|
+
"InstanceGroup",
|
|
72
|
+
"TensorBoardOutputConfig",
|
|
73
|
+
"CheckpointConfig",
|
|
74
|
+
"HubAccessConfig",
|
|
75
|
+
"ModelAccessConfig",
|
|
76
|
+
"Compute",
|
|
77
|
+
"Networking",
|
|
78
|
+
"InputData",
|
|
79
|
+
"MetricDefinition",
|
|
80
|
+
"DatasetSource",
|
|
81
|
+
]
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
class BaseConfig(BaseModel):
|
|
85
|
+
"""BaseConfig"""
|
|
86
|
+
|
|
87
|
+
model_config = ConfigDict(validate_assignment=True, extra="forbid")
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class SourceCode(BaseConfig):
|
|
91
|
+
"""SourceCode.
|
|
92
|
+
|
|
93
|
+
The SourceCode class allows the user to specify the source code location, dependencies,
|
|
94
|
+
entry script, or commands to be executed in the training job container.
|
|
95
|
+
|
|
96
|
+
Parameters:
|
|
97
|
+
source_dir (Optional[StrPipeVar]):
|
|
98
|
+
The local directory, s3 uri, or path to tar.gz file stored locally or in s3 that
|
|
99
|
+
contains the source code to be used in the training job container.
|
|
100
|
+
requirements (Optional[StrPipeVar]):
|
|
101
|
+
The path within ``source_dir`` to a ``requirements.txt`` file. If specified, the listed
|
|
102
|
+
requirements will be installed in the training job container.
|
|
103
|
+
entry_script (Optional[StrPipeVar]):
|
|
104
|
+
The path within ``source_dir`` to the entry script that will be executed in the training
|
|
105
|
+
job container. If not specified, command must be provided.
|
|
106
|
+
command (Optional[StrPipeVar]):
|
|
107
|
+
The command(s) to execute in the training job container. Example: "python my_script.py".
|
|
108
|
+
If not specified, entry_script must be provided.
|
|
109
|
+
ignore_patterns: (Optional[List[str]]) :
|
|
110
|
+
The ignore patterns to ignore specific files/folders when uploading to S3. If not specified,
|
|
111
|
+
default to: ['.env', '.git', '__pycache__', '.DS_Store', '.cache', '.ipynb_checkpoints'].
|
|
112
|
+
"""
|
|
113
|
+
|
|
114
|
+
source_dir: Optional[StrPipeVar] = None
|
|
115
|
+
requirements: Optional[StrPipeVar] = None
|
|
116
|
+
entry_script: Optional[StrPipeVar] = None
|
|
117
|
+
command: Optional[StrPipeVar] = None
|
|
118
|
+
ignore_patterns: Optional[List[str]] = [
|
|
119
|
+
".env",
|
|
120
|
+
".git",
|
|
121
|
+
"__pycache__",
|
|
122
|
+
".DS_Store",
|
|
123
|
+
".cache",
|
|
124
|
+
".ipynb_checkpoints",
|
|
125
|
+
]
|
|
126
|
+
|
|
127
|
+
class OutputDataConfig(shapes.OutputDataConfig):
|
|
128
|
+
"""OutputDataConfig.
|
|
129
|
+
|
|
130
|
+
Provides the configuration for the output data location of the training job
|
|
131
|
+
(will not be carried over to any model repository or deployment).
|
|
132
|
+
|
|
133
|
+
Parameters:
|
|
134
|
+
s3_output_path (Optional[StrPipeVar]):
|
|
135
|
+
The S3 URI where the output data will be stored. This is the location where the
|
|
136
|
+
training job will save its output data, such as model artifacts and logs.
|
|
137
|
+
kms_key_id (Optional[StrPipeVar]):
|
|
138
|
+
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that
|
|
139
|
+
SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side
|
|
140
|
+
encryption.
|
|
141
|
+
compression_type (Optional[StrPipeVar]):
|
|
142
|
+
The model output compression type. Select None to output an uncompressed model,
|
|
143
|
+
recommended for large model outputs. Defaults to gzip.
