rxnn 0.2.66__py3-none-any.whl → 0.2.68__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -33,7 +33,7 @@ rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
33
33
  rxnn/transformers/positional.py,sha256=1PjcJybUzeQlIKJI4tahAGZcYgCRCL0otxs7mpsNuzM,4410
34
34
  rxnn/transformers/sampler.py,sha256=t6iiQTdLQ0TakUWnnhKkb5DKF2F_9-thXHBydDF3fxg,17389
35
35
  rxnn/utils.py,sha256=ihb6OTyDtPiocB_lOvnq7eOkjjpCkgs8wxvXUBNQ7mM,996
36
- rxnn-0.2.66.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
37
- rxnn-0.2.66.dist-info/METADATA,sha256=-vE86fZe4EISwHsFwRSx6K05iBGghFo20l0xS3OwpGs,25997
38
- rxnn-0.2.66.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
39
- rxnn-0.2.66.dist-info/RECORD,,
36
+ rxnn-0.2.68.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
37
+ rxnn-0.2.68.dist-info/METADATA,sha256=w7AYGnPAW9xy8DMmcueWdfoV1oQxqOVVDcRxlvA8gWQ,60420
38
+ rxnn-0.2.68.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
39
+ rxnn-0.2.68.dist-info/RECORD,,
@@ -1,448 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: rxnn
3
- Version: 0.2.66
4
- Summary: RxNN: Reactive Neural Networks Platform
5
- License: Apache-2.0
6
- Keywords: deep-learning,ai,machine-learning
7
- Author: Adam Filipek
8
- Author-email: adamfilipek@rxai.dev
9
- Requires-Python: >=3.10
10
- Classifier: License :: OSI Approved :: Apache Software License
11
- Classifier: Programming Language :: Python :: 3
12
- Classifier: Programming Language :: Python :: 3.10
13
- Classifier: Programming Language :: Python :: 3.11
14
- Classifier: Programming Language :: Python :: 3.12
15
- Classifier: Programming Language :: Python :: 3.13
16
- Requires-Dist: datasets (>=3.5.0,<4.0.0)
17
- Requires-Dist: huggingface-hub (>=0.30.0,<0.31.0)
18
- Requires-Dist: nltk (>=3.9.1,<4.0.0)
19
- Requires-Dist: tensorboard (>=2.19.0,<3.0.0)
20
- Requires-Dist: tokenizers (>=0.21.0,<0.22.0)
21
- Requires-Dist: torch (>=2.6.0,<3.0.0)
22
- Requires-Dist: transformers (>=4.51.0,<5.0.0)
23
- Project-URL: Homepage, https://rxai.dev/rxnn
24
- Project-URL: Repository, https://github.com/RxAI-dev/rxnn/python
25
- Description-Content-Type: text/markdown
26
-
27
- <span>
28
- <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxai_v2.png" width="400" />
29
- <img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxnn_v2.png" width="400" />
30
- </span>
31
-
32
- # Reactive AI - RxNN
33
- ## Reactive Neural Networks Platform
34
-
35
- RxNN is AI/Deep Learning development platform made for Reactive Neural Networks and Event-driven AI, introduced by Reactive AI.
36
-
37
- ## Reactive Neural Networks and Event-driven AI
38
- Reactive neural networks (RxNN) are a new family of memory-augmented neural networks that combine classical deep learning
39
- algorithms with reactive communication patterns. In Event-driven AI, input data (sequence) is treated as event, and memory
40
- state has to be kept between events/interactions. Technically, it's a specific kind of RNN that's storing data between
41
- processed sequences, instead of between sequence elements like in regular RNN. Then, their recurrence is on a higher level.
42
- In the case of reactive communication patterns, RxRNNs are stateful reactive data sources that you have to connect before
43
- you can send and receive messages.
44
- While RxNNs are using some RNN concepts, they are rather made to extend Transformer language/multi-modal models. In our
45
- opinion, the biggest downside of current LLMs is their stateless nature - conversational models have to process full chat
46
- history on every interaction! That's not real-time processing, and it's not how human's awareness is working. In RxNN based
47
- transformers, model is processing single messages, while all the previous interactions history should be saved and read
48
- from memory. That features are required for **Weak** Reactive Neural Networks specification, and it will be the first major
49
- step in transition from language models to awareness models - in Reactive AI ecosystem, it will be introduced in Reactive
50
- Transformer architecture.
