rxnn 0.2.66__py3-none-any.whl → 0.2.68__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -33,7 +33,7 @@ rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
|
|
33
33
|
rxnn/transformers/positional.py,sha256=1PjcJybUzeQlIKJI4tahAGZcYgCRCL0otxs7mpsNuzM,4410
|
34
34
|
rxnn/transformers/sampler.py,sha256=t6iiQTdLQ0TakUWnnhKkb5DKF2F_9-thXHBydDF3fxg,17389
|
35
35
|
rxnn/utils.py,sha256=ihb6OTyDtPiocB_lOvnq7eOkjjpCkgs8wxvXUBNQ7mM,996
|
36
|
-
rxnn-0.2.
|
37
|
-
rxnn-0.2.
|
38
|
-
rxnn-0.2.
|
39
|
-
rxnn-0.2.
|
36
|
+
rxnn-0.2.68.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
|
37
|
+
rxnn-0.2.68.dist-info/METADATA,sha256=w7AYGnPAW9xy8DMmcueWdfoV1oQxqOVVDcRxlvA8gWQ,60420
|
38
|
+
rxnn-0.2.68.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
39
|
+
rxnn-0.2.68.dist-info/RECORD,,
|
rxnn-0.2.66.dist-info/METADATA
DELETED
@@ -1,448 +0,0 @@
|
|
1
|
-
Metadata-Version: 2.3
|
2
|
-
Name: rxnn
|
3
|
-
Version: 0.2.66
|
4
|
-
Summary: RxNN: Reactive Neural Networks Platform
|
5
|
-
License: Apache-2.0
|
6
|
-
Keywords: deep-learning,ai,machine-learning
|
7
|
-
Author: Adam Filipek
|
8
|
-
Author-email: adamfilipek@rxai.dev
|
9
|
-
Requires-Python: >=3.10
|
10
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
11
|
-
Classifier: Programming Language :: Python :: 3
|
12
|
-
Classifier: Programming Language :: Python :: 3.10
|
13
|
-
Classifier: Programming Language :: Python :: 3.11
|
14
|
-
Classifier: Programming Language :: Python :: 3.12
|
15
|
-
Classifier: Programming Language :: Python :: 3.13
|
16
|
-
Requires-Dist: datasets (>=3.5.0,<4.0.0)
|
17
|
-
Requires-Dist: huggingface-hub (>=0.30.0,<0.31.0)
|
18
|
-
Requires-Dist: nltk (>=3.9.1,<4.0.0)
|
19
|
-
Requires-Dist: tensorboard (>=2.19.0,<3.0.0)
|
20
|
-
Requires-Dist: tokenizers (>=0.21.0,<0.22.0)
|
21
|
-
Requires-Dist: torch (>=2.6.0,<3.0.0)
|
22
|
-
Requires-Dist: transformers (>=4.51.0,<5.0.0)
|
23
|
-
Project-URL: Homepage, https://rxai.dev/rxnn
|
24
|
-
Project-URL: Repository, https://github.com/RxAI-dev/rxnn/python
|
25
|
-
Description-Content-Type: text/markdown
|
26
|
-
|
27
|
-
<span>
|
28
|
-
<img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxai_v2.png" width="400" />
|
29
|
-
<img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxnn_v2.png" width="400" />
|
30
|
-
</span>
|
31
|
-
|
32
|
-
# Reactive AI - RxNN
|
33
|
-
## Reactive Neural Networks Platform
|
34
|
-
|
35
|
-
RxNN is AI/Deep Learning development platform made for Reactive Neural Networks and Event-driven AI, introduced by Reactive AI.
|
36
|
-
|
37
|
-
## Reactive Neural Networks and Event-driven AI
|
38
|
-
Reactive neural networks (RxNN) are a new family of memory-augmented neural networks that combine classical deep learning
|
39
|
-
algorithms with reactive communication patterns. In Event-driven AI, input data (sequence) is treated as event, and memory
|
40
|
-
state has to be kept between events/interactions. Technically, it's a specific kind of RNN that's storing data between
|
41
|
-
processed sequences, instead of between sequence elements like in regular RNN. Then, their recurrence is on a higher level.
|
42
|
-
In the case of reactive communication patterns, RxRNNs are stateful reactive data sources that you have to connect before
|
43
|
-
you can send and receive messages.