|
|
144
|
+
"""
|
|
145
|
+
|
|
146
|
+
s3_output_path: Optional[StrPipeVar] = None
|
|
147
|
+
kms_key_id: Optional[StrPipeVar] = None
|
|
148
|
+
compression_type: Optional[StrPipeVar] = None
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class Compute(shapes.ResourceConfig):
|
|
152
|
+
"""Compute.
|
|
153
|
+
|
|
154
|
+
The Compute class is a subclass of ``sagemaker.core.shapes.ResourceConfig``
|
|
155
|
+
and allows the user to specify the compute resources for the training job.
|
|
156
|
+
|
|
157
|
+
Parameters:
|
|
158
|
+
instance_type (Optional[StrPipeVar]):
|
|
159
|
+
The ML compute instance type. For information about available instance types,
|
|
160
|
+
see https://aws.amazon.com/sagemaker/pricing/.
|
|
161
|
+
instance_count (Optional[int]): The number of ML compute instances to use. For distributed
|
|
162
|
+
training, provide a value greater than 1.
|
|
163
|
+
volume_size_in_gb (Optional[int]):
|
|
164
|
+
The size of the ML storage volume that you want to provision. ML storage volumes store
|
|
165
|
+
model artifacts and incremental states. Training algorithms might also use the ML
|
|
166
|
+
storage volume for scratch space. Default: 30
|
|
167
|
+
volume_kms_key_id (Optional[StrPipeVar]):
|
|
168
|
+
The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage
|
|
169
|
+
volume attached to the ML compute instance(s) that run the training job.
|
|
170
|
+
keep_alive_period_in_seconds (Optional[int]):
|
|
171
|
+
The duration of time in seconds to retain configured resources in a warm pool for
|
|
172
|
+
subsequent training jobs.
|
|
173
|
+
instance_groups (Optional[List[InstanceGroup]]):
|
|
174
|
+
A list of instance groups for heterogeneous clusters to be used in the training job.
|
|
175
|
+
training_plan_arn (Optional[StrPipeVar]):
|
|
176
|
+
The Amazon Resource Name (ARN) of the training plan to use for this resource configuration.
|
|
177
|
+
enable_managed_spot_training (Optional[bool]):
|
|
178
|
+
To train models using managed spot training, choose True. Managed spot training
|
|
179
|
+
provides a fully managed and scalable infrastructure for training machine learning
|
|
180
|
+
models. this option is useful when training jobs can be interrupted and when there
|
|
181
|
+
is flexibility when the training job is run.
|
|
182
|
+
"""
|
|
183
|
+
|
|
184
|
+
volume_size_in_gb: Optional[int] = 30
|
|
185
|
+
enable_managed_spot_training: Optional[bool] = None
|
|
186
|
+
|
|
187
|
+
@model_validator(mode="after")
|
|
188
|
+
def _model_validator(self) -> "Compute":
|
|
189
|
+
"""Convert Unassigned values to None."""
|
|
190
|
+
return convert_unassigned_to_none(self)
|
|
191
|
+
|
|
192
|
+
def _to_resource_config(self) -> shapes.ResourceConfig:
|
|
193
|
+
"""Convert to a sagemaker.core.shapes.ResourceConfig object."""
|
|
194
|
+
compute_config_dict = self.model_dump()
|
|
195
|
+
resource_config_fields = set(shapes.ResourceConfig.__annotations__.keys())
|
|
196
|
+
filtered_dict = {
|
|
197
|
+
k: v
|
|
198
|
+
for k, v in compute_config_dict.items()
|
|
199
|
+
if k in resource_config_fields and v is not None
|
|
200
|
+
}
|
|
201
|
+
if not filtered_dict:
|
|
202
|
+
return None
|
|
203
|
+
return shapes.ResourceConfig(**filtered_dict)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
class Networking(shapes.VpcConfig):
|
|
207
|
+
"""Networking.