51
-
52
- Additionally, to achieve awareness, **Strong** Reactive Neural Networks are working in reactive infinite reasoning loop,
53
- that's generating Infinite Chain-of-Thoughts and is communicating in push-based mode (model decides if and when return output).
54
-
55
- Reactive communication patterns in RxNN models are adapted to handle asynchronous nature of model - after it finish generating
56
- sequence, it has to process it and save it in memory, but it could be done in background.
57
-
58
- ## Release plan
59
- We are working on three new reactive architectures, that progressively advance from language models to awareness models:
60
- - Reactive Transformer: Reactive Language Model (RLM) with Short-Term Memory
61
- - Preactor: extending Reactive Transformer with additional Long-Term Memory, providing theoretically infinite context (only
62
- single message length is limited) and the ability to learn from interactions (Live Learning)
63
- - Reactor: AGI awareness model & Strong Reactive Neural Network, that's working in infinite reasoning loop and doesn't require explicit human commands
64
-
65
- Each new architecture is based on the previous one and adding new features/abilities. They will be progressively
66
- released with next versions of **RxNN** framework:
67
- - 0.1.x (Released): Reactive Transformer base models, Base Model Learning (pre-training/fine-tuning) & Transformers extensions (MoE Attention, Short-Term Memory, etc.)
68
- - 0.2.x (Released): Memory Reinforcement Learning (MRL) for Short-Term Memory & Reactive Transformer, Attention-based Memory System details
69
- - 0.3.x: Reinforcement Learning from Human Feedback for Reactive models (RxRLHF), basic Tensor Reactive
70
- Extensions (TRX/Rust) for full Reactive Transformer, RxT-Alpha release (+following models - RxT-Beta, etc.)
71
- - 0.4.x: Preactor base models, Tensor Database (TDB/Rust) for Long-Term Memory, mxRAG/revRAG subsystems
72
- - 0.5.x: MRL for Long-Term Memory & Preactor, Live Learning for Preactor, PRx-Alpha release (+following models - PRx-Beta, etc.)
73
- - 0.6.x: Reactor base models, TRX full implementation, Receptors & Effectors Reactive RNNs
74
- - 0.7.x: Behavioral Reinforcement Learning (BRL) for Reactor's Infinite Chain-of-Thoughts, Continuous Live Learning for Reactor
75
- - 0.8.x: Rx-Alpha release
76
- - 0.9.x: Rx-Beta release
77
- - 1.0.0: Reactor AGI official release (Expert, Assistant & Utility class models)
78
- - 1.x.x: Multimodal reactive models (could be released earlier, depending on progress)
79
- - 2.0.0: Real-Time Vision Reactor - Worker class models
80
- - x.x.x: ...and more!
81
-
82
- ## Usage
83
- **RxNN** is made to train models based on reactive architectures, as well as transformer language models. Current version
84
- is based on PyTorch and HuggingFace libraries (Transformers/Datasets/Tokenizer/Hub), and is integrated with [HuggingFace Hub](https://hugginface.co)
85
- and [TensorBoard](https://github.com/tensorflow/tensorboard).
86
-
87
- > We are also planning a version for **TensorFlow**, more info soon
88
-
89
- ### Install library and dependencies
90
- - RxNN and required deps: `pip install rxnn torch transformers tokenizers huggingface_hub`
91
- - Datasets are required only for training: `pip install datasets`
92
- - TensorBoard is optional: `pip install tensorboard`
93
- - [Flash Attention](https://github.com/Dao-AILab/flash-attention) is recommended for faster training/inference (required for models with explicit `use_flash_attention=True`) - check its separate [installation guide](#installing-flash-attention)
94
- - **NumPy** should be installed too: `pip install numpy`
95
-
96
- > ### Installing Flash Attention
97
- > Installing `flash-attn` could be very frustrating and may take hours (with standard method), only to result in some incompatibility
98
- > error. Fortunately, the prebuilt versions could be downloaded from GitHub and installed just in seconds. However, you should choose
99
- > the compatible version based on:
100
- > - Python version
101
- > - CUDA version
102
- > - PyTorch version (2.7 is currently not supported)
103
- > - ABI
104
- >
105
- > #### Steps
106
- > 1. Choose your version from [https://github.com/Dao-AILab/flash-attention/releases](https://github.com/Dao-AILab/flash-attention/releases)
107
- > 2. Download prebuilt release, in example: `wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
108
- > 3. Install it, in example: `pip install --no-dependencies --upgrade flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
109
- > 4. Verify: `flash_attn.__version__` (an incorrect version will cause the error when importing)
110
- >
111
- > #### Note on `use_flash_attention` option in models/layers
112
- > Explicit `use_flash_attention` option is made to enable direct calls to `flash_attn_func` without using **PyTorch** `scaled_dot_product_attention`. Even
113
- > if it's set to `False`, when `flash-attn` library is installed, **PyTorch** will try to use it implicitly through _SDPA backend_. It's better to set it
114
- > to `False` and use automatically, because of better compatibility. Explicit options could be used for research
115
-
116
- ### Modules
117
- **RxNN** framework has multiple modules with models, layers, training and inference tools, made for complete development
118
- of _reactive models_, and could be also used for regular **Transformers**.
