rxnn 0.2.66__py3-none-any.whl → 0.2.68__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,1102 @@
|
|
1
|
+
Metadata-Version: 2.3
|
2
|
+
Name: rxnn
|
3
|
+
Version: 0.2.68
|
4
|
+
Summary: RxNN: Reactive Neural Networks Platform
|
5
|
+
License: Apache-2.0
|
6
|
+
Keywords: deep-learning,ai,machine-learning
|
7
|
+
Author: Adam Filipek
|
8
|
+
Author-email: adamfilipek@rxai.dev
|
9
|
+
Requires-Python: >=3.10
|
10
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
12
|
+
Classifier: Programming Language :: Python :: 3.10
|
13
|
+
Classifier: Programming Language :: Python :: 3.11
|
14
|
+
Classifier: Programming Language :: Python :: 3.12
|
15
|
+
Classifier: Programming Language :: Python :: 3.13
|
16
|
+
Requires-Dist: datasets (>=3.5.0,<4.0.0)
|
17
|
+
Requires-Dist: huggingface-hub (>=0.30.0,<0.31.0)
|
18
|
+
Requires-Dist: nltk (>=3.9.1,<4.0.0)
|
19
|
+
Requires-Dist: tensorboard (>=2.19.0,<3.0.0)
|
20
|
+
Requires-Dist: tokenizers (>=0.21.0,<0.22.0)
|
21
|
+
Requires-Dist: torch (>=2.6.0,<3.0.0)
|
22
|
+
Requires-Dist: transformers (>=4.51.0,<5.0.0)
|
23
|
+
Project-URL: Homepage, https://rxai.dev/rxnn
|
24
|
+
Project-URL: Repository, https://github.com/RxAI-dev/rxnn/python
|
25
|
+
Description-Content-Type: text/markdown
|
26
|
+
|
27
|
+
<span>
|
28
|
+
<img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxai_v2.png" width="400" />
|
29
|
+
<img src="https://raw.githubusercontent.com/RxAI-dev/RxNN/refs/heads/main/assets/logo/logo_rxnn_v2.png" width="400" />
|
30
|
+
</span>
|
31
|
+
|
32
|
+
# Reactive AI - RxNN
|
33
|
+
## Reactive Neural Networks Platform
|
34
|
+
|
35
|
+
RxNN is AI/Deep Learning development platform made for Reactive Neural Networks and Event-driven AI, introduced by Reactive AI.
|
36
|
+
|
37
|
+
## Reactive Neural Networks and Event-driven AI
|
38
|
+
Reactive neural networks (RxNN) are a new family of memory-augmented neural networks that combine classical deep learning
|
39
|
+
algorithms with reactive communication patterns. In Event-driven AI, input data (sequence) is treated as event, and memory
|
40
|
+
state has to be kept between events/interactions. Technically, it's a specific kind of RNN that's storing data between
|
41
|
+
processed sequences, instead of between sequence elements like in regular RNN. Then, their recurrence is on a higher level.
|
42
|
+
In the case of reactive communication patterns, RxRNNs are stateful reactive data sources that you have to connect before
|
43
|
+
you can send and receive messages.
|
44
|
+
While RxNNs are using some RNN concepts, they are rather made to extend Transformer language/multi-modal models. In our
|
45
|
+
opinion, the biggest downside of current LLMs is their stateless nature - conversational models have to process full chat
|
46
|
+
history on every interaction! That's not real-time processing, and it's not how human's awareness is working. In RxNN based
|
47
|
+
transformers, model is processing single messages, while all the previous interactions history should be saved and read
|
48
|
+
from memory. That features are required for **Weak** Reactive Neural Networks specification, and it will be the first major
|
49
|
+
step in transition from language models to awareness models - in Reactive AI ecosystem, it will be introduced in Reactive
|
50
|
+
Transformer architecture.
|
51
|
+
|
52
|
+
Additionally, to achieve awareness, **Strong** Reactive Neural Networks are working in reactive infinite reasoning loop,
|
53
|
+
that's generating Infinite Chain-of-Thoughts and is communicating in push-based mode (model decides if and when return output).
|
54
|
+
|
55
|
+
Reactive communication patterns in RxNN models are adapted to handle asynchronous nature of model - after it finish generating
|
56
|
+
sequence, it has to process it and save it in memory, but it could be done in background.
|
57
|
+
|
58
|
+
## Release plan
|
59
|
+
We are working on three new reactive architectures, that progressively advance from language models to awareness models:
|
60
|
+
- **Reactive Transformer**: Reactive Language Model (RLM) with Short-Term Memory. [Research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/ReactiveTransformer/reactive-transformer.md)
|
61
|
+
- **Preactor**: extending Reactive Transformer with additional Long-Term Memory, providing theoretically infinite context (only
|
62
|
+
single message length is limited) and the ability to learn from interactions (Live Learning)
|
63
|
+
- **Reactor**: AGI awareness model & Strong Reactive Neural Network, that's working in infinite reasoning loop and doesn't require explicit human commands
|
64
|
+
|
65
|
+
Each new architecture is based on the previous one and adding new features/abilities. They will be progressively
|
66
|
+
released with next versions of **RxNN** framework:
|
67
|
+
- 0.1.x (Released): Reactive Transformer base models, Base Model Learning (pre-training/fine-tuning) & Transformers extensions (MoE Attention, Short-Term Memory, etc.)
|
68
|
+
- 0.2.x (Released): Memory Reinforcement Learning (MRL) for Short-Term Memory & Reactive Transformer, Attention-based Memory System details
|
69
|
+
- 0.3.x: Reinforcement Learning from Human Feedback for Reactive models (RxRLHF), basic Tensor Reactive
|
70
|
+
Extensions (TRX/Rust) for full Reactive Transformer, RxT-Alpha release (+following models - RxT-Beta, etc.)
|
71
|
+
- 0.4.x: Preactor base models, Tensor Database (TDB/Rust) for Long-Term Memory, mxRAG/revRAG subsystems
|
72
|
+
- 0.5.x: MRL for Long-Term Memory & Preactor, Live Learning for Preactor, PRx-Alpha release (+following models - PRx-Beta, etc.)
|
73
|
+
- 0.6.x: Reactor base models, TRX full implementation, Receptors & Effectors Reactive RNNs
|
74
|
+
- 0.7.x: Behavioral Reinforcement Learning (BRL) for Reactor's Infinite Chain-of-Thoughts, Continuous Live Learning for Reactor
|
75
|
+
- 0.8.x: Rx-Alpha release
|
76
|
+
- 0.9.x: Rx-Beta release
|
77
|
+
- 1.0.0: Reactor AGI official release (Expert, Assistant & Utility class models)
|
78
|
+
- 1.x.x: Multimodal reactive models (could be released earlier, depending on progress)
|
79
|
+
- 2.0.0: Real-Time Vision Reactor - Worker class models
|
80
|
+
- x.x.x: ...and more!
|
81
|
+
|
82
|
+
## Usage
|
83
|
+
**RxNN** is made to train models based on reactive architectures, as well as transformer language models. Current version
|
84
|
+
is based on PyTorch and HuggingFace libraries (Transformers/Datasets/Tokenizer/Hub), and is integrated with [HuggingFace Hub](https://hugginface.co)
|
85
|
+
and [TensorBoard](https://github.com/tensorflow/tensorboard).
|
86
|
+
|
87
|
+
> We are also planning a version for **TensorFlow**, more info soon
|
88
|
+
|
89
|
+
### Install library and dependencies
|
90
|
+
- RxNN and required deps: `pip install rxnn torch transformers tokenizers huggingface_hub`
|
91
|
+
- Datasets are required only for training: `pip install datasets`
|
92
|
+
- TensorBoard is optional: `pip install tensorboard`
|
93
|
+
- [Flash Attention](https://github.com/Dao-AILab/flash-attention) is recommended for faster training/inference (required for models with explicit `use_flash_attention=True`) - check its separate [installation guide](#installing-flash-attention)
|
94
|
+
- **NumPy** should be installed too: `pip install numpy`
|
95
|
+
|
96
|
+
> ### Installing Flash Attention
|
97
|
+
> Installing `flash-attn` could be very frustrating and may take hours (with standard method), only to result in some incompatibility
|
98
|
+
> error. Fortunately, the prebuilt versions could be downloaded from GitHub and installed just in seconds. However, you should choose
|
99
|
+
> the compatible version based on:
|
100
|
+
> - Python version
|
101
|
+
> - CUDA version
|
102
|
+
> - PyTorch version (2.7 is currently not supported)
|
103
|
+
> - ABI
|
104
|
+
>
|
105
|
+
> #### Steps
|
106
|
+
> 1. Choose your version from [https://github.com/Dao-AILab/flash-attention/releases](https://github.com/Dao-AILab/flash-attention/releases)
|
107
|
+
> 2. Download prebuilt release, in example: `wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
|
108
|
+
> 3. Install it, in example: `pip install --no-dependencies --upgrade flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp312-cp312-linux_x86_64.whl`
|
109
|
+
> 4. Verify: `flash_attn.__version__` (an incorrect version will cause the error when importing)
|
110
|
+
>
|
111
|
+
> #### Note on `use_flash_attention` option in models/layers
|
112
|
+
> Explicit `use_flash_attention` option is made to enable direct calls to `flash_attn_func` without using **PyTorch** `scaled_dot_product_attention`. Even
|
113
|
+
> if it's set to `False`, when `flash-attn` library is installed, **PyTorch** will try to use it implicitly through _SDPA backend_. It's better to set it
|
114
|
+
> to `False` and use automatically, because of better compatibility. Explicit options could be used for research
|
115
|
+
|
116
|
+
## Modules
|
117
|
+
**RxNN** framework has multiple modules with models, layers, training and inference tools, made for complete development
|
118
|
+
of _reactive models_, and could be also used for regular **Transformers**.