|
|
208
|
+
|
|
209
|
+
The Networking class is a subclass of ``sagemaker.core.shapes.VpcConfig`` and
|
|
210
|
+
allows the user to specify the networking configuration for the training job.
|
|
211
|
+
|
|
212
|
+
Parameters:
|
|
213
|
+
security_group_ids (Optional[List[StrPipeVar]]):
|
|
214
|
+
The VPC security group IDs, in the form sg-xxxxxxxx. Specify the
|
|
215
|
+
security groups for the VPC that is specified in the Subnets field.
|
|
216
|
+
subnets (Optional[List[StrPipeVar]]):
|
|
217
|
+
The ID of the subnets in the VPC to which you want to connect your
|
|
218
|
+
training job or model.
|
|
219
|
+
enable_network_isolation (Optional[bool]):
|
|
220
|
+
Isolates the training container. No inbound or outbound network calls can be made,
|
|
221
|
+
except for calls between peers within a training cluster for distributed training.
|
|
222
|
+
If you enable network isolation for training jobs that are configured to use a VPC,
|
|
223
|
+
SageMaker downloads and uploads customer data and model artifacts through the
|
|
224
|
+
specified VPC, but the training container does not have network access.
|
|
225
|
+
enable_inter_container_traffic_encryption (Optional[bool]):
|
|
226
|
+
To encrypt all communications between ML compute instances in distributed training
|
|
227
|
+
choose True. Encryption provides greater security for distributed training, but
|
|
228
|
+
training might take longer. How long it takes depends on the amount of
|
|
229
|
+
communication between compute instances, especially if you use a deep learning
|
|
230
|
+
algorithm in distributed training.
|
|
231
|
+
"""
|
|
232
|
+
|
|
233
|
+
security_group_ids: Optional[list[StrPipeVar]] = None
|
|
234
|
+
subnets: Optional[list[StrPipeVar]] = None
|
|
235
|
+
enable_network_isolation: Optional[bool] = None
|
|
236
|
+
enable_inter_container_traffic_encryption: Optional[bool] = None
|
|
237
|
+
|
|
238
|
+
@model_validator(mode="after")
|
|
239
|
+
def _model_validator(self) -> "Networking":
|
|
240
|
+
"""Convert Unassigned values to None."""
|
|
241
|
+
return convert_unassigned_to_none(self)
|
|
242
|
+
|
|
243
|
+
def _to_vpc_config(self) -> shapes.VpcConfig:
|
|
244
|
+
"""Convert to a sagemaker.core.shapes.VpcConfig object."""
|
|
245
|
+
compute_config_dict = self.model_dump()
|
|
246
|
+
vpc_config_fields = set(shapes.VpcConfig.__annotations__.keys())
|
|
247
|
+
filtered_dict = {
|
|
248
|
+
k: v for k, v in compute_config_dict.items() if k in vpc_config_fields and v is not None
|
|
249
|
+
}
|
|
250
|
+
if not filtered_dict:
|
|
251
|
+
return None
|
|
252
|
+
return shapes.VpcConfig(**filtered_dict)
|
|
253
|
+
|
|
254
|
+
|
|
255
|
+
class InputData(BaseConfig):
|
|
256
|
+
"""InputData.
|
|
257
|
+
|
|
258
|
+
This config allows the user to specify an input data source for the training job.
|
|
259
|
+
|
|
260
|
+
Will be found at ``/opt/ml/input/data/<channel_name>`` within the training container.
|
|
261
|
+
For convience, can be referenced inside the training container like:
|
|
262
|
+
|
|
263
|
+
.. code:: python
|
|
264
|
+
|
|
265
|
+
import os
|
|
266
|
+
input_data_dir = os.environ['SM_CHANNEL_<channel_name>']
|
|
267
|
+
|
|
268
|
+
Parameters:
|
|
269
|
+
channel_name (StrPipeVar):
|
|
270
|
+
The name of the input data source channel.