119
-
120
- #### Transformers
121
- Transformers module includes classes for models and layers. It includes **Reactive Transformers** as well as **Classic Transformers**
122
-
123
- Submodules:
124
- - `rxnn.transformers.attention` - basic, most common attention layers - `MultiHeadAttention`, `GroupedQueryAttention` and `MultiQueryAttention`
125
- - additional attention layers, especially `SparseQueryAttention` could be found in `rxnn.experimental.attention` module
126
- - `SparseQueryAttention` will be moved to `rxnn.transformers.attention` in 0.2.x version
127
- - `rxnn.transformers.positional` - positional encoding layers - `RotaryPositionalEmbedding` and legacy ones - `AbsolutePositionalEmbedding`/`RelativePositionalEmbedding`
128
- - `rxnn.transformers.ff` - dense feed forward layers, including gated layers (_SwiGLU_, etc.) - `FeedForward` & `GatedFeedForward` (recommended)
129
- - `rxnn.transformers.moe` - Mixture-of-Experts feed forward layers - `MoeFeedForward` & `GatedMoeFeedForward` (recommended)
130
- - `rxnn.transformer.layers` - complete reactive/classic transformer layers - `ReactiveTransformerLayer` & `ClassicTransformerLayer`
131
- - `rxnn.transformer.models` - reactive/classic transformer models - `ReactiveTransformerEncoder`, `ReactiveTransformerDecoder` & `ClassicTransformerEncoder`, `ClassicTransformerDecoder`
132
- - `rxnn.transformer.sampler` - samplers for reactive models (Sampler is the integral part of reactive architectures) - `Sampler`, `SampleDecoder`, `BatchSampler` & `BatchSampleDecoder`
133
-
134
- In **RxNN** models are initialized in declarative style by class composition, but then they are wrapped in imperative classes,
135
- to be compatible with HuggingFace **JSON** config. In example:
136
-
137
- ```python
138
- from typing import TypedDict
139
- import torch
140
- import torch.nn as nn
141
- from huggingface_hub import PyTorchModelHubMixin
142
- from rxnn.transformers.attention import GroupedQueryAttention
143
- from rxnn.transformers.positional import RotaryPositionalEmbedding
144
- from rxnn.transformers.layers import ReactiveTransformerLayer
145
- from rxnn.transformers.models import ReactiveTransformerDecoder
146
- from rxnn.memory.stm import ShortTermMemory
147
-
148
- class YourReactiveTransformerConfig(TypedDict):
149
- num_layers: int
150
- vocab_size: int
151
- embed_dim: int
152
- ff_dim: int
153
- att_heads: int
154
- seq_len: int
155
- stm_size: int
156
- att_groups: int
157
- cross_att_groups: int
158
-
159
-
160
- class YourReactiveTransformerDecoder(nn.Module, PyTorchModelHubMixin):
161
- def __init__(
162
- self,
163
- config: YourReactiveTransformerConfig,
164
- **kwargs
165
- ):
166
- super(YourReactiveTransformerDecoder, self).__init__(**kwargs)
167
-
168
- embedding = nn.Embedding(config['vocab_size'], config['embed_dim'])
169
- rope = RotaryPositionalEmbedding(config['embed_dim'] // config['att_heads'], config['seq_len'])
170
- stm = ShortTermMemory(config['num_layers'], config['embed_dim'], config['stm_size'])
171
-
172
- self.model = ReactiveTransformerDecoder(
173
- stm=stm,
174
- embedding=embedding,
175
- own_layers=nn.ModuleList([
176
- ReactiveTransformerLayer(
177
- config['embed_dim'],
178
- config['ff_dim'],
179
- use_gated=True,
180
- use_moe=False,
181
- ff_activation=nn.GELU(),
182
- ff_dropout=0.1,
183
- use_rms_norm=True,
184
- self_attention=GroupedQueryAttention(
185
- config['embed_dim'],
186
- config['att_heads'],
187
- config['att_groups'],
188
- rope=rope,
189
- dropout=0.1,
190
- max_seq_len=config['seq_len'],
191
- is_causal=True,
192
- ),
193
- memory_cross_attention=GroupedQueryAttention(
194
- config['embed_dim'],
195
- config['att_heads'],
196
- config['att_groups'],
197
- rope=rope,
198