|
119
|
+
|
120
|
+
### Transformers
|
121
|
+
Transformers module includes classes for models and layers. It includes **Reactive Transformers** as well as **Classic Transformers**
|
122
|
+
|
123
|
+
Submodules:
|
124
|
+
- `rxnn.transformers.attention` - basic, most common attention layers - `MultiHeadAttention`, `GroupedQueryAttention` and `MultiQueryAttention`
|
125
|
+
- additional attention layers, especially `SparseQueryAttention` could be found in `rxnn.experimental.attention` module
|
126
|
+
- `SparseQueryAttention` will be moved to `rxnn.transformers.attention` in 0.3.x version
|
127
|
+
- `rxnn.transformers.positional` - positional encoding layers - `RotaryPositionalEmbedding` and legacy ones - `AbsolutePositionalEmbedding`/`RelativePositionalEmbedding`
|
128
|
+
- `rxnn.transformers.ff` - dense feed forward layers, including gated layers (_SwiGLU_, etc.) - `FeedForward` & `GatedFeedForward` (recommended)
|
129
|
+
- `rxnn.transformers.moe` - Mixture-of-Experts feed forward layers - `MoeFeedForward` & `GatedMoeFeedForward` (recommended)
|
130
|
+
- `rxnn.transformer.layers` - complete reactive/classic transformer layers - `ReactiveTransformerLayer` & `ClassicTransformerLayer`
|
131
|
+
- `rxnn.transformer.models` - reactive/classic transformer models - `ReactiveTransformerEncoder`, `ReactiveTransformerDecoder` & `ClassicTransformerEncoder`, `ClassicTransformerDecoder`
|
132
|
+
- `rxnn.transformer.sampler` - samplers for reactive models (Sampler is the integral part of reactive architectures) - `Sampler`, `SampleDecoder`, `BatchSampler` & `BatchSampleDecoder`
|
133
|
+
|
134
|
+
In **RxNN** models are initialized in declarative style by class composition, but then they are wrapped in imperative classes,
|
135
|
+
to be compatible with HuggingFace **JSON** config. In example:
|
136
|
+
```python
|
137
|
+
from typing import TypedDict
|
138
|
+
import torch
|
139
|
+
import torch.nn as nn
|
140
|
+
from huggingface_hub import PyTorchModelHubMixin
|
141
|
+
from rxnn.transformers.attention import GroupedQueryAttention
|
142
|
+
from rxnn.transformers.positional import RotaryPositionalEmbedding
|
143
|
+
from rxnn.transformers.layers import ReactiveTransformerLayer
|
144
|
+
from rxnn.transformers.models import ReactiveTransformerDecoder
|
145
|
+
from rxnn.memory.stm import ShortTermMemory
|
146
|
+
|
147
|
+
class YourReactiveTransformerConfig(TypedDict):
|
148
|
+
num_layers: int
|
149
|
+
vocab_size: int
|
150
|
+
embed_dim: int
|
151
|
+
ff_dim: int
|
152
|
+
att_heads: int
|
153
|
+
seq_len: int
|
154
|
+
stm_size: int
|
155
|
+
att_groups: int
|
156
|
+
cross_att_groups: int
|
157
|
+
|
158
|
+
|
159
|
+
class YourReactiveTransformerDecoder(nn.Module, PyTorchModelHubMixin):
|
160
|
+
def __init__(
|
161
|
+
self,
|
162
|
+
config: YourReactiveTransformerConfig,
|
163
|
+
**kwargs
|
164
|
+
):
|
165
|
+
super(YourReactiveTransformerDecoder, self).__init__(**kwargs)
|
166
|
+
|
167
|
+
embedding = nn.Embedding(config['vocab_size'], config['embed_dim'])
|
168
|
+
rope = RotaryPositionalEmbedding(config['embed_dim'] // config['att_heads'], config['seq_len'])
|
169
|
+
stm = ShortTermMemory(config['num_layers'], config['embed_dim'], config['stm_size'])
|
170
|
+
|
171
|
+
self.model = ReactiveTransformerDecoder(
|
172
|
+
stm=stm,
|
173
|
+
embedding=embedding,
|
174
|
+
own_layers=nn.ModuleList([
|
175
|
+
ReactiveTransformerLayer(
|
176
|
+
config['embed_dim'],
|
177
|
+
config['ff_dim'],
|
178
|
+
use_gated=True,
|
179
|
+
use_moe=False,
|
180
|
+
ff_activation=nn.GELU(),
|
181
|
+
ff_dropout=0.1,
|
182
|
+
use_rms_norm=True,
|
183
|
+
self_attention=GroupedQueryAttention(
|
184
|
+
config['embed_dim'],
|
185
|
+
config['att_heads'],
|
186
|
+
config['att_groups'],
|
187
|
+
rope=rope,
|
188
|
+
dropout=0.1,
|
189
|
+
max_seq_len=config['seq_len'],
|
190
|
+
is_causal=True,
|
191
|
+
),
|
192
|
+
memory_cross_attention=GroupedQueryAttention(
|
193
|
+
config['embed_dim'],
|
194
|
+
config['att_heads'],
|
195
|
+
config['cross_att_groups'] if 'cross_att_groups' in config else config['att_groups'],
|
196
|
+
rope=rope,
|
197
|
+
dropout=0.1,
|
198
|
+
max_seq_len=config['seq_len'],
|
199
|
+
is_causal=False,
|
200
|
+
rope_only_for_query=True
|
201
|
+
),
|
202
|
+
) for _ in range(config['num_layers'])
|
203
|
+
])
|
204
|
+
)
|
205
|
+
|
206
|
+
def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None):
|
207
|
+
return self.model(x, attention_mask=attention_mask)
|
208
|
+
```
|
209
|
+
|
210
|
+
#### RxT-Alpha
|
211
|
+
`RxTAlphaEncoder` and `RxTAlphaDecoder` are ready to use **Reactive Transformer** components, compatible with Hugging Face
|
212
|
+
Hub (the above example is based on their code), so it could be used instead of creating custom class. Example usage could
|
213
|
+
be found in [pre-training docs](#pre-training)
|
214
|
+
|
215
|
+
### Memory
|
216
|
+
The _memory_ module includes **Short-Term Memory (STM)** and layers responsible for its update. In future versions it will also
|
217
|
+
include **Long-Term Memory (LTM)**.
|
218
|
+
|
219
|
+
#### Short Term Memory
|
220
|
+
The main `ShortTermMemory` class is located in `rxnn.memory.stm` module. As described in [Reactive Transformer research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/ReactiveTransformer/reactive-transformer.md),
|
221
|
+
each transformer (encoder and decoder) layer has its own **STM** layer of shape `[batch_size, stm_size, embed_dim]`. Initially,
|
222
|
+
for the first training stages (pre-training and supervised fine-tuning), **STM** is in "single/no batch" mode (`batch_size = 1`),
|
223
|
+
because it's not used. For reinforcement learning stages (**MRL/RxRLHF/BRL**), we have to switch short-term memory to batch
|
224
|
+
mode, because items in batches are independent. After training, we could switch back to "single/no batch" mode. Example:
|
225
|
+
```python
|
226
|
+
from rxnn.memory.stm import ShortTermMemory
|
227
|
+
|
228
|
+
num_layers = 10
|
229
|
+
stm_size = 256
|
230
|
+
embed_dim = 128
|
231
|
+
batch_size = 32
|
232
|
+
|
233
|
+
# 1. Init STM
|
234
|
+
stm = ShortTermMemory(
|
235
|
+
num_layers, embed_dim, stm_size,
|
236
|
+
init_type='normal' # memory init type, 'normal' is default and means normal distribution with 0.0 mean and 0.02 std
|
237
|
+
)
|
238
|
+
|
239
|
+
# 2. Set "batch" mode for MRL
|
240
|
+
stm.batched_memory(
|
241
|
+
batch_size,
|
242
|
+
init_type='standard' # init type could be changed for batch mode, 'standard' is normal distribution with 0.0 mean and 1.0 std
|
243
|
+
)
|
244
|
+
|
245
|
+
# 3. Reset STM with optional init type change
|
246
|
+
stm.reset(init_type='uniform') # init type could be also 'ones' or 'zeros', but it's not recommended
|
247
|
+
|
248
|
+
# 4. Back to "single" mode for inference (optionally using mean value from batch)
|
249
|
+
stm.single_memory(
|
250
|
+
init_type='standard', # we could change init type again
|
251
|
+
use_mean_from_batch=True # use mean values from batch as new memory
|
252
|
+
)
|
253
|
+
```
|
254
|
+
|
255
|
+
> ##### Other utils
|
256
|
+
> `ShortTermMemory` could be also resized with `stm.resize(new_stm_size, init_type)` method, detached and cloned
|
257
|
+
> with `stm.clone_detach_reset()` (used in MRL), or could be made trainable (experimental option):
|
258
|
+
> - could be initialized as trainable - `stm = ShortTermMemory(num_layers, embed_dim, stm_size, is_trainable=True)`
|
259
|
+
> - could be switched to trainable - `stm.make_trainable()`
|
260
|
+
> - and switched back to buffer - `stm.freeze()`
|
261
|
+
|
262
|
+
#### Memory Attention Network
|
263
|
+
**Memory Attention Network** is responsible for memory layers update. It includes memory attention layers, with normalization
|
264
|
+
and residual connection (with optional gated residual). **Memory Attention Network** should have the same number of layers
|
265
|
+
as other components (encoder & decoder). It takes the results from each encoder layer (hidden states), and combine them
|
266
|
+
with actual memory state.