|
|
271
|
+
data_source (Union[StrPipeVar, S3DataSource, FileSystemDataSource, DatasetSource]):
|
|
272
|
+
The data source for the channel. Can be an S3 URI string, local file path string,
|
|
273
|
+
S3DataSource object, FileSystemDataSource object, DatasetSource object, or a
|
|
274
|
+
pipeline variable (Properties) from a previous step.
|
|
275
|
+
content_type (StrPipeVar):
|
|
276
|
+
The MIME type of the data.
|
|
277
|
+
"""
|
|
278
|
+
|
|
279
|
+
channel_name: StrPipeVar = None
|
|
280
|
+
data_source: Union[StrPipeVar, FileSystemDataSource, S3DataSource, DatasetSource] = None
|
|
281
|
+
content_type: StrPipeVar = None
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
class OutputDataConfig(shapes.OutputDataConfig):
|
|
285
|
+
"""OutputDataConfig.
|
|
286
|
+
|
|
287
|
+
The OutputDataConfig class is a subclass of ``sagemaker.core.shapes.OutputDataConfig``
|
|
288
|
+
and allows the user to specify the output data configuration for the training job
|
|
289
|
+
(will not be carried over to any model repository or deployment).
|
|
290
|
+
|
|
291
|
+
Parameters:
|
|
292
|
+
s3_output_path (Optional[StrPipeVar]):
|
|
293
|
+
The S3 URI where the output data will be stored. This is the location where the
|
|
294
|
+
training job will save its output data, such as model artifacts and logs.
|
|
295
|
+
kms_key_id (Optional[StrPipeVar]):
|
|
296
|
+
The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that
|
|
297
|
+
SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side
|
|
298
|
+
encryption.
|
|
299
|
+
compression_type (Optional[StrPipeVar]):
|
|
300
|
+
The model output compression type. Select `NONE` to output an uncompressed model,
|
|
301
|
+
recommended for large model outputs. Defaults to `GZIP`.
|
|
302
|
+
"""
|
|
303
|
+
|
|
304
|
+
s3_output_path: Optional[StrPipeVar] = None
|
|
305
|
+
kms_key_id: Optional[StrPipeVar] = None
|
|
306
|
+
compression_type: Optional[StrPipeVar] = None
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
class TensorBoardOutputConfig(shapes.TensorBoardOutputConfig):
|
|
310
|
+
"""TensorBoardOutputConfig.
|
|
311
|
+
|
|
312
|
+
The TensorBoardOutputConfig class is a subclass of ``sagemaker.core.shapes.TensorBoardOutputConfig``
|
|
313
|
+
and allows the user to specify the storage locations for the Amazon SageMaker
|
|
314
|
+
Debugger TensorBoard.
|
|
315
|
+
|
|
316
|
+
Parameters:
|
|
317
|
+
s3_output_path (Optional[StrPipeVar]):
|
|
318
|
+
Path to Amazon S3 storage location for TensorBoard output. If not specified, will
|
|
319
|
+
default to
|
|
320
|
+
``s3://<default_bucket>/<default_prefix>/<base_job_name>/<job_name>/tensorboard-output``
|
|
321
|
+
local_path (Optional[StrPipeVar]):
|
|
322
|
+
Path to local storage location for tensorBoard output. Defaults to /opt/ml/output/tensorboard.
|
|
323
|
+
"""
|
|
324
|
+
|
|
325
|
+
s3_output_path: Optional[StrPipeVar] = None
|
|
326
|
+
local_path: Optional[StrPipeVar] = "/opt/ml/output/tensorboard"
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
class CheckpointConfig(shapes.CheckpointConfig):
|
|
330
|
+
"""CheckpointConfig.
|
|
331
|
+
|
|
332
|
+
The CheckpointConfig class is a subclass of ``sagemaker.core.shapes.CheckpointConfig``
|
|
333
|
+
and allows the user to specify the checkpoint configuration for the training job.