- dropout=0.1,
199
- max_seq_len=config['seq_len'],
200
- is_causal=True,
201
- rope_only_for_query=True
202
- ),
203
- ) for _ in range(config['num_layers'])
204
- ])
205
- )
206
-
207
- def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None):
208
- return self.model(x, attention_mask=attention_mask)
209
- ```
210
-
211
- #### Memory
212
- The _memory_ module includes **Short-Term Memory** and layers responsible for its update. In future versions it will also
213
- include **Long-Term Memory**.
214
-
215
- The main `ShortTermMemory` class is located in `rxnn.memory.stm` module - the usage example is in Transformers module description.
216
-
217
- > 0.2.x Memory modules docs in progress - will be released soon
218
-
219
- #### Training
220
- Training module includes **Trainers** for different training stages of reactive models and shared training utils.
221
-
222
- Submodules:
223
- - `rxnn.training.tokenizer` - custom Trainer for **HuggingFace** `tokenizers` and utils to load tokenizer from Hub
224
- - Tokenizer could be loaded from Hub with `load_tokenizer_from_hf_hub(repo_id)`
225
- - `rxnn.training.dataset` - datasets for different training stages:
226
- - `MaskedLMDataset` & `AutoregressiveLMDataset` are made for base models pre-training
227
- - `EncoderSftDataset` & `DecoderSftDataset` are made for Interaction Supervised Fine-Tuning for reactive models
228
- - `MrlCurriculumDataset` is the dataset for single MRL Curriculum step
229
- - `MrlDatasets` is wrapping MRL datasets for all curriculum steps
230
- - each dataset has `from_hf_hub` class method to load dataset from Hub
231
- - they have also `concat_from_hf_hub` class method to load multiple Hub datasets into single training dataset
232
- - if dataset has no validation/test split, each dataset has `get_subset(subset_size, from_start=False)` method - it
233
- returns new subset and modifying existing one - i.e. `valid_dataset = train_dataset.get_subset(0.1)`
234
- - for concatenated datasets, validation/test split could be created with `concat_from_hf_hub_with_subset` - it cuts the
235
- same percentage of each loaded dataset
236
- - `rxnn.training.callbacks` contain Trainer callbacks, for different kind of utils (more info below)
237
- - `rxnn.training.scheduler` includes learning rate scheduler for training
238
- - `rxnn.training.bml` - Base Model Learning module with Trainers for pre-training and fine-tuning
239
- - `rxnn.training.mrl` - Memory Reinforcement Learning module with Trainers for MRL
240
- - `rxnn.training.rxrlhf` - Reinforcement Learning from Human Feedback for Reactive Models module (from 0.3.x)
241
- - `rxnn.training.brl` - Behavioral Reinforcement Learning module (Reactor / from 0.7.x)
242
-
243
- ##### Base Model Learning
244
- Docs in progress
245
-
246
-
247
- Apache License
248
- Version 2.0, January 2004
249
- http://www.apache.org/licenses/
250
-
251
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
252
-
253
- 1. Definitions.
254
-
255
- "License" shall mean the terms and conditions for use, reproduction,
256
- and distribution as defined by Sections 1 through 9 of this document.
257
-
258
- "Licensor" shall mean the copyright owner or entity authorized by
259
- the copyright owner that is granting the License.
260
-
261
- "Legal Entity" shall mean the union of the acting entity and all
262
- other entities that control, are controlled by, or are under common
263
- control with that entity. For the purposes of this definition,
264
- "control" means (i) the power, direct or indirect, to cause the
265
- direction or management of such entity, whether by contract or
266
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
267
- outstanding shares, or (iii) beneficial ownership of such entity.