|
44
|
-
While RxNNs are using some RNN concepts, they are rather made to extend Transformer language/multi-modal models. In our
|
45
|
-
opinion, the biggest downside of current LLMs is their stateless nature - conversational models have to process full chat
|
46
|
-
history on every interaction! That's not real-time processing, and it's not how human's awareness is working. In RxNN based
|
47
|
-
transformers, model is processing single messages, while all the previous interactions history should be saved and read
|
48
|
-
from memory. That features are required for **Weak** Reactive Neural Networks specification, and it will be the first major
|
49
|
-
step in transition from language models to awareness models - in Reactive AI ecosystem, it will be introduced in Reactive
|
50
|
-
Transformer architecture.
|
51
|
-
|
52
|
-
Additionally, to achieve awareness, **Strong** Reactive Neural Networks are working in reactive infinite reasoning loop,
|
53
|
-
that's generating Infinite Chain-of-Thoughts and is communicating in push-based mode (model decides if and when return output).
|
54
|
-
|
55
|
-
Reactive communication patterns in RxNN models are adapted to handle asynchronous nature of model - after it finish generating
|
56
|
-
sequence, it has to process it and save it in memory, but it could be done in background.
|
57
|
-
|
58
|
-
## Release plan
|
59
|
-
We are working on three new reactive architectures, that progressively advance from language models to awareness models:
|
60
|
-
- Reactive Transformer: Reactive Language Model (RLM) with Short-Term Memory
|
61
|
-
- Preactor: extending Reactive Transformer with additional Long-Term Memory, providing theoretically infinite context (only
|
62
|
-
single message length is limited) and the ability to learn from interactions (Live Learning)
|
63
|
-
- Reactor: AGI awareness model & Strong Reactive Neural Network, that's working in infinite reasoning loop and doesn't require explicit human commands
|
64
|
-
|
65
|
-
Each new architecture is based on the previous one and adding new features/abilities. They will be progressively
|
66
|
-
released with next versions of **RxNN** framework:
|
67
|
-
- 0.1.x (Released): Reactive Transformer base models, Base Model Learning (pre-training/fine-tuning) & Transformers extensions (MoE Attention, Short-Term Memory, etc.)
|
68
|
-
- 0.2.x (Released): Memory Reinforcement Learning (MRL) for Short-Term Memory & Reactive Transformer, Attention-based Memory System details
|
69
|
-
- 0.3.x: Reinforcement Learning from Human Feedback for Reactive models (RxRLHF), basic Tensor Reactive
|
70
|
-
Extensions (TRX/Rust) for full Reactive Transformer, RxT-Alpha release (+following models - RxT-Beta, etc.)
|
71
|
-
- 0.4.x: Preactor base models, Tensor Database (TDB/Rust) for Long-Term Memory, mxRAG/revRAG subsystems
|
72
|
-
- 0.5.x: MRL for Long-Term Memory & Preactor, Live Learning for Preactor, PRx-Alpha release (+following models - PRx-Beta, etc.)
|
73
|
-
- 0.6.x: Reactor base models, TRX full implementation, Receptors & Effectors Reactive RNNs
|
74
|
-
- 0.7.x: Behavioral Reinforcement Learning (BRL) for Reactor's Infinite Chain-of-Thoughts, Continuous Live Learning for Reactor
|
75
|
-
- 0.8.x: Rx-Alpha release
|
76
|
-
- 0.9.x: Rx-Beta release
|
77
|
-
- 1.0.0: Reactor AGI official release (Expert, Assistant & Utility class models)
|
78
|
-
- 1.x.x: Multimodal reactive models (could be released earlier, depending on progress)
|
79
|
-
- 2.0.0: Real-Time Vision Reactor - Worker class models
|
80
|
-
- x.x.x: ...and more!
|
81
|
-
|
82
|
-
## Usage
|
83
|
-
**RxNN** is made to train models based on reactive architectures, as well as transformer language models. Current version
|
84
|
-
is based on PyTorch and HuggingFace libraries (Transformers/Datasets/Tokenizer/Hub), and is integrated with [HuggingFace Hub](https://hugginface.co)
|
85
|
-
and [TensorBoard](https://github.com/tensorflow/tensorboard).