|
|
334
|
+
|
|
335
|
+
Parameters:
|
|
336
|
+
s3_uri (Optional[StrPipeVar]):
|
|
337
|
+
Path to Amazon S3 storage location for the Checkpoint data. If not specified, will
|
|
338
|
+
default to
|
|
339
|
+
``s3://<default_bucket>/<default_prefix>/<base_job_name>/<job_name>/checkpoints``
|
|
340
|
+
local_path (Optional[StrPipeVar]):
|
|
341
|
+
The local directory where checkpoints are written. The default directory is /opt/ml/checkpoints.
|
|
342
|
+
"""
|
|
343
|
+
|
|
344
|
+
s3_uri: Optional[StrPipeVar] = None
|
|
345
|
+
local_path: Optional[StrPipeVar] = "/opt/ml/checkpoints"
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""Constants module."""
|
|
14
|
+
from __future__ import absolute_import
|
|
15
|
+
import os
|
|
16
|
+
|
|
17
|
+
DEFAULT_INSTANCE_TYPE = "ml.m5.xlarge"
|
|
18
|
+
|
|
19
|
+
SM_CODE = "code"
|
|
20
|
+
SM_CODE_CONTAINER_PATH = "/opt/ml/input/data/code"
|
|
21
|
+
|
|
22
|
+
SM_DRIVERS = "sm_drivers"
|
|
23
|
+
SM_DRIVERS_CONTAINER_PATH = "/opt/ml/input/data/sm_drivers"
|
|
24
|
+
SM_DRIVERS_LOCAL_PATH = os.path.join(
|
|
25
|
+
os.path.dirname(os.path.abspath(__file__)), "container_drivers"
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
SOURCE_CODE_JSON = "sourcecode.json"
|
|
29
|
+
DISTRIBUTED_JSON = "distributed.json"
|
|
30
|
+
TRAIN_SCRIPT = "sm_train.sh"
|
|
31
|
+
|
|
32
|
+
DEFAULT_CONTAINER_ENTRYPOINT = ["/bin/bash"]
|
|
33
|
+
DEFAULT_CONTAINER_ARGUMENTS = [
|
|
34
|
+
"-c",
|
|
35
|
+
f"chmod +x {SM_DRIVERS_CONTAINER_PATH}/{TRAIN_SCRIPT} "
|
|
36
|
+
+ f"&& {SM_DRIVERS_CONTAINER_PATH}/{TRAIN_SCRIPT}",
|
|
37
|
+
]
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""Training utilities."""
|
|
14
|
+
from __future__ import absolute_import
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
from typing import Any, Literal
|
|
18
|
+
from sagemaker.core.utils.utils import Unassigned
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def convert_unassigned_to_none(instance) -> Any:
|
|
22
|
+
"""Convert Unassigned values to None for any instance."""
|
|
23
|
+
for name, value in instance.__dict__.items():
|
|
24
|
+
if isinstance(value, Unassigned):
|
|
25
|
+
setattr(instance, name, None)
|
|
26
|
+
return instance
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def _is_valid_path(path: str, path_type: Literal["File", "Directory", "Any"] = "Any") -> bool:
|
|
30
|
+
"""Check if the path is a valid local path.
|
|
31
|
+
|
|
32
|
+
Args:
|
|
33
|
+
path (str): Local path to validate
|
|
34
|
+
path_type (Optional(Literal["File", "Directory", "Any"])): The type of the path to validate.
|
|
35
|
+
Defaults to "Any".
|
|
36
|
+
|
|
37
|
+
Returns:
|
|
38
|
+
bool: True if the path is a valid local path, False otherwise
|
|
39
|
+
"""
|
|
40
|
+
if not os.path.exists(path):
|
|
41
|
+
return False
|
|
42
|
+
|
|
43
|
+
if path_type == "File":
|
|
44
|
+
return os.path.isfile(path)
|
|
45
|
+
if path_type == "Directory":
|
|
46
|
+
return os.path.isdir(path)
|
|
47
|
+
|
|
48
|
+
return path_type == "Any"
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _is_valid_s3_uri(path: str, path_type: Literal["File", "Directory", "Any"] = "Any") -> bool:
|
|
52
|
+
"""Check if the path is a valid S3 URI.