268
-
269
- "You" (or "Your") shall mean an individual or Legal Entity
270
- exercising permissions granted by this License.
271
-
272
- "Source" form shall mean the preferred form for making modifications,
273
- including but not limited to software source code, documentation
274
- source, and configuration files.
275
-
276
- "Object" form shall mean any form resulting from mechanical
277
- transformation or translation of a Source form, including but
278
- not limited to compiled object code, generated documentation,
279
- and conversions to other media types.
280
-
281
- "Work" shall mean the work of authorship, whether in Source or
282
- Object form, made available under the License, as indicated by a
283
- notice that is included in or attached to the work
284
- (an example is provided in the Appendix below).
285
-
286
- "Derivative Works" shall mean any work, whether in Source or Object
287
- form, that is based on (or derived from) the Work and for which the
288
- editorial revisions, annotations, elaborations, or other modifications
289
- represent, as a whole, an original work of authorship. For the purposes
290
- of this License, Derivative Works shall not include works that remain
291
- separable from, or merely link (or bind by name) to the interfaces of,
292
- the Work and Derivative Works thereof.
293
-
294
- "Contribution" shall mean any work of authorship, including
295
- the original version of the Work and any modifications or additions
296
- to that Work or Derivative Works thereof, that is intentionally
297
- submitted to Licensor for inclusion in the Work by the owner
298
- or by an individual or Legal Entity authorized to submit on behalf of
299
- the owner. For the purposes of this definition, "submitted"
300
- means any form of electronic, verbal, or written communication sent
301
- to the Licensor or its representatives, including but not limited to
302
- communication on electronic mailing lists, source code control systems,
303
- and issue tracking systems that are managed by, or on behalf of, the
304
- Licensor for the purpose of discussing and improving the Work, but
305
- excluding communication that is conspicuously marked or otherwise
306
- designated in writing by the owner as "Not a Contribution."
307
-
308
- "Contributor" shall mean Licensor and any individual or Legal Entity
309
- on behalf of whom a Contribution has been received by Licensor and
310
- subsequently incorporated within the Work.
311
-
312
- 2. Grant of License. Subject to the terms and conditions of
313
- this License, each Contributor hereby grants to You a perpetual,
314
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
315
- license to reproduce, prepare Derivative Works of,
316
- publicly display, publicly perform, sublicense, and distribute the
317
- Work and such Derivative Works in Source or Object form.
318
-
319
- 3. Grant of Patent License. Subject to the terms and conditions of
320
- this License, each Contributor hereby grants to You a perpetual,
321
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
322
- (except as stated in this section) patent license to make, have made,
323
- use, offer to sell, sell, import, and otherwise transfer the Work,
324
- where such license applies only to those patent claims licensable
325
- by such Contributor that are necessarily infringed by their
326
- Contribution(s) alone or by combination of their Contribution(s)
327
- with the Work to which such Contribution(s) was submitted. If You
328
- institute patent litigation against any entity (including a
329
- cross-claim or counterclaim in a lawsuit) alleging that the Work
330
- or a Contribution incorporated within the Work constitutes direct
331
- or contributory patent infringement, then any patent licenses
332
- granted to You under this License for that Work shall terminate
333
- as of the date such litigation is filed.
334
-
335
- 4. Redistribution. You may reproduce and distribute copies of the
336
- Work or Derivative Works thereof in any medium, with or without
337
- modifications, and in Source or Object form, provided that You
338
- meet the following conditions:
339
-
340
- (a) You must give any other recipients of the Work or
341
- Derivative Works a copy of this License; and
342
-
343
- (b) You must cause any modified files to carry prominent notices
344
- stating that You changed the files; and
345
-
346
- (c) You must retain, in the Source form of any Derivative Works
347
- that You distribute, all , patent, trademark, and
348
- attribution notices from the Source form of the Work,
349
- excluding those notices that do not pertain to any part of
350
- the Derivative Works; and
351
-
352
- (d) If the Work includes a "NOTICE" text file as part of its
353
- distribution, then any Derivative Works that You distribute must
354
- include a readable copy of the attribution notices contained
355
- within such NOTICE file, excluding those notices that do not
356
- pertain to any part of the Derivative Works, in at least one
357
- of the following places: within a NOTICE text file distributed
358
- as part of the Derivative Works; within the Source form or
359
- documentation, if provided along with the Derivative Works; or,
360
- within a display generated by the Derivative Works, if and
361
- wherever such third-party notices normally appear. The contents
362
- of the NOTICE file are for informational purposes only and
363
- do not modify the License. You may add Your own attribution
364
- notices within Derivative Works that You distribute, alongside
365
- or as an addendum to the NOTICE text from the Work, provided
366
- that such additional attribution notices cannot be construed
367
- as modifying the License.