|
267
|
+
|
268
|
+
You can create your own **Memory Attention Network**, integrated with **HuggingFace Hub**, same way as reactive transformers:
|
269
|
+
```python
|
270
|
+
from typing import TypedDict
|
271
|
+
import torch
|
272
|
+
import torch.nn as nn
|
273
|
+
from huggingface_hub import PyTorchModelHubMixin
|
274
|
+
from rxnn.transformers.attention import GroupedQueryAttention
|
275
|
+
from rxnn.transformers.positional import RotaryPositionalEmbedding
|
276
|
+
from rxnn.memory.stm import ShortTermMemory
|
277
|
+
from rxnn.memory.attention import StmMemoryAttention
|
278
|
+
|
279
|
+
class YourMemoryAttentionConfig(TypedDict):
|
280
|
+
num_layers: int
|
281
|
+
vocab_size: int
|
282
|
+
embed_dim: int
|
283
|
+
ff_dim: int
|
284
|
+
att_heads: int
|
285
|
+
seq_len: int
|
286
|
+
stm_size: int
|
287
|
+
att_groups: int
|
288
|
+
|
289
|
+
class YourMemoryAttention(nn.Module, PyTorchModelHubMixin, license="apache-2.0"):
|
290
|
+
"""RxT-Alpha (Reactive Transformer) memory attention model"""
|
291
|
+
|
292
|
+
def __init__(
|
293
|
+
self,
|
294
|
+
config: YourMemoryAttentionConfig,
|
295
|
+
**kwargs,
|
296
|
+
):
|
297
|
+
super(YourMemoryAttention, self).__init__(**kwargs)
|
298
|
+
|
299
|
+
rope = RotaryPositionalEmbedding(config['embed_dim'] // config['att_heads'], config['seq_len'])
|
300
|
+
# This separately initialized STM will be replaced by shared instance with `load_shared_memory` call
|
301
|
+
stm = ShortTermMemory(config['num_layers'], config['embed_dim'], config['stm_size'])
|
302
|
+
|
303
|
+
self.model = StmMemoryAttention(
|
304
|
+
stm,
|
305
|
+
attention_layers=nn.ModuleList([
|
306
|
+
GroupedQueryAttention(
|
307
|
+
config['embed_dim'],
|
308
|
+
config['att_heads'],
|
309
|
+
config['att_groups'],
|
310
|
+
rope=rope,
|
311
|
+
dropout=0.1,
|
312
|
+
is_causal=False,
|
313
|
+
rope_only_for_keys=True
|
314
|
+
) for _ in range(config['num_layers'])
|
315
|
+
]),
|
316
|
+
memory_norm_layers=nn.ModuleList([
|
317
|
+
nn.RMSNorm(config['embed_dim']) for _ in range(config['num_layers'])
|
318
|
+
]),
|
319
|
+
use_gated_residual=False, # memory attention residual gate
|
320
|
+
per_slot_gate=False, # gate per memory slot, otherwise it's per layer
|
321
|
+
init_gate=None, # initial value for gate weights
|
322
|
+
use_dynamic_gate=False, # dynamic gate calculated from weights and memory state, otherwise it's calculated only from weights
|
323
|
+
use_tanh_gate=False, # use tanh gate, otherwise it's sigmoid
|
324
|
+
)
|
325
|
+
|
326
|
+
def load_shared_memory(self, stm: ShortTermMemory):
|
327
|
+
self.model.stm = stm
|
328
|
+
|
329
|
+
def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
|
330
|
+
return self.model(x, attention_mask=attention_mask)
|
331
|
+
```
|
332
|
+
|
333
|
+
> #### Gated residual
|
334
|
+
> Optional gated residual could be used to improve Memory Attention expressiveness. It's using gate (sigmoid or tanh)
|
335
|
+
> with trainable weights, to decide how much information from old and new updated memory state should be stored. Depending
|
336
|
+
> on params weights are declared per layer or per memory slot (more expressive). It could work in two modes, that could
|
337
|
+
> be switched, because they are using the same weights shape:
|
338
|
+
> - static - gate values calculated only from weights (`gate = torch.sigmoid(weights)`) - enable explicit control with `init_gate` param
|
339
|
+
> - dynamic - gate values calculated from weights and updated memory state (`gate = torch.sigmoid(weights * (new_layer_stm + layer_stm).mean(dim=-1, keepdim=True))`)
|
340
|
+
>
|
341
|
+
> Depending on `use_tanh_gate` param, final gated residual connection is calculated with different formulas:
|
342
|
+
> - sigmoid gate - `stm[i] = layer_gate * new_layer_stm + (1 - layer_gate) * layer_stm`
|
343
|
+
> - tanh gate - `stm[i] = (1 + layer_gate) * new_layer_stm + (1 - layer_gate) * layer_stm`
|
344
|
+
> - tanh gate preserve residual connection scale, while sigmoid gate result is equivalent to `(new_layer_stm + layer_stm) / 2`
|
345
|
+
>
|
346
|
+
> **Gated residual** is currently in tests - we are not sure if it will provide better results, so **it's not recommended**
|
347
|
+
|
348
|
+
##### RxT-Alpha Memory Attention
|
349
|
+
`RxTAlphaMemoryAttention` is ready to use Memory Attention network for **Reactive Transformer** Proof-of-Concept, that
|
350
|
+
could be used instead of creating custom class. Example is in [Memory Reinforcement Learning docs](#memory-reinforcement-learning)
|
351
|
+
|
352
|
+
### Training
|
353
|
+
Training module includes **Trainers** for different training stages of reactive models and shared training utils.
|
354
|
+
|
355
|
+
Submodules:
|
356
|
+
- `rxnn.training.tokenizer` - custom Trainer for **HuggingFace** `tokenizers` and utils to load tokenizer from Hub
|
357
|
+
- Tokenizer could be loaded from Hub with `load_tokenizer_from_hf_hub(repo_id)`
|
358
|
+
- `rxnn.training.dataset` - datasets for different training stages:
|
359
|
+
- `MaskedLMDataset` & `AutoregressiveLMDataset` are made for base models pre-training
|
360
|
+
- `EncoderSftDataset` & `DecoderSftDataset` are made for Interaction Supervised Fine-Tuning for reactive models
|
361
|
+
- `MrlCurriculumDataset` is the dataset for single MRL Curriculum step
|
362
|
+
- `MrlDatasets` is wrapping MRL datasets for all curriculum steps
|
363
|
+
- each dataset has `from_hf_hub` class method to load dataset from Hub
|
364
|
+
- they have also `concat_from_hf_hub` class method to load multiple Hub datasets into single training dataset
|
365
|
+
- if dataset has no validation/test split, each dataset has `get_subset(subset_size, from_start=False)` method - it
|
366
|
+
returns new subset and modifying existing one - i.e. `valid_dataset = train_dataset.get_subset(0.1)`
|
367
|
+
- for concatenated datasets, validation/test split could be created with `concat_from_hf_hub_with_subset` - it cuts the
|
368
|
+
same percentage of each loaded dataset
|
369
|
+
- each dataset has `pre_tokenize` method, to tokenize all items before the training (otherwise they are tokenized on
|
370
|
+
dynamically on item access). It's recommended for smaller datasets (fine-tuning, MRL, etc.) and not recommended for
|
371
|
+
very big datasets (pre-training), because it's using a lot of RAM (CPU)
|
372
|
+
- `rxnn.training.callbacks` contain Trainer callbacks, for different kind of utils (more info below)
|
373
|
+
- `rxnn.training.scheduler` includes learning rate scheduler for training
|
374
|
+
- `rxnn.training.bml` - Base Model Learning module with Trainers for pre-training and fine-tuning
|
375
|
+
- `rxnn.training.mrl` - Memory Reinforcement Learning module with Trainers for MRL
|
376
|
+
- `rxnn.training.rxrlhf` - Reinforcement Learning from Human Feedback for Reactive Models module (from 0.3.x)
|
377
|
+
- `rxnn.training.brl` - Behavioral Reinforcement Learning module (Reactor / from 0.7.x)
|
378
|
+
|
379
|
+
#### Base Model Learning
|
380
|
+
**Base Model Learning (BML)** module is made for both pre-training and fine-tuning base models, that will be used as components
|
381
|
+
in reactive models. Generally the only two differences between pre-training and supervised fine-tuning are different dataset
|
382
|
+
classes and trainer/callbacks hyperparams config.