|
|
53
|
+
|
|
54
|
+
This method checks if the path is a valid S3 URI. If the path_type is specified,
|
|
55
|
+
it will also check if the path is a file or a directory.
|
|
56
|
+
This method does not check if the S3 bucket or object exists.
|
|
57
|
+
|
|
58
|
+
Args:
|
|
59
|
+
path (str): S3 URI to validate
|
|
60
|
+
path_type (Optional(Literal["File", "Directory", "Any"])): The type of the path to validate.
|
|
61
|
+
Defaults to "Any".
|
|
62
|
+
|
|
63
|
+
Returns:
|
|
64
|
+
bool: True if the path is a valid S3 URI, False otherwise
|
|
65
|
+
"""
|
|
66
|
+
# Check if the path is a valid S3 URI
|
|
67
|
+
if not path.startswith("s3://"):
|
|
68
|
+
return False
|
|
69
|
+
|
|
70
|
+
if path_type == "File":
|
|
71
|
+
# If it's a file, it should not end with a slash
|
|
72
|
+
return not path.endswith("/")
|
|
73
|
+
if path_type == "Directory":
|
|
74
|
+
# If it's a directory, it should end with a slash
|
|
75
|
+
return path.endswith("/")
|
|
76
|
+
|
|
77
|
+
return path_type == "Any"
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""Training Compiler configuration for SageMaker Python SDK."""
|
|
14
|
+
from __future__ import absolute_import
|
|
15
|
+
|
|
16
|
+
from sagemaker.core.training_compiler.config import TrainingCompilerConfig # noqa: F401
|
|
@@ -0,0 +1,197 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""Configuration for the SageMaker Training Compiler."""
|
|
14
|
+
from __future__ import absolute_import
|
|
15
|
+
import logging
|
|
16
|
+
|
|
17
|
+
from sagemaker.core.workflow import is_pipeline_variable
|
|
18
|
+
|
|
19
|
+
logger = logging.getLogger(__name__)
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class TrainingCompilerConfig(object):
|
|
23
|
+
"""The SageMaker Training Compiler configuration class."""
|
|
24
|
+
|
|
25
|
+
DEBUG_PATH = "/opt/ml/output/data/compiler/"
|
|
26
|
+
SUPPORTED_INSTANCE_CLASS_PREFIXES = ["p3", "p3dn", "g4dn", "p4d", "g5"]
|
|
27
|
+
|
|
28
|
+
HP_ENABLE_COMPILER = "sagemaker_training_compiler_enabled"
|
|
29
|
+
HP_ENABLE_DEBUG = "sagemaker_training_compiler_debug_mode"
|
|
30
|
+
|
|
31
|
+
def __init__(self, enabled=True, debug=False):
|
|
32
|
+
"""This class initializes a ``TrainingCompilerConfig`` instance.
|
|
33
|
+
|
|
34
|
+
`Amazon SageMaker Training Compiler
|
|
35
|
+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html>`_
|
|
36
|
+
is a feature of SageMaker Training
|
|
37
|
+
and speeds up training jobs by optimizing model execution graphs.
|
|
38
|
+
|
|
39
|
+
You can compile Hugging Face models
|
|
40
|
+
by passing the object of this configuration class to the ``compiler_config``
|
|
41
|
+
parameter of the :class:`~sagemaker.huggingface.HuggingFace`
|
|
42
|
+
estimator.
|
|
43
|
+
|
|
44
|
+
Args:
|
|
45
|
+
enabled (bool): Optional. Switch to enable SageMaker Training Compiler.
|
|
46
|
+
The default is ``True``.
|
|
47
|
+
debug (bool): Optional. Whether to dump detailed logs for debugging.
|
|
48
|
+
This comes with a potential performance slowdown.
|
|
49
|
+
The default is ``False``.