|
86
|
-
|
87
|
-
> We are also planning a version for **TensorFlow**, more info soon
|
88
|
-
|
89
|
-
### Install library and dependencies
|
90
|
-
- RxNN and required deps: `pip install rxnn torch transformers tokenizers huggingface_hub`
|
91
|
-
- Datasets are required only for training: `pip install datasets`
|
92
|
-
- TensorBoard is optional: `pip install tensorboard`
|
93
|
-
- [Flash Attention](https://github.com/Dao-AILab/flash-attention) is recommended for faster training/inference (required for models with explicit `use_flash_attention=True`) - check its separate [installation guide](#installing-flash-attention)
|
94
|
-
- **NumPy** should be installed too: `pip install numpy`
|
95
|
-
|
96
|
-
> ### Installing Flash Attention
|
97
|
-
> Installing `flash-attn` could be very frustrating and may take hours (with standard method), only to result in some incompatibility
|
98
|
-
> error. Fortunately, the prebuilt versions could be downloaded from GitHub and installed just in seconds. However, you should choose
|
99
|
-
> the compatible version based on:
|
100
|
-
> - Python version
|
101
|
-
> - CUDA version
|
102
|
-
> - PyTorch version (2.7 is currently not supported)
|
103
|
-
> - ABI
|
104
|
-
>
|
105
|
-
> #### Steps
|
106
|
-
> 1. Choose your version from [https://github.com/Dao-AILab/flash-attention/releases](https://github.com/Dao-AILab/flash-attention/releases)
|
107
|
-
> 2. Download prebuilt release, in example: `wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
|
108
|
-
> 3. Install it, in example: `pip install --no-dependencies --upgrade flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
|
109
|
-
> 4. Verify: `flash_attn.__version__` (an incorrect version will cause the error when importing)
|
110
|
-
>
|
111
|
-
> #### Note on `use_flash_attention` option in models/layers
|
112
|
-
> Explicit `use_flash_attention` option is made to enable direct calls to `flash_attn_func` without using **PyTorch** `scaled_dot_product_attention`. Even
|
113
|
-
> if it's set to `False`, when `flash-attn` library is installed, **PyTorch** will try to use it implicitly through _SDPA backend_. It's better to set it
|
114
|
-
> to `False` and use automatically, because of better compatibility. Explicit options could be used for research
|
115
|
-
|
116
|
-
### Modules
|
117
|
-
**RxNN** framework has multiple modules with models, layers, training and inference tools, made for complete development
|
118
|
-
of _reactive models_, and could be also used for regular **Transformers**.
|
119
|
-
|
120
|
-
#### Transformers
|
121
|
-
Transformers module includes classes for models and layers. It includes **Reactive Transformers** as well as **Classic Transformers**
|
122
|
-
|
123
|
-
Submodules:
|
124
|
-
- `rxnn.transformers.attention` - basic, most common attention layers - `MultiHeadAttention`, `GroupedQueryAttention` and `MultiQueryAttention`
|
125
|
-
- additional attention layers, especially `SparseQueryAttention` could be found in `rxnn.experimental.attention` module
|
126
|
-
- `SparseQueryAttention` will be moved to `rxnn.transformers.attention` in 0.2.x version
|
127
|
-
- `rxnn.transformers.positional` - positional encoding layers - `RotaryPositionalEmbedding` and legacy ones - `AbsolutePositionalEmbedding`/`RelativePositionalEmbedding`
|
128
|
-
- `rxnn.transformers.ff` - dense feed forward layers, including gated layers (_SwiGLU_, etc.) - `FeedForward` & `GatedFeedForward` (recommended)
|
129
|
-
- `rxnn.transformers.moe` - Mixture-of-Experts feed forward layers - `MoeFeedForward` & `GatedMoeFeedForward` (recommended)
|
130
|
-
- `rxnn.transformer.layers` - complete reactive/classic transformer layers - `ReactiveTransformerLayer` & `ClassicTransformerLayer`
|
131
|
-