|
383
|
+
|
384
|
+
Reactive models are based on transformer decoder and encoder, with shared embeddings and memory layers - it require special
|
385
|
+
handling in first training stages:
|
386
|
+
- layers connected with memory - **Memory Cross-Attention** are frozen during pre-training and fine-tuning, and they are
|
387
|
+
skipped by residual connections
|
388
|
+
- as encoder is able to learn little better embeddings, because of bidirectional modelling, it's pre-trained first, then
|
389
|
+
decoder is trained with frozen embeddings from encoder
|
390
|
+
- in **Reactive Transformer** fine-tuning, both encoder and decoder are fit to interaction format (single query and answer), the
|
391
|
+
training order is the same as for pre-training
|
392
|
+
- in **Preactor** architecture there are 2 encoders and single decoder. Encoders are fine-tuned from single pre-trained
|
393
|
+
encoder - first one is processing only queries and second one only the answers. More info soon
|
394
|
+
- in **Reactor** architecture there are 2 encoders and 2 decoders. Both encoders and decoders are fine-tuned from single
|
395
|
+
pre-trained encoder and decoder. Each component is fine-tuned to their specific task. More info soon
|
396
|
+
|
397
|
+
##### Pre-training
|
398
|
+
We have to start with importing required modules/libraries, initializing the models and loading the tokenized - I will
|
399
|
+
use _RxT-Alpha-Micro-Plus_ models as example:
|
400
|
+
```python
|
401
|
+
import torch
|
402
|
+
from rxnn.rxt.models import RxTAlphaDecoder, RxTAlphaEncoder
|
403
|
+
from rxnn.training.dataset import AutoregressiveLMDataset, MaskedLMDataset
|
404
|
+
from rxnn.training.bml import AutoregressiveTrainer, MLMTrainer
|
405
|
+
from rxnn.training.models import MLMHead, MLMTrainingModel
|
406
|
+
from rxnn.training.scheduler import get_transformer_lr_scheduler, calculate_steps
|
407
|
+
from rxnn.training.callbacks import PrintLossCallback, PrintAccuracyCallback, TokenCounterCallback, ModelSaveCallback, JointModelSaveCallback
|
408
|
+
from rxnn.training.tokenizer import load_tokenizer_from_hf_hub
|
409
|
+
from rxnn.utils import set_random_seed, cache_clean
|
410
|
+
|
411
|
+
embed_dim = 128
|
412
|
+
vocab_size = 7_500
|
413
|
+
seq_len = 256
|
414
|
+
|
415
|
+
set_random_seed(42)
|
416
|
+
|
417
|
+
config = {
|
418
|
+
'num_layers': 10,
|
419
|
+
'vocab_size': vocab_size,
|
420
|
+
'embed_dim': embed_dim,
|
421
|
+
'att_heads': 16, # attention heads, in SQA it's used only for dimension split
|
422
|
+
'att_groups': 8, # key/value groups for GQA/SQA
|
423
|
+
'seq_len': seq_len,
|
424
|
+
'stm_size': seq_len,
|
425
|
+
'use_flash_attention': False, # explicitly use flash-attn function (otherwise it's used through PyTorch backend) - not recommended
|
426
|
+
'use_gated': True, # use Gated Linear Units in feed forward, True by default
|
427
|
+
'ff_activation': 'silu', # feed forward activation, 'silu' is default for SwiGLU layers
|
428
|
+
'ff_dropout': 0.1,
|
429
|
+
'self_att_type': 'sqa', # self attention could be 'sqa', 'gqa', 'mqa' or 'mha'
|
430
|
+
'cross_att_type': 'sqa', # self attention could be 'sqa', 'gqa', 'mqa' or 'mha'
|
431
|
+
'att_query_groups': 8, # query groups for SQA
|
432
|
+
}
|
433
|
+
|
434
|
+
encoder_config = {
|
435
|
+
'ff_dim': 384,
|
436
|
+
**config
|
437
|
+
}
|
438
|
+
|
439
|
+
decoder_config = {
|
440
|
+
'ff_dim': 256,
|
441
|
+
'use_moe': True, # use Mixture-of-Experts feed forward
|
442
|
+
'num_experts': 20, # number of experts
|
443
|
+
'moe_top_k': 4, # number of activated experts (per token)
|
444
|
+
**config
|
445
|
+
}
|
446
|
+
|
447
|
+
encoder = RxTAlphaEncoder(**encoder_config)
|
448
|
+
decoder = RxTAlphaDecoder(**decoder_config)
|
449
|
+
head = MLMHead(embed_dim, vocab_size)
|
450
|
+
|
451
|
+
# Tokenizer is the same for encoder and decoder
|
452
|
+
tokenizer = load_tokenizer_from_hf_hub('ReactiveAI/RxT-Alpha-Micro-Plus-Encoder', token='HF_TOKEN')
|
453
|
+
```
|
454
|
+
Then, we have to load MLM datasets, set callbacks and run encoder training:
|
455
|
+
```python
|
456
|
+
# 1. Load datasets
|
457
|
+
load_kwargs = {
|
458
|
+
'trust_remote_code': True
|
459
|
+
}
|
460
|
+
|
461
|
+
train_dataset = MaskedLMDataset.from_hf_hub('roneneldan/TinyStories', load_kwargs=load_kwargs, tokenizer=tokenizer, max_seq_len=seq_len)
|
462
|
+
valid_dataset = MaskedLMDataset.from_hf_hub('roneneldan/TinyStories', split="validation", load_kwargs=load_kwargs, tokenizer=tokenizer, max_seq_len=seq_len)
|
463
|
+
|
464
|
+
# 2. Select device
|
465
|
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
466
|
+
|
467
|
+
# 3. Clean GPU cache (optional)
|
468
|
+
cache_clean()
|
469
|
+
|
470
|
+
# 4. Set training config variables
|
471
|
+
batch_size = 256
|
472
|
+
epochs = 8
|
473
|
+
gradient_acc_steps = 1
|
474
|
+
peak_lr = 1e-3 * gradient_acc_steps
|
475
|
+
|
476
|
+
# 5. Get number of steps for scheduler
|
477
|
+
steps_config = calculate_steps(len(train_dataset), epochs, batch_size, warmup_ratio=0.05, verbose=True)
|
478
|
+
steps_per_epoch, total_steps, warmup_steps = steps_config['epoch'], steps_config['total'], steps_config['warmup']
|
479
|
+
|
480
|
+
# 6. Freeze memory cross-attention layers
|
481
|
+
encoder.freeze_memory()
|
482
|
+
|
483
|
+
# 7. Select directory for TensorBoard logs
|
484
|
+
logs_dir = './micro/tensorboard_logs/encoder-plus-sft'
|
485
|
+
|
486
|
+
# 8. Basic callbacks - print loss, accuracy and number of processed tokens
|
487
|
+
print_cb = PrintLossCallback(batches_per_epoch=steps_per_epoch)
|
488
|
+
count_cb = TokenCounterCallback(3_000_000_000)
|
489
|
+
acc_cb = PrintAccuracyCallback()
|
490
|
+
|
491
|
+
# 9. Joint model save callback - used to save encoder and MLM head, and push them to HuggingFace Hub
|
492
|
+
save_cb = JointModelSaveCallback(
|
493
|
+
'./micro/encoder-plus-sft',
|
494
|
+
push_to_hub=True,
|
495
|
+
hub_model_decoder=None,
|
496
|
+
hub_model_encoder='Your encoder model id',
|
497
|
+
hub_model_head='Your mlm model id',
|
498
|
+
push_checkpoint_weights=True, # push epoch checkpoints to hub
|
499
|
+
final_commit_message='Final commit message',
|
500
|
+
private_repo=False, # use HF private repository
|
501
|
+
save_checkpoint_after_n_batches=1000, # save model after N batches in epoch (batch checkpoint)
|
502
|
+
push_batch_checkpoint=True, # push batch checkpoints to HF Hub
|
503
|
+
mlm_mode=True, # use MLM mode
|
504
|
+
hf_token='HF_TOKEN',
|
505
|
+
use_ddp=False, # use distributed training mode
|
506
|
+
)
|
507
|
+
|
508
|
+
# 10. Init training model - encoder + head
|
509
|
+
model = MLMTrainingModel(encoder, head)
|
510
|
+
|
511
|
+
# 11. Init MLM Trainer
|
512
|
+
trainer = MLMTrainer(
|
513
|
+
model,
|
514
|
+
device,
|
515
|
+
dataset=train_dataset,
|
516
|
+
validation_dataset=valid_dataset,
|
517
|
+
vocab_size=vocab_size,
|
518
|
+
callbacks=[print_cb, acc_cb, count_cb, save_cb],
|
519
|
+
use_amp=True, # use autocast
|
520
|
+
dtype=torch.bfloat16, # data type for training
|
521
|
+
log_dir=logs_dir,
|
522
|
+
use_ddp=False, # use distributed training mode
|
523
|
+
)
|
524
|
+
|
525
|
+
# 12. Init optimizer and cosine annealing scheduler
|
526
|
+
optimizer = torch.optim.AdamW(model.parameters(), lr=peak_lr, weight_decay=0.02)
|
527
|
+
scheduler = get_transformer_lr_scheduler(
|
528
|
+
optimizer,
|
529
|
+
warmup_steps=warmup_steps,
|
530
|
+
num_training_steps=total_steps