368
-
369
- You may add Your own statement to Your modifications and
370
- may provide additional or different license terms and conditions
371
- for use, reproduction, or distribution of Your modifications, or
372
- for any such Derivative Works as a whole, provided Your use,
373
- reproduction, and distribution of the Work otherwise complies with
374
- the conditions stated in this License.
375
-
376
- 5. Submission of Contributions. Unless You explicitly state otherwise,
377
- any Contribution intentionally submitted for inclusion in the Work
378
- by You to the Licensor shall be under the terms and conditions of
379
- this License, without any additional terms or conditions.
380
- Notwithstanding the above, nothing herein shall supersede or modify
381
- the terms of any separate license agreement you may have executed
382
- with Licensor regarding such Contributions.
383
-
384
- 6. Trademarks. This License does not grant permission to use the trade
385
- names, trademarks, service marks, or product names of the Licensor,
386
- except as required for reasonable and customary use in describing the
387
- origin of the Work and reproducing the content of the NOTICE file.
388
-
389
- 7. Disclaimer of Warranty. Unless required by applicable law or
390
- agreed to in writing, Licensor provides the Work (and each
391
- Contributor provides its Contributions) on an "AS IS" BASIS,
392
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
393
- implied, including, without limitation, any warranties or conditions
394
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
395
- PARTICULAR PURPOSE. You are solely responsible for determining the
396
- appropriateness of using or redistributing the Work and assume any
397
- risks associated with Your exercise of permissions under this License.
398
-
399
- 8. Limitation of Liability. In no event and under no legal theory,
400
- whether in tort (including negligence), contract, or otherwise,
401
- unless required by applicable law (such as deliberate and grossly
402
- negligent acts) or agreed to in writing, shall any Contributor be
403
- liable to You for damages, including any direct, indirect, special,
404
- incidental, or consequential damages of any character arising as a
405
- result of this License or out of the use or inability to use the
406
- Work (including but not limited to damages for loss of goodwill,
407
- work stoppage, computer failure or malfunction, or any and all
408
- other commercial damages or losses), even if such Contributor
409
- has been advised of the possibility of such damages.
410
-
411
- 9. Accepting Warranty or Additional Liability. While redistributing
412
- the Work or Derivative Works thereof, You may choose to offer,
413
- and charge a fee for, acceptance of support, warranty, indemnity,
414
- or other liability obligations and/or rights consistent with this
415
- License. However, in accepting such obligations, You may act only
416
- on Your own behalf and on Your sole responsibility, not on behalf
417
- of any other Contributor, and only if You agree to indemnify,
418
- defend, and hold each Contributor harmless for any liability
419
- incurred by, or claims asserted against, such Contributor by reason
420
- of your accepting any such warranty or additional liability.
421
-
422
- END OF TERMS AND CONDITIONS
423
-
424
- APPENDIX: How to apply the Apache License to your work.
425
-
426
- To apply the Apache License to your work, attach the following
427
- boilerplate notice, with the fields enclosed by brackets "[]"
428
- replaced with your own identifying information. (Don't include
429
- the brackets!) The text should be enclosed in the appropriate
430
- comment syntax for the file format. We also recommend that a
431
- file or class name and description of purpose be included on the
432
- same "printed page" as the copyright notice for easier
433
- identification within third-party archives.
434
-
435
- Copyright 2024-2025 Adam Filipek
436
-
437
- Licensed under the Apache License, Version 2.0 (the "License");
438
- you may not use this file except in compliance with the License.
439
- You may obtain a copy of the License at
440
-
441
- http://www.apache.org/licenses/LICENSE-2.0
442
-
443
- Unless required by applicable law or agreed to in writing, software
444
- distributed under the License is distributed on an "AS IS" BASIS,
445
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
446
- See the License for the specific language governing permissions and
447
- limitations under the License.
448
-
File without changes
File without changes