- `rxnn.transformer.models` - reactive/classic transformer models - `ReactiveTransformerEncoder`, `ReactiveTransformerDecoder` & `ClassicTransformerEncoder`, `ClassicTransformerDecoder`
|
132
|
-
- `rxnn.transformer.sampler` - samplers for reactive models (Sampler is the integral part of reactive architectures) - `Sampler`, `SampleDecoder`, `BatchSampler` & `BatchSampleDecoder`
|
133
|
-
|
134
|
-
In **RxNN** models are initialized in declarative style by class composition, but then they are wrapped in imperative classes,
|
135
|
-
to be compatible with HuggingFace **JSON** config. In example:
|
136
|
-
|
137
|
-
```python
|
138
|
-
from typing import TypedDict
|
139
|
-
import torch
|
140
|
-
import torch.nn as nn
|
141
|
-
from huggingface_hub import PyTorchModelHubMixin
|
142
|
-
from rxnn.transformers.attention import GroupedQueryAttention
|
143
|
-
from rxnn.transformers.positional import RotaryPositionalEmbedding
|
144
|
-
from rxnn.transformers.layers import ReactiveTransformerLayer
|
145
|
-
from rxnn.transformers.models import ReactiveTransformerDecoder
|
146
|
-
from rxnn.memory.stm import ShortTermMemory
|
147
|
-
|
148
|
-
class YourReactiveTransformerConfig(TypedDict):
|
149
|
-
num_layers: int
|
150
|
-
vocab_size: int
|
151
|
-
embed_dim: int
|
152
|
-
ff_dim: int
|
153
|
-
att_heads: int
|
154
|
-
seq_len: int
|
155
|
-
stm_size: int
|
156
|
-
att_groups: int
|
157
|
-
cross_att_groups: int
|
158
|
-
|
159
|
-
|
160
|
-
class YourReactiveTransformerDecoder(nn.Module, PyTorchModelHubMixin):
|
161
|
-
def __init__(
|
162
|
-
self,
|
163
|
-
config: YourReactiveTransformerConfig,
|
164
|
-
**kwargs
|
165
|
-
):
|
166
|
-
super(YourReactiveTransformerDecoder, self).__init__(**kwargs)
|
167
|
-
|
168
|
-
embedding = nn.Embedding(config['vocab_size'], config['embed_dim'])
|
169
|
-
rope = RotaryPositionalEmbedding(config['embed_dim'] // config['att_heads'], config['seq_len'])
|
170
|
-
stm = ShortTermMemory(config['num_layers'], config['embed_dim'], config['stm_size'])
|
171
|
-
|
172
|
-
self.model = ReactiveTransformerDecoder(
|
173
|
-
stm=stm,
|
174
|
-
embedding=embedding,
|
175
|
-
own_layers=nn.ModuleList([
|
176
|
-
ReactiveTransformerLayer(
|
177
|
-
config['embed_dim'],
|
178
|
-
config['ff_dim'],
|
179
|
-
use_gated=True,
|
180
|
-
use_moe=False,
|
181
|
-
ff_activation=nn.GELU(),
|
182
|
-
ff_dropout=0.1,
|
183
|
-
use_rms_norm=True,
|
184
|
-
self_attention=GroupedQueryAttention(
|
185
|
-
config['embed_dim'],
|
186
|
-
config['att_heads'],
|
187
|
-
config['att_groups'],
|
188
|
-
rope=rope,
|
189
|
-
dropout=0.1,
|
190
|
-
max_seq_len=config['seq_len'],
|
191
|
-
is_causal=True,
|
192
|
-
),
|
193
|
-
memory_cross_attention=GroupedQueryAttention(
|
194
|
-
config['embed_dim'],
|
195
|
-
config['att_heads'],
|
196
|
-
config['att_groups'],
|
197
|
-
rope=rope,
|
198
|
-
dropout=0.1,
|
199
|
-
max_seq_len=config['seq_len'],
|
200
|
-
is_causal=True,
|
201
|
-
rope_only_for_query=True
|
202
|
-
),
|
203
|
-
) for _ in range(config['num_layers'])
|
204
|
-
])
|
205
|
-
)
|
206
|
-
|
207
|
-
def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None):
|
208
|
-
return self.model(x, attention_mask=attention_mask)
|
209
|
-
```
|
210
|
-
|
211
|
-
#### Memory
|
212
|
-
The _memory_ module includes **Short-Term Memory** and layers responsible for its update. In future versions it will also
|
213
|
-
include **Long-Term Memory**.
|
214
|
-
|
215
|
-
The main `ShortTermMemory` class is located in `rxnn.memory.stm` module - the usage example is in Transformers module description.
|
216
|
-
|
217
|
-
> 0.2.x Memory modules docs in progress - will be released soon
|
218
|
-
|
219
|
-
#### Training
|
220
|
-
Training module includes **Trainers** for different training stages of reactive models and shared training utils.