|
531
|
+
)
|
532
|
+
|
533
|
+
# 13. Run the training for the selected number of epochs
|
534
|
+
trainer(epochs=epochs, batch_size=batch_size, optimizer=optimizer, scheduler=scheduler)
|
535
|
+
```
|
536
|
+
After the encoder's training, we have to train decoder:
|
537
|
+
```python
|
538
|
+
# 1. Load datasets
|
539
|
+
load_kwargs = {
|
540
|
+
'trust_remote_code': True
|
541
|
+
}
|
542
|
+
|
543
|
+
train_dataset = AutoregressiveLMDataset.from_hf_hub('roneneldan/TinyStories', load_kwargs=load_kwargs, tokenizer=tokenizer, max_seq_len=seq_len)
|
544
|
+
valid_dataset = AutoregressiveLMDataset.from_hf_hub('roneneldan/TinyStories', split="validation", load_kwargs=load_kwargs, tokenizer=tokenizer, max_seq_len=seq_len)
|
545
|
+
|
546
|
+
# 2. Load shared embedding and memory, then freeze embedding and memory cross-attention
|
547
|
+
decoder.load_shared_embedding(encoder.model.embedding)
|
548
|
+
decoder.load_shared_memory(encoder.model.stm)
|
549
|
+
|
550
|
+
decoder.model.embedding.requires_grad_(False)
|
551
|
+
decoder.freeze_memory()
|
552
|
+
|
553
|
+
# 3. Clean GPU cache (optional)
|
554
|
+
cache_clean()
|
555
|
+
|
556
|
+
# 4. Set training config variables
|
557
|
+
batch_size = 256
|
558
|
+
epochs = 8
|
559
|
+
gradient_acc_steps = 1
|
560
|
+
peak_lr = 1e-3 * gradient_acc_steps
|
561
|
+
|
562
|
+
# 5. Get number of steps for scheduler
|
563
|
+
steps_config = calculate_steps(len(train_dataset), epochs, batch_size, warmup_ratio=0.05, verbose=True)
|
564
|
+
steps_per_epoch, total_steps, warmup_steps = steps_config['epoch'], steps_config['total'], steps_config['warmup']
|
565
|
+
|
566
|
+
# 6. Select directory for TensorBoard logs
|
567
|
+
logs_dir = './micro/tensorboard_logs/decoder-plus-sft'
|
568
|
+
|
569
|
+
# 7. Basic callbacks - print loss, accuracy and number of processed tokens
|
570
|
+
print_cb = PrintLossCallback(batches_per_epoch=steps_per_epoch)
|
571
|
+
count_cb = TokenCounterCallback(5_000_000_000)
|
572
|
+
acc_cb = PrintAccuracyCallback()
|
573
|
+
|
574
|
+
# 8. Model save callback - used to save decoder and push it to HuggingFace Hub
|
575
|
+
save_cb = ModelSaveCallback(
|
576
|
+
'./micro/decoder-plus-sft',
|
577
|
+
push_to_hub=True,
|
578
|
+
hub_model_id='Your decoder model id',
|
579
|
+
push_checkpoint_weights=True, # push epoch checkpoints to hub
|
580
|
+
final_commit_message='Final commit message',
|
581
|
+
private_repo=False, # use HF private repository
|
582
|
+
save_checkpoint_after_n_batches=1000, # save model after N batches in epoch (batch checkpoint)
|
583
|
+
push_batch_checkpoint=True, # push batch checkpoints to HF Hub
|
584
|
+
hf_token='HF_TOKEN',
|
585
|
+
use_ddp=False, # use distributed training mode
|
586
|
+
)
|
587
|
+
|
588
|
+
# 9. Init Autoregressive Trainer
|
589
|
+
trainer = AutoregressiveTrainer(
|
590
|
+
decoder,
|
591
|
+
device,
|
592
|
+
dataset=train_dataset,
|
593
|
+
validation_dataset=valid_dataset,
|
594
|
+
vocab_size=vocab_size,
|
595
|
+
callbacks=[print_cb, acc_cb, count_cb, save_cb],
|
596
|
+
use_amp=True,
|
597
|
+
dtype=torch.bfloat16,
|
598
|
+
log_dir=logs_dir,
|
599
|
+
use_moe_aux_loss=True, # Add MoE Router auxiliary loss to main loss
|
600
|
+
moe_aux_loss_scale=0.02, # MoE Router aux loss scale
|
601
|
+
use_ddp=False, # use distributed training mode
|
602
|
+
)
|
603
|
+
|
604
|
+
# 10. Init optimizer and cosine annealing scheduler
|
605
|
+
optimizer = torch.optim.AdamW(decoder.parameters(), lr=peak_lr, weight_decay=0.02)
|
606
|
+
scheduler = get_transformer_lr_scheduler(
|
607
|
+
optimizer,
|
608
|
+
warmup_steps=warmup_steps,
|
609
|
+
num_training_steps=total_steps
|
610
|
+
)
|
611
|
+
|
612
|
+
# 11. Run the training for the selected number of epochs
|
613
|
+
trainer(epochs=epochs, batch_size=batch_size, optimizer=optimizer, scheduler=scheduler)
|
614
|
+
```
|
615
|
+
|
616
|
+
##### Fine-tuning
|
617
|
+
For _**Interaction Supervised Fine-Tuning**_, the code is almost the same as for pre-training, with some small changes.
|
618
|
+
|
619
|
+
First, we have to load pre-trained models, instead of initializing them with configs:
|
620
|
+
```python
|
621
|
+
encoder = RxTAlphaEncoder.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-Encoder', token='HF_TOKEN')
|
622
|
+
decoder = RxTAlphaDecoder.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-Decoder', token='HF_TOKEN')
|
623
|
+
head = MLMHead.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-MLM', token='HF_TOKEN')
|
624
|
+
```
|
625
|
+
|
626
|
+
Then, we have to change the datasets loading part. For encoder:
|
627
|
+
```python
|
628
|
+
# 1. Load datasets
|
629
|
+
train_dataset = EncoderSftDataset.from_hf_hub('ReactiveAI/TinyStories-Plus-Interaction-SFT', tokenizer=tokenizer, max_seq_len=seq_len)
|
630
|
+
valid_dataset = EncoderSftDataset.from_hf_hub('ReactiveAI/TinyStories-Plus-Interaction-SFT', split="validation", tokenizer=tokenizer, max_seq_len=seq_len)
|
631
|
+
|
632
|
+
# 2. Pre-tokenize dataset with verbose logging (optional)
|
633
|
+
train_dataset.pre_tokenize(verbose=True, log_interval=5000)
|
634
|
+
valid_dataset.pre_tokenize(verbose=True, log_interval=1000)
|
635
|
+
```
|
636
|
+
And the same for decoder:
|
637
|
+
```python
|
638
|
+
# 1. Load datasets
|
639
|
+
train_dataset = DecoderSftDataset.from_hf_hub('ReactiveAI/TinyStories-Plus-Interaction-SFT', tokenizer=tokenizer, max_seq_len=seq_len)
|
640
|
+
valid_dataset = DecoderSftDataset.from_hf_hub('ReactiveAI/TinyStories-Plus-Interaction-SFT', split="validation", tokenizer=tokenizer, max_seq_len=seq_len)
|
641
|
+
|
642
|
+
# 2. Pre-tokenize dataset with verbose logging (optional)
|
643
|
+
train_dataset.pre_tokenize(verbose=True, log_interval=5000)
|
644
|
+
valid_dataset.pre_tokenize(verbose=True, log_interval=1000)
|
645
|
+
```
|
646
|
+
|
647
|
+
We could also add early stoppage callback:
|
648
|
+
```python
|
649
|
+
from rxnn.training.callbacks import EarlyStoppageCallback
|
650
|
+
|
651
|
+
stop_cb = EarlyStoppageCallback(num_plateau_epochs=5)
|
652
|
+
```
|
653
|
+
|
654
|
+
Additionally, in fine-tuning we will rather use different config for number of epochs, steps, learning rate, etc.
|
655
|
+
|
656
|
+
> #### Classic Transformer Training
|
657
|
+
> The same code could be used also to train classic decoder-only or encoder-only transformers, the only difference is
|
658
|
+
> that they don't require memory cross-attention freezing.
|
659
|
+
|
660
|
+
##### Joint Training
|
661
|
+
There are also `JointLMDataset` and `JointLMTrainer` classes to train encoder and decoder at once. In that case, embeddings
|
662
|
+
are updated from both encoder and decoder optimization. However, I noticed some issues with balancing training in that mode,
|
663
|
+
so it's **not recommended** now, until it will be tested and fixed
|
664
|
+
|
665
|
+
#### Memory Reinforcement Learning
|
666
|
+
**Memory Reinforcement Learning (MRL)** is the most important training stage for reactive model's **Attention-Based Memory System**.
|
667
|
+
In this stage we are training model to remember information between multiple interactions, with different curriculum stage
|
668
|
+
configs. Theoretical foundations are described in [research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/ReactiveTransformer/mrl.md).
|
669
|
+
|
670
|
+
> **MRL** algorithm is currently in tests and still a lot of things could be changed!