|
|
50
|
+
|
|
51
|
+
**Example**: The following code shows the basic usage of the
|
|
52
|
+
:class:`sagemaker.huggingface.TrainingCompilerConfig()` class
|
|
53
|
+
to run a HuggingFace training job with the compiler.
|
|
54
|
+
|
|
55
|
+
.. code-block:: python
|
|
56
|
+
|
|
57
|
+
from sagemaker.huggingface import HuggingFace, TrainingCompilerConfig
|
|
58
|
+
|
|
59
|
+
huggingface_estimator=HuggingFace(
|
|
60
|
+
...
|
|
61
|
+
compiler_config=TrainingCompilerConfig()
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
.. seealso::
|
|
65
|
+
|
|
66
|
+
For more information about how to enable SageMaker Training Compiler
|
|
67
|
+
for various training settings such as using TensorFlow-based models,
|
|
68
|
+
PyTorch-based models, and distributed training,
|
|
69
|
+
see `Enable SageMaker Training Compiler
|
|
70
|
+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-enable.html>`_
|
|
71
|
+
in the `Amazon SageMaker Training Compiler developer guide
|
|
72
|
+
<https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler.html>`_.
|
|
73
|
+
|
|
74
|
+
"""
|
|
75
|
+
|
|
76
|
+
self.enabled = enabled
|
|
77
|
+
self.debug = debug
|
|
78
|
+
|
|
79
|
+
self.disclaimers_and_warnings()
|
|
80
|
+
|
|
81
|
+
def __nonzero__(self):
|
|
82
|
+
"""Evaluates to 0 if SM Training Compiler is disabled."""
|
|
83
|
+
return self.enabled
|
|
84
|
+
|
|
85
|
+
def disclaimers_and_warnings(self):
|
|
86
|
+
"""Disclaimers and warnings.
|
|
87
|
+
|
|
88
|
+
Logs disclaimers and warnings about the
|
|
89
|
+
requested configuration of SageMaker Training Compiler.
|
|
90
|
+
|
|
91
|
+
"""
|
|
92
|
+
|
|
93
|
+
if self.enabled and self.debug:
|
|
94
|
+
logger.warning(
|
|
95
|
+
"Debugging is enabled."
|
|
96
|
+
"This will dump detailed logs from compilation to %s"
|
|
97
|
+
"This might impair training performance.",
|
|
98
|
+
self.DEBUG_PATH,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
def _to_hyperparameter_dict(self):
|
|
102
|
+
"""Converts configuration object into hyperparameters.
|
|
103
|
+
|
|
104
|
+
Returns:
|
|
105
|
+
dict: A portion of the hyperparameters passed to the training job as a dictionary.
|
|
106
|
+
|
|
107
|
+
"""
|
|
108
|
+
|
|
109
|
+
compiler_config_hyperparameters = {
|
|
110
|
+
self.HP_ENABLE_COMPILER: self.enabled,
|
|
111
|
+
self.HP_ENABLE_DEBUG: self.debug,
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
return compiler_config_hyperparameters
|
|
115
|
+
|
|
116
|
+
@classmethod
|
|
117
|
+
def validate(cls, estimator):
|
|
118
|
+
"""Checks if SageMaker Training Compiler is configured correctly.
|
|
119
|
+
|
|
120
|
+
Args:
|
|
121
|
+
estimator (:class:`sagemaker.estimator.Estimator`): An estimator object.
|
|
122
|
+
When SageMaker Training Compiler is enabled, it validates if
|
|
123
|
+
the estimator is configured to be compatible with Training Compiler.