|
221
|
-
|
222
|
-
Submodules:
|
223
|
-
- `rxnn.training.tokenizer` - custom Trainer for **HuggingFace** `tokenizers` and utils to load tokenizer from Hub
|
224
|
-
- Tokenizer could be loaded from Hub with `load_tokenizer_from_hf_hub(repo_id)`
|
225
|
-
- `rxnn.training.dataset` - datasets for different training stages:
|
226
|
-
- `MaskedLMDataset` & `AutoregressiveLMDataset` are made for base models pre-training
|
227
|
-
- `EncoderSftDataset` & `DecoderSftDataset` are made for Interaction Supervised Fine-Tuning for reactive models
|
228
|
-
- `MrlCurriculumDataset` is the dataset for single MRL Curriculum step
|
229
|
-
- `MrlDatasets` is wrapping MRL datasets for all curriculum steps
|
230
|
-
- each dataset has `from_hf_hub` class method to load dataset from Hub
|
231
|
-
- they have also `concat_from_hf_hub` class method to load multiple Hub datasets into single training dataset
|
232
|
-
- if dataset has no validation/test split, each dataset has `get_subset(subset_size, from_start=False)` method - it
|
233
|
-
returns new subset and modifying existing one - i.e. `valid_dataset = train_dataset.get_subset(0.1)`
|
234
|
-
- for concatenated datasets, validation/test split could be created with `concat_from_hf_hub_with_subset` - it cuts the
|
235
|
-
same percentage of each loaded dataset
|
236
|
-
- `rxnn.training.callbacks` contain Trainer callbacks, for different kind of utils (more info below)
|
237
|
-
- `rxnn.training.scheduler` includes learning rate scheduler for training
|
238
|
-
- `rxnn.training.bml` - Base Model Learning module with Trainers for pre-training and fine-tuning
|
239
|
-
- `rxnn.training.mrl` - Memory Reinforcement Learning module with Trainers for MRL
|
240
|
-
- `rxnn.training.rxrlhf` - Reinforcement Learning from Human Feedback for Reactive Models module (from 0.3.x)
|
241
|
-
- `rxnn.training.brl` - Behavioral Reinforcement Learning module (Reactor / from 0.7.x)
|
242
|
-
|
243
|
-
##### Base Model Learning
|
244
|
-
Docs in progress
|
245
|
-
|
246
|
-
|
247
|
-
Apache License
|
248
|
-
Version 2.0, January 2004
|
249
|
-
http://www.apache.org/licenses/
|
250
|
-
|
251
|
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
252
|
-
|
253
|
-
1. Definitions.
|
254
|
-
|
255
|
-
"License" shall mean the terms and conditions for use, reproduction,
|
256
|
-
and distribution as defined by Sections 1 through 9 of this document.
|
257
|
-
|
258
|
-
"Licensor" shall mean the copyright owner or entity authorized by
|
259
|
-
the copyright owner that is granting the License.
|
260
|
-
|
261
|
-
"Legal Entity" shall mean the union of the acting entity and all
|
262
|
-
other entities that control, are controlled by, or are under common
|
263
|
-
control with that entity. For the purposes of this definition,
|
264
|
-
"control" means (i) the power, direct or indirect, to cause the
|
265
|
-
direction or management of such entity, whether by contract or
|
266
|
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
267
|
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
268
|
-
|
269
|
-
"You" (or "Your") shall mean an individual or Legal Entity
|
270
|
-
exercising permissions granted by this License.
|
271
|
-
|
272
|
-
"Source" form shall mean the preferred form for making modifications,
|
273
|
-
including but not limited to software source code, documentation
|
274
|
-
source, and configuration files.
|
275
|
-
|
276
|
-
"Object" form shall mean any form resulting from mechanical
|
277
|
-
transformation or translation of a Source form, including but
|
278
|
-
not limited to compiled object code, generated documentation,
|
279
|
-
and conversions to other media types.
|
280
|
-
|
281
|
-
"Work" shall mean the work of authorship, whether in Source or
|
282
|
-
Object form, made available under the License, as indicated by a
|
283
|
-
notice that is included in or attached to the work
|
284
|
-
(an example is provided in the Appendix below).
|
285
|
-
|
286
|
-
"Derivative Works" shall mean any work, whether in Source or Object
|
287
|
-
form, that is based on (or derived from) the Work and for which the
|
288
|
-
editorial revisions, annotations, elaborations, or other modifications
|
289
|
-
represent, as a whole, an original work of authorship. For the purposes
|
290
|
-
of this License, Derivative Works shall not include works that remain
|
291
|
-
separable from, or merely link (or bind by name) to the interfaces of,
|
292
|
-
the Work and Derivative Works thereof.