|
671
|
+
|
672
|
+
In practice, algorithm has over 50 hyperparams, so it require careful handling. We start from importing modules, loading
|
673
|
+
pre-trained models from SFT stage, initializing new Memory Attention, and actor and critic models:
|
674
|
+
```python
|
675
|
+
import torch
|
676
|
+
from rxnn.rxt.models import RxTAlphaDecoder, RxTAlphaEncoder, RxTAlphaMemoryAttention
|
677
|
+
from rxnn.training.tokenizer import load_tokenizer_from_hf_hub
|
678
|
+
from rxnn.training.dataset import MrlDatasets
|
679
|
+
from rxnn.training.models import MrlActorModel, MrlCriticModel
|
680
|
+
from rxnn.training.reward import MrlRewardModel
|
681
|
+
from rxnn.training.mrl import MRLTrainer, CurriculumConfig, MrlStrategy, MrlConfig
|
682
|
+
from rxnn.training.rl import PPOAlgorithm, PPOConfig
|
683
|
+
from rxnn.training.callbacks import MrlPrintCallback, MrlEarlyStoppageCallback, MrlModelSaveCallback, MrlGeneratedTokensCallback
|
684
|
+
from rxnn.utils import set_random_seed
|
685
|
+
|
686
|
+
# 1. Set random seed, batch size and embed dim
|
687
|
+
set_random_seed(42)
|
688
|
+
batch_size = 64
|
689
|
+
embed_dim = 128
|
690
|
+
|
691
|
+
# 2. Get pre-trained microscale PoC models
|
692
|
+
decoder = RxTAlphaDecoder.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-Decoder-SFT', token='HF_TOKEN')
|
693
|
+
encoder = RxTAlphaEncoder.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-Encoder-SFT', token='HF_TOKEN')
|
694
|
+
# 3. Init Memory Attention Network
|
695
|
+
mem_attn = RxTAlphaMemoryAttention(
|
696
|
+
num_layers=10,
|
697
|
+
embed_dim=embed_dim,
|
698
|
+
att_heads=8,
|
699
|
+
seq_len=256,
|
700
|
+
stm_size=256,
|
701
|
+
use_flash_attention=False, # explicitly use flash-attn function (otherwise it's used through PyTorch backend)
|
702
|
+
norm_type='classic-rms', # memory norm type
|
703
|
+
att_groups=4, # key/value groups for SQA/GQA
|
704
|
+
att_type='sqa', # attention type, could be 'sqa', 'gqa', 'mqa' or 'mha'
|
705
|
+
att_query_groups=4, # query groups for SQA
|
706
|
+
)
|
707
|
+
|
708
|
+
# 4. Load shared embedding and memory from encoder to other models
|
709
|
+
decoder.load_shared_embedding(encoder.model.embedding)
|
710
|
+
encoder.model.stm.batched_memory(batch_size=batch_size, init_type='standard')
|
711
|
+
decoder.load_shared_memory(encoder.model.stm)
|
712
|
+
mem_attn.load_shared_memory(encoder.model.stm)
|
713
|
+
|
714
|
+
# 5. Init Actor model
|
715
|
+
actor = MrlActorModel(encoder, decoder, mem_attn)
|
716
|
+
|
717
|
+
# 6. Get pre-trained encoder, extend its context size, freeze memory and use as a body for Critic model
|
718
|
+
critic_encoder = RxTAlphaEncoder.from_pretrained('ReactiveAI/RxT-Alpha-Micro-Plus-Encoder-SFT', token='HF_TOKEN')
|
719
|
+
|
720
|
+
critic_encoder.update_max_len(512)
|
721
|
+
critic_encoder.freeze_memory()
|
722
|
+
# 7. Init Critic model
|
723
|
+
critic = MrlCriticModel(critic_encoder, embed_dim)
|
724
|
+
```
|
725
|
+
|
726
|
+
Then, we have to load tokenizer and MRL Datasets, and create _curriculum config_:
|
727
|
+
```python
|
728
|
+
# 1. Load tokenizer
|
729
|
+
tokenizer = load_tokenizer_from_hf_hub('ReactiveAI/RxT-Alpha-Micro-Plus-Decoder', token='HF_TOKEN')
|
730
|
+
|
731
|
+
# 2. Load PoC TinyStories based MRL Dataset, starting from 4 steps to 16 in long range, and pre-tokenize it
|
732
|
+
mrl_datasets = MrlDatasets.from_hf_hub(
|
733
|
+
'ReactiveAI/TinyStories-MRL',
|
734
|
+
tokenizer,
|
735
|
+
mrl_curriculum_steps=[
|
736
|
+
{ 'subset_name': 'steps-4', 'steps': 4, 'is_long_range': False },
|
737
|
+
{ 'subset_name': 'steps-6', 'steps': 6, 'is_long_range': False },
|
738
|
+
{ 'subset_name': 'steps-8', 'steps': 8, 'is_long_range': False },
|
739
|
+
{ 'subset_name': 'steps-8-lr', 'steps': 8, 'is_long_range': True },
|
740
|
+
{ 'subset_name': 'steps-12', 'steps': 12, 'is_long_range': True },
|
741
|
+
{ 'subset_name': 'steps-16', 'steps': 16, 'is_long_range': True },
|
742
|
+
],
|
743
|
+
eval_split='validation',
|
744
|
+
max_seq_len=256,
|
745
|
+
)
|
746
|
+
|
747
|
+
mrl_datasets.pre_tokenize(verbose=True, log_interval=100)
|
748
|
+
|
749
|
+
# 3. Create curriculum stages config
|
750
|
+
curriculum_stages = [CurriculumConfig(
|
751
|
+
steps=item['steps'], # number of steps in curriculum stage
|
752
|
+
epochs=10 if item['steps'] == 4 else 5, # number of epochs in curriculum stage
|
753
|
+
dataset=item['dataset'],
|
754
|
+
eval_dataset=item['eval_dataset'],
|
755
|
+
callbacks=[
|
756
|
+
MrlPrintCallback(), # Print loss/reward callback
|
757
|
+
MrlModelSaveCallback(
|
758
|
+
'./models',
|
759
|
+
push_to_hub=True,
|
760
|
+
hub_model_critic='Your critic model hub id',
|
761
|
+
hub_model_decoder='Your MRL decoder model hub id',
|
762
|
+
hub_model_encoder='Your MRL encoder model hub id',
|
763
|
+
hub_model_memory_attention='Your memory-attention model hub id',
|
764
|
+
private_repo=True,
|
765
|
+
hf_token='HF_TOKEN',
|
766
|
+
final_commit_message=f"MRL steps: {item['steps']} {'lr' if item['is_long_range'] else ''}",
|
767
|
+
push_checkpoint_weights=True,
|
768
|
+
) # MRL Model save callback - save and push to hub critic model and actor components
|
769
|
+
],
|
770
|
+
strategy=MrlStrategy.LONG_RANGE_STRATEGY if item['is_long_range'] else MrlStrategy.MULTI_STEP_STRATEGY, # strategy for curriculum stage
|
771
|
+
unfreeze_epoch=((2, 2e-5), (4, 8e-5), (6, 1e-5), 8) if item['steps'] == 4 else (0, 1, (2, 1e-6), 4), # unfreeze strategy config
|
772
|
+
random_resets=item['steps'] > 4, # enable random memory resets
|
773
|
+
random_resets_from=2, # epoch when random resets starts
|
774
|
+
random_resets_ratio=0.4 if item['steps'] != 4 else None, # probability of STM reset before episode
|
775
|
+
separate_memory_lr=True, # use separate memory LR in current curriculum stage
|
776
|
+
memory_lr=6e-4 if item['steps'] == 4 else None, # memory LR for curriculum stage, if None, use global config
|
777
|
+
lr=3e-4 if item['steps'] == 4 else None, # model LR for curriculum stage, if None, use global config
|
778
|
+
critic_lr=4e-4 if item['steps'] == 4 else None, # critic (head) LR for curriculum stage, if None, use global config
|
779
|
+
critic_encoder_lr=2e-4 if item['steps'] == 4 else None, # critic (encoder) LR for curriculum stage, if None, use global config
|
780
|
+
teacher_forcing=item['steps'] <= 8, # use teacher forcing - save reference answers from dataset in memory instead of generated ones
|
781
|
+
) for item in mrl_datasets]
|
782
|
+
```
|
783
|
+
|
784
|
+
After that, we have to configure reward model. It's based on BLEU scores and cosine similarity between generated answers
|
785
|
+
and saved data from previous steps and reference answers from dataset. Cosine similarity is also calculated from running
|
786
|
+
mean embedding of previous steps. Reward model also includes optional length reward. It's config includes a lot of option
|
787
|
+
to set different factors for different reward parts.