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
Raises:
|
|
127
|
+
ValueError: Raised if the requested configuration is not compatible
|
|
128
|
+
with SageMaker Training Compiler.
|
|
129
|
+
"""
|
|
130
|
+
if is_pipeline_variable(estimator.instance_type):
|
|
131
|
+
warn_msg = (
|
|
132
|
+
"Estimator instance_type is a PipelineVariable (%s), "
|
|
133
|
+
"which has to be interpreted as one of the "
|
|
134
|
+
"%s classes in execution time."
|
|
135
|
+
)
|
|
136
|
+
logger.warning(
|
|
137
|
+
warn_msg,
|
|
138
|
+
type(estimator.instance_type),
|
|
139
|
+
str(cls.SUPPORTED_INSTANCE_CLASS_PREFIXES).replace(",", ""),
|
|
140
|
+
)
|
|
141
|
+
elif estimator.instance_type:
|
|
142
|
+
if "local" not in estimator.instance_type:
|
|
143
|
+
requested_instance_class = estimator.instance_type.split(".")[
|
|
144
|
+
1
|
|
145
|
+
] # Expecting ml.class.size
|
|
146
|
+
if not any(
|
|
147
|
+
[requested_instance_class == i for i in cls.SUPPORTED_INSTANCE_CLASS_PREFIXES]
|
|
148
|
+
):
|
|
149
|
+
error_helper_string = (
|
|
150
|
+
"Unsupported Instance class {}."
|
|
151
|
+
"SageMaker Training Compiler only supports {}"
|
|
152
|
+
)
|
|
153
|
+
error_helper_string = error_helper_string.format(
|
|
154
|
+
requested_instance_class, cls.SUPPORTED_INSTANCE_CLASS_PREFIXES
|
|
155
|
+
)
|
|
156
|
+
raise ValueError(error_helper_string)
|
|
157
|
+
elif estimator.instance_type == "local":
|
|
158
|
+
error_helper_string = (
|
|
159
|
+
"SageMaker Training Compiler doesn't support local mode."
|
|
160
|
+
"It only supports the following GPU instances: {}"
|
|
161
|
+
)
|
|
162
|
+
error_helper_string = error_helper_string.format(
|
|
163
|
+
cls.SUPPORTED_INSTANCE_CLASS_PREFIXES
|
|
164
|
+
)
|
|
165
|
+
raise ValueError(error_helper_string)
|
|
166
|
+
|
|
167
|
+
if estimator.distribution and "smdistributed" in estimator.distribution:
|
|
168
|
+
raise ValueError(
|
|
169
|
+
"SageMaker distributed training configuration is currently not compatible with "
|
|
170
|
+
"SageMaker Training Compiler."
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
if estimator.debugger_hook_config or (not estimator.disable_profiler):
|
|
174
|
+
helper_string = (
|
|
175
|
+
"Using Debugger and/or Profiler with SageMaker Training Compiler "
|
|
176
|
+
"might add recompilation overhead and degrade"
|
|
177
|
+
"performance. Found debugger_hook_config={} "
|
|
178
|
+
"disable_profiler={}. Please set "
|
|
179
|
+
"debugger_hook_config=None and disable_profiler=True for optimal "
|
|
180
|
+
"performance. For more information, see Training Compiler "
|
|
181
|
+
"Performance Considerations "
|
|
182
|
+
"(https://docs.aws.amazon.com/sagemaker/latest/dg/training-compiler-tips-pitfalls.html"
|
|
183
|
+
"#training-compiler-tips-pitfalls-considerations)."
|
|
184
|
+
)
|
|
185
|
+
helper_string = helper_string.format(
|
|
186
|
+
estimator.debugger_hook_config, estimator.disable_profiler
|
|
187
|
+
)
|
|
188
|
+
logger.warning(helper_string)
|
|
189
|
+
|
|
190
|
+
if estimator.instance_groups:
|
|
191
|
+
raise ValueError(
|
|
192
|
+
"SageMaker Training Compiler currently only supports homogeneous clusters of "
|
|
193
|
+
"the following GPU instance families: {}. Please use the 'instance_type' "
|
|
194
|
+
"and 'instance_count' parameters instead of 'instance_groups'".format(
|
|
195
|
+
cls.SUPPORTED_INSTANCE_CLASS_PREFIXES
|
|
196
|
+
)
|
|
197
|
+
)
|