|
293
|
-
|
294
|
-
"Contribution" shall mean any work of authorship, including
|
295
|
-
the original version of the Work and any modifications or additions
|
296
|
-
to that Work or Derivative Works thereof, that is intentionally
|
297
|
-
submitted to Licensor for inclusion in the Work by the owner
|
298
|
-
or by an individual or Legal Entity authorized to submit on behalf of
|
299
|
-
the owner. For the purposes of this definition, "submitted"
|
300
|
-
means any form of electronic, verbal, or written communication sent
|
301
|
-
to the Licensor or its representatives, including but not limited to
|
302
|
-
communication on electronic mailing lists, source code control systems,
|
303
|
-
and issue tracking systems that are managed by, or on behalf of, the
|
304
|
-
Licensor for the purpose of discussing and improving the Work, but
|
305
|
-
excluding communication that is conspicuously marked or otherwise
|
306
|
-
designated in writing by the owner as "Not a Contribution."
|
307
|
-
|
308
|
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
309
|
-
on behalf of whom a Contribution has been received by Licensor and
|
310
|
-
subsequently incorporated within the Work.
|
311
|
-
|
312
|
-
2. Grant of License. Subject to the terms and conditions of
|
313
|
-
this License, each Contributor hereby grants to You a perpetual,
|
314
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
315
|
-
license to reproduce, prepare Derivative Works of,
|
316
|
-
publicly display, publicly perform, sublicense, and distribute the
|
317
|
-
Work and such Derivative Works in Source or Object form.
|
318
|
-
|
319
|
-
3. Grant of Patent License. Subject to the terms and conditions of
|
320
|
-
this License, each Contributor hereby grants to You a perpetual,
|
321
|
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
322
|
-
(except as stated in this section) patent license to make, have made,
|
323
|
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
324
|
-
where such license applies only to those patent claims licensable
|
325
|
-
by such Contributor that are necessarily infringed by their
|
326
|
-
Contribution(s) alone or by combination of their Contribution(s)
|
327
|
-
with the Work to which such Contribution(s) was submitted. If You
|
328
|
-
institute patent litigation against any entity (including a
|
329
|
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
330
|
-
or a Contribution incorporated within the Work constitutes direct
|
331
|
-
or contributory patent infringement, then any patent licenses
|
332
|
-
granted to You under this License for that Work shall terminate
|
333
|
-
as of the date such litigation is filed.
|
334
|
-
|
335
|
-
4. Redistribution. You may reproduce and distribute copies of the
|
336
|
-
Work or Derivative Works thereof in any medium, with or without
|
337
|
-
modifications, and in Source or Object form, provided that You
|
338
|
-
meet the following conditions:
|
339
|
-
|
340
|
-
(a) You must give any other recipients of the Work or
|
341
|
-
Derivative Works a copy of this License; and
|
342
|
-
|
343
|
-
(b) You must cause any modified files to carry prominent notices
|
344
|
-
stating that You changed the files; and
|
345
|
-
|
346
|
-
(c) You must retain, in the Source form of any Derivative Works
|
347
|
-
that You distribute, all , patent, trademark, and
|
348
|
-
attribution notices from the Source form of the Work,
|
349
|
-
excluding those notices that do not pertain to any part of
|
350
|
-
the Derivative Works; and
|
351
|
-
|
352
|
-
(d) If the Work includes a "NOTICE" text file as part of its
|
353
|
-
distribution, then any Derivative Works that You distribute must
|
354
|
-
include a readable copy of the attribution notices contained
|
355
|
-
within such NOTICE file, excluding those notices that do not
|
356
|
-
pertain to any part of the Derivative Works, in at least one
|
357
|
-
of the following places: within a NOTICE text file distributed
|
358
|
-
as part of the Derivative Works; within the Source form or
|
359
|
-
documentation, if provided along with the Derivative Works; or,
|
360
|
-
within a display generated by the Derivative Works, if and
|
361
|
-
wherever such third-party notices normally appear. The contents
|
362
|
-
of the NOTICE file are for informational purposes only and
|
363
|
-
do not modify the License. You may add Your own attribution
|
364
|
-
notices within Derivative Works that You distribute, alongside
|
365
|
-
or as an addendum to the NOTICE text from the Work, provided
|
366
|
-
that such additional attribution notices cannot be construed
|
367
|
-
as modifying the License.