|
788
|
+
```python
|
789
|
+
# 1. Init GPU device
|
790
|
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
791
|
+
|
792
|
+
# 2. Create reward model
|
793
|
+
reward_model = MrlRewardModel(
|
794
|
+
encoder.model.embedding,
|
795
|
+
device,
|
796
|
+
bleu_with_saved_data=True, # use saved data (previous or first interaction) in BLEU calculation
|
797
|
+
reward_len=True, # use length reward in calculation (answer_len / target_len)
|
798
|
+
max_rewarded_len=None, # target length awarded as 1.0
|
799
|
+
neg_reward_len=True, # negative length reward - lower reward when answer is too long (target_len / answer_len)
|
800
|
+
target_len_as_ref=True, # use reference answer len as target
|
801
|
+
use_running_mean=True, # use running mean embedding of all previous answers in cosine similarity calculation
|
802
|
+
allow_not_summing_factors=False, # if True sum of reward factors could be different from 1.0, it's False by default
|
803
|
+
bleu_factor=0.4, # factor for BLEU score in standard reward
|
804
|
+
cos_factor=0.5, # factor for cosine similarity score in standard reward
|
805
|
+
len_factor=0.1, # factor for length reward score in standard reward
|
806
|
+
bleu_ref_factor=0.4, # factor for reference answer score in BLEU calculation (standard mode)
|
807
|
+
bleu_saved_factor=0.6, # factor for saved data score in BLEU calculation (standard mode)
|
808
|
+
cos_ref_factor=0.35, # factor for reference answer score in cosine sim calculation (standard mode)
|
809
|
+
cos_saved_factor=0.65, # factor for saved data score in cosine sim calculation (standard mode)
|
810
|
+
multi_cos_ref_factor=0.3, # factor for reference answer in multi-step cosine sim calculation
|
811
|
+
multi_cos_saved_factor= 0.5, # factor for saved data in multi-step cosine sim calculation
|
812
|
+
multi_cos_running_mean_factor = 0.2, # factor for previous answers running mean in multi-step cosine sim calculation
|
813
|
+
neg_bleu_factor=0.45, # factor for BLEU score in negative reward
|
814
|
+
neg_cos_factor=0.45, # factor for cosine similarity score in negative reward
|
815
|
+
neg_bleu_ref_factor=0.3, # factor for reference answer score in BLEU calculation (negative mode)
|
816
|
+
neg_bleu_saved_factor=0.7, # factor for saved data score in BLEU calculation (negative mode)
|
817
|
+
neg_cos_ref_factor=0.3, # factor for reference answer score in cosine sim calculation (negative mode)
|
818
|
+
neg_cos_saved_factor=0.7, # factor for saved data score in cosine sim calculation (negative mode)
|
819
|
+
bleu_ref_weights=(0.2, 0.2, 0.3, 0.3), # weights for n-grams in NLTK BLEU calculation for reference answers
|
820
|
+
bleu_saved_weights=(0.2, 0.2, 0.3, 0.3), # weights for n-grams in NLTK BLEU calculation for saved data
|
821
|
+
tanh_reward_scale=False, # scale rewards to -1.0 to 1.0 range, instead of standard 0.0-1.0
|
822
|
+
rewards_scale=1.0, # rewards scaling factor (reward * rewards_scale)
|
823
|
+
)
|
824
|
+
```
|
825
|
+
|
826
|
+
And finally, we could create the MRL Trainer with RL algorithm (currently only PPO available) and start the training:
|
827
|
+
```python
|
828
|
+
# 1. Init PPO Algorithm
|
829
|
+
algorithm = PPOAlgorithm(
|
830
|
+
PPOConfig(clip_eps=0.2, gae_lambda=0.95, gae_gamma=0.99, entropy_coef=0.01, critic_value_clip=50.0)
|
831
|
+
)
|
832
|
+
|
833
|
+
# 2. Create config for MRLTrainer (most of MrlConfig fields could be overwritten in each curriculum stage)
|
834
|
+
mrl_config = MrlConfig(
|
835
|
+
lr=1e-4, # main LR, used for decoder layers
|
836
|
+
encoder_lr=2e-4, # encoder LR, used for encoder layers (if None, lr is used)
|
837
|
+
critic_lr=2e-4, # critic LR, used for critic value head
|
838
|
+
critic_encoder_lr=1e-4, # critic encoder LR (if not set, critic_lr is used)
|
839
|
+
separate_memory_lr=True, # use separate LR for memory attention and memory cross-attention
|
840
|
+
encoder_memory_lr=5e-4, # LR for encoder memory cross-attention (if None, memory_lr is used)
|
841
|
+
memory_lr=3e-4, # memory LR, used for decoder memory cross-attention
|
842
|
+
memory_attn_lr=5e-4, # memory attention LR (if None, memory_lr is used)
|
843
|
+
max_seq_len=256, # maximum length of single interaction
|
844
|
+
critic_max_len=512, # maximum length of critic sequence (have to be longer than actor's context)
|
845
|
+
weight_decay=0.01, # weight decay for actor AdamW optimizer
|
846
|
+
critic_weight_decay=0.01, # weight decay for critic AdamW optimizer
|
847
|
+
update_epochs=10, # inner PPO update epochs
|
848
|
+
pad_token_id=0, # tokenizer padding token id
|
849
|
+
end_token_id=3, # tokenizer EOS token id
|
850
|
+
use_moe_aux_loss=True, # add Mixture-of-Experts Router auxiliary loss to policy loss
|
851
|
+
freeze_embeddings=False, # freeze pre-trained embeddings for MRL training
|
852
|
+
embedding_lr=5e-6, # LR for embeddings, if not frozen (if None, lr is used)
|
853
|
+
use_memory_warmup=False, # memory warmup - update memory with first interaction in no grad mode, before episode, for better initialization
|
854
|
+
)
|
855
|
+
|
856
|
+
# 3. Initialize MRL Trainer
|
857
|
+
trainer = MRLTrainer(
|
858
|
+
actor, critic, reward_model, device, mrl_config, algorithm,
|
859
|
+
use_amp=True, # use autocast in MRL Training
|
860
|
+
dtype=torch.bfloat16, # data type for MRL
|
861
|
+
use_ddp=False, # use distributed training with DDP
|
862
|
+
)
|
863
|
+
|
864
|
+
# 4. Train with curriculum stages config
|
865
|
+
trainer(curriculum_stages, batch_size=batch_size)
|
866
|
+
```
|
867
|
+
|
868
|
+
## Experimental attention layers
|
869
|
+
While working on reactive architectures, we also developed several new types of attention layers, some of which achieve
|
870
|
+
very promising results. Even considering that reactive models, processing single interactions, have much lower computational
|
871
|
+
requirements, we need the most efficient attention mechanisms, consistent with memory requirements. Since memory is not a
|
872
|
+
sequence but a set, spatial sparsity is probably not a good solution here, so we were looking for an efficient alternative
|
873
|
+
to Flex Attention with full access to all memory positions. New attention layers are implemented in `rxnn.experimental.attention`
|
874
|
+
module:
|
875
|
+
- **Grouped Mixture-of-Experts Attention (GMA)** - use MoE routing to dynamically select K active key/value heads for each token, instead
|
876
|
+
of using static selection in **GQA**. While it's theoretically interesting, in practice, it achieved worse results than **GQA**,
|
877
|
+
and even **MQA**, in all test, and is a lot slower because of routing overhead, so we abandoned further research. More details
|
878
|
+
in [research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/moe_attention.md)
|
879
|
+
- **Deep Mixture-of-Experts Attention (DMA)** - extends **GMA** with the same MoE routing for query heads. Like **GMA**,
|
880
|
+
it gives even worse results, and all the computational performance benefits from the sparse query heads (like in
|
881
|
+
**SQA**) are lost by routing overhead (lack of specialized kernels for heads selection), so the further research is also
|
882
|
+
abandoned. [Research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/moe_attention.md)
|
883
|
+
- **Hierarchical MoE Attention (HMA)** - extends **DMA/GMA**, using different number of query/key/value heads for tokens with
|
884
|
+
different priority. It's only the idea and is not implemented, because of poor results of GMA/DMA. [More info](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/hierarchical_moe_attention.md)
|
885
|
+
- **Sparse Query Attention (SQA)** - the most trivial extension to GQA, reducing not only the number of key/value heads, but
|
886
|
+
also the number of query heads. It results in even 2-3x faster model (for 32k/131k tokens). **SQA** is the fastest attention
|
887
|
+
mechanism for 0-131k sequence length, for longer sequences **Flex Attention** becomes faster. That's ideal for reactive models,
|
888
|
+
that doesn't need a million token context for single interaction processing. In tested cases **SQA** models results (loss/accuracy)
|
889
|
+
were close to GQA, differences were almost unnoticeable, but it still requires more tests. [Research docs](https://github.com/RxAI-dev/RxNN/blob/main/docs/research/sparse_query_attention.md)
|
890
|
+
- **Flex Sparse Query Attention (Flex-SQA)** - **Flex Attention** combined with **SQA** - enable handling 4-8x longer sliding
|
891
|
+
windows, in shorter time, than base **Flex**, so it should result in better results. **Flex-SQA** should be the fastest
|
892
|
+
attention mechanism for sequences longer than 131k tokens and is made for classic transformers, or potentially self-attention
|
893
|
+
in bigger reactive models. Currently, it's viable only with symmetric variants of **SQA** (same number of used query
|
894
|
+
and key/value heads), because kernels aren't compatible with GQA in sliding windows and not symmetric variants is 2x slower,
|
895
|
+
than it should be. Docs and tests in progress
|
896
|
+
|
897
|
+
### Test usage
|
898
|
+
Experimental attention layers could be tested with `ExperimentalAttentionTransformer` model from `rxnn.experimental.models`,
|
899
|
+
Usage example could be found in our notebooks repository - [RxNN Notebooks](https://github.com/RxAI-dev/rxnn-notebooks)
|
900
|
+
|
901
|
+
Apache License
|
902
|
+
Version 2.0, January 2004
|
903
|
+
http://www.apache.org/licenses/
|
904
|
+
|
905
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
906
|
+
|
907
|
+
1. Definitions.
|
908
|
+
|
909
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
910
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
911
|
+
|
912
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
913
|
+
the copyright owner that is granting the License.
|
914
|
+
|
915
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
916
|
+
other entities that control, are controlled by, or are under common
|
917
|
+
control with that entity. For the purposes of this definition,
|
918
|
+
"control" means (i) the power, direct or indirect, to cause the
|
919
|
+
direction or management of such entity, whether by contract or
|
920
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
921
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
922
|
+
|
923
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
924
|
+
exercising permissions granted by this License.
|
925
|
+
|
926
|
+
"Source" form shall mean the preferred form for making modifications,
|
927
|
+
including but not limited to software source code, documentation
|
928
|
+
source, and configuration files.
|
929
|
+
|
930
|
+
"Object" form shall mean any form resulting from mechanical
|
931
|
+
transformation or translation of a Source form, including but
|
932
|
+
not limited to compiled object code, generated documentation,
|
933
|
+
and conversions to other media types.
|
934
|
+
|
935
|
+
"Work" shall mean the work of authorship, whether in Source or
|
936
|
+
Object form, made available under the License, as indicated by a
|
937
|
+
notice that is included in or attached to the work
|
938
|
+
(an example is provided in the Appendix below).
|
939
|
+
|
940
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
941
|
+
form, that is based on (or derived from) the Work and for which the
|
942
|
+
editorial revisions, annotations, elaborations, or other modifications
|
943
|
+
represent, as a whole, an original work of authorship. For the purposes
|
944
|
+
of this License, Derivative Works shall not include works that remain
|
945
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
946
|
+
the Work and Derivative Works thereof.
|
947
|
+
|
948
|
+
"Contribution" shall mean any work of authorship, including
|
949
|
+
the original version of the Work and any modifications or additions
|
950
|
+
to that Work or Derivative Works thereof, that is intentionally
|
951
|
+
submitted to Licensor for inclusion in the Work by the owner
|
952
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
953
|
+
the owner. For the purposes of this definition, "submitted"
|
954
|
+
means any form of electronic, verbal, or written communication sent
|
955
|
+
to the Licensor or its representatives, including but not limited to
|
956
|
+
communication on electronic mailing lists, source code control systems,
|
957
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
958
|
+
Licensor for the purpose of discussing and improving the Work, but
|
959
|
+
excluding communication that is conspicuously marked or otherwise
|
960
|
+
designated in writing by the owner as "Not a Contribution."
|
961
|
+
|
962
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
963
|
+
on behalf of whom a Contribution has been received by Licensor and
|
964
|
+
subsequently incorporated within the Work.
|
965
|
+
|
966
|
+
2. Grant of License. Subject to the terms and conditions of
|
967
|
+
this License, each Contributor hereby grants to You a perpetual,
|
968
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
969
|
+
license to reproduce, prepare Derivative Works of,
|
970
|
+
publicly display, publicly perform, sublicense, and distribute the
|
971
|
+
Work and such Derivative Works in Source or Object form.
|
972
|
+
|
973
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
974
|
+
this License, each Contributor hereby grants to You a perpetual,
|
975
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
976
|
+
(except as stated in this section) patent license to make, have made,
|
977
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
978
|
+
where such license applies only to those patent claims licensable
|
979
|
+
by such Contributor that are necessarily infringed by their
|
980
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
981
|
+
with the Work to which such Contribution(s) was submitted. If You
|
982
|
+
institute patent litigation against any entity (including a
|
983
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
984
|
+
or a Contribution incorporated within the Work constitutes direct
|
985
|
+
or contributory patent infringement, then any patent licenses
|
986
|
+
granted to You under this License for that Work shall terminate
|
987
|
+
as of the date such litigation is filed.
|
988
|
+
|
989
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
990
|
+
Work or Derivative Works thereof in any medium, with or without
|
991
|
+
modifications, and in Source or Object form, provided that You
|
992
|
+
meet the following conditions:
|
993
|
+
|
994
|
+
(a) You must give any other recipients of the Work or
|
995
|
+
Derivative Works a copy of this License; and
|
996
|
+
|
997
|
+
(b) You must cause any modified files to carry prominent notices
|
998
|
+
stating that You changed the files; and
|
999
|
+
|
1000
|
+
(c) You must retain, in the Source form of any Derivative Works
|
1001
|
+
that You distribute, all , patent, trademark, and
|
1002
|
+
attribution notices from the Source form of the Work,
|
1003
|
+
excluding those notices that do not pertain to any part of
|
1004
|
+
the Derivative Works; and
|
1005
|
+
|
1006
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
1007
|
+
distribution, then any Derivative Works that You distribute must
|
1008
|
+
include a readable copy of the attribution notices contained
|
1009
|
+
within such NOTICE file, excluding those notices that do not
|
1010
|
+
pertain to any part of the Derivative Works, in at least one
|
1011
|
+
of the following places: within a NOTICE text file distributed
|
1012
|
+
as part of the Derivative Works; within the Source form or
|
1013
|
+
documentation, if provided along with the Derivative Works; or,
|
1014
|
+
within a display generated by the Derivative Works, if and
|
1015
|
+
wherever such third-party notices normally appear. The contents
|
1016
|
+
of the NOTICE file are for informational purposes only and
|
1017
|
+
do not modify the License. You may add Your own attribution
|
1018
|
+
notices within Derivative Works that You distribute, alongside
|
1019
|
+
or as an addendum to the NOTICE text from the Work, provided
|
1020
|
+
that such additional attribution notices cannot be construed
|
1021
|
+
as modifying the License.
|
1022
|
+
|
1023
|
+
You may add Your own statement to Your modifications and
|
1024
|
+
may provide additional or different license terms and conditions
|
1025
|
+
for use, reproduction, or distribution of Your modifications, or
|
1026
|
+
for any such Derivative Works as a whole, provided Your use,
|
1027
|
+
reproduction, and distribution of the Work otherwise complies with
|
1028
|
+
the conditions stated in this License.
|
1029
|
+
|
1030
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
1031
|
+
any Contribution intentionally submitted for inclusion in the Work
|
1032
|
+
by You to the Licensor shall be under the terms and conditions of
|
1033
|
+
this License, without any additional terms or conditions.
|
1034
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
1035
|
+
the terms of any separate license agreement you may have executed
|
1036
|
+
with Licensor regarding such Contributions.
|
1037
|
+
|
1038
|
+
6. Trademarks. This License does not grant permission to use the trade
|
1039
|
+
names, trademarks, service marks, or product names of the Licensor,
|
1040
|
+
except as required for reasonable and customary use in describing the
|
1041
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
1042
|
+
|
1043
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
1044
|
+
agreed to in writing, Licensor provides the Work (and each
|
1045
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
1046
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
1047
|
+
implied, including, without limitation, any warranties or conditions
|
1048
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
1049
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
1050
|
+
appropriateness of using or redistributing the Work and assume any
|
1051
|
+
risks associated with Your exercise of permissions under this License.
|
1052
|
+
|
1053
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
1054
|
+
whether in tort (including negligence), contract, or otherwise,
|
1055
|
+
unless required by applicable law (such as deliberate and grossly
|
1056
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
1057
|
+
liable to You for damages, including any direct, indirect, special,
|
1058
|
+
incidental, or consequential damages of any character arising as a
|
1059
|
+
result of this License or out of the use or inability to use the
|
1060
|
+
Work (including but not limited to damages for loss of goodwill,
|
1061
|
+
work stoppage, computer failure or malfunction, or any and all
|
1062
|
+
other commercial damages or losses), even if such Contributor
|
1063
|
+
has been advised of the possibility of such damages.
|
1064
|
+
|
1065
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
1066
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
1067
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
1068
|
+
or other liability obligations and/or rights consistent with this
|
1069
|
+
License. However, in accepting such obligations, You may act only
|
1070
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
1071
|
+
of any other Contributor, and only if You agree to indemnify,
|
1072
|
+
defend, and hold each Contributor harmless for any liability
|
1073
|
+
incurred by, or claims asserted against, such Contributor by reason
|
1074
|
+
of your accepting any such warranty or additional liability.
|
1075
|
+
|
1076
|
+
END OF TERMS AND CONDITIONS
|
1077
|
+
|
1078
|
+
APPENDIX: How to apply the Apache License to your work.
|
1079
|
+
|
1080
|
+
To apply the Apache License to your work, attach the following
|
1081
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
1082
|
+
replaced with your own identifying information. (Don't include
|
1083
|
+
the brackets!) The text should be enclosed in the appropriate
|
1084
|
+
comment syntax for the file format. We also recommend that a
|
1085
|
+
file or class name and description of purpose be included on the
|
1086
|
+
same "printed page" as the copyright notice for easier
|
1087
|
+
identification within third-party archives.
|
1088
|
+
|
1089
|
+
Copyright 2024-2025 Adam Filipek
|
1090
|
+
|
1091
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
1092
|
+
you may not use this file except in compliance with the License.
|
1093
|
+
You may obtain a copy of the License at
|
1094
|
+
|
1095
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
1096
|
+
|
1097
|
+
Unless required by applicable law or agreed to in writing, software
|
1098
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
1099
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
1100
|
+
See the License for the specific language governing permissions and
|
1101
|
+
limitations under the License.
|
1102
|
+
|