|
368
|
-
|
369
|
-
You may add Your own statement to Your modifications and
|
370
|
-
may provide additional or different license terms and conditions
|
371
|
-
for use, reproduction, or distribution of Your modifications, or
|
372
|
-
for any such Derivative Works as a whole, provided Your use,
|
373
|
-
reproduction, and distribution of the Work otherwise complies with
|
374
|
-
the conditions stated in this License.
|
375
|
-
|
376
|
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
377
|
-
any Contribution intentionally submitted for inclusion in the Work
|
378
|
-
by You to the Licensor shall be under the terms and conditions of
|
379
|
-
this License, without any additional terms or conditions.
|
380
|
-
Notwithstanding the above, nothing herein shall supersede or modify
|
381
|
-
the terms of any separate license agreement you may have executed
|
382
|
-
with Licensor regarding such Contributions.
|
383
|
-
|
384
|
-
6. Trademarks. This License does not grant permission to use the trade
|
385
|
-
names, trademarks, service marks, or product names of the Licensor,
|
386
|
-
except as required for reasonable and customary use in describing the
|
387
|
-
origin of the Work and reproducing the content of the NOTICE file.
|
388
|
-
|
389
|
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
390
|
-
agreed to in writing, Licensor provides the Work (and each
|
391
|
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
392
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
393
|
-
implied, including, without limitation, any warranties or conditions
|
394
|
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
395
|
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
396
|
-
appropriateness of using or redistributing the Work and assume any
|
397
|
-
risks associated with Your exercise of permissions under this License.
|
398
|
-
|
399
|
-
8. Limitation of Liability. In no event and under no legal theory,
|
400
|
-
whether in tort (including negligence), contract, or otherwise,
|
401
|
-
unless required by applicable law (such as deliberate and grossly
|
402
|
-
negligent acts) or agreed to in writing, shall any Contributor be
|
403
|
-
liable to You for damages, including any direct, indirect, special,
|
404
|
-
incidental, or consequential damages of any character arising as a
|
405
|
-
result of this License or out of the use or inability to use the
|
406
|
-
Work (including but not limited to damages for loss of goodwill,
|
407
|
-
work stoppage, computer failure or malfunction, or any and all
|
408
|
-
other commercial damages or losses), even if such Contributor
|
409
|
-
has been advised of the possibility of such damages.
|
410
|
-
|
411
|
-
9. Accepting Warranty or Additional Liability. While redistributing
|
412
|
-
the Work or Derivative Works thereof, You may choose to offer,
|
413
|
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
414
|
-
or other liability obligations and/or rights consistent with this
|
415
|
-
License. However, in accepting such obligations, You may act only
|
416
|
-
on Your own behalf and on Your sole responsibility, not on behalf
|
417
|
-
of any other Contributor, and only if You agree to indemnify,
|
418
|
-
defend, and hold each Contributor harmless for any liability
|
419
|
-
incurred by, or claims asserted against, such Contributor by reason
|
420
|
-
of your accepting any such warranty or additional liability.
|
421
|
-
|
422
|
-
END OF TERMS AND CONDITIONS
|
423
|
-
|
424
|
-
APPENDIX: How to apply the Apache License to your work.
|
425
|
-
|
426
|
-
To apply the Apache License to your work, attach the following
|
427
|
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
428
|
-
replaced with your own identifying information. (Don't include
|
429
|
-
the brackets!) The text should be enclosed in the appropriate
|
430
|
-
comment syntax for the file format. We also recommend that a
|
431
|
-
file or class name and description of purpose be included on the
|
432
|
-
same "printed page" as the copyright notice for easier
|
433
|
-
identification within third-party archives.
|
434
|
-
|
435
|
-
Copyright 2024-2025 Adam Filipek
|
436
|
-
|
437
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
438
|
-
you may not use this file except in compliance with the License.
|
439
|
-
You may obtain a copy of the License at
|
440
|
-
|
441
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
442
|
-
|
443
|
-
Unless required by applicable law or agreed to in writing, software
|
444
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
445
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
446
|
-
See the License for the specific language governing permissions and
|
447
|
-
limitations under the License.
|
448
|
-
|
File without changes
|
File without changes
|