ripperdoc 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,223 @@
1
+ """Enter plan mode tool for complex task planning.
2
+
3
+ This tool allows the AI to request entering plan mode for complex tasks
4
+ that require careful exploration and design before implementation.
5
+ """
6
+
7
+ from __future__ import annotations
8
+
9
+ from textwrap import dedent
10
+ from typing import AsyncGenerator, Optional
11
+
12
+ from pydantic import BaseModel
13
+
14
+ from ripperdoc.core.tool import (
15
+ Tool,
16
+ ToolOutput,
17
+ ToolResult,
18
+ ToolUseContext,
19
+ ValidationResult,
20
+ )
21
+ from ripperdoc.utils.log import get_logger
22
+
23
+ logger = get_logger()
24
+
25
+ TOOL_NAME = "EnterPlanMode"
26
+ ASK_USER_QUESTION_TOOL = "AskUserQuestion"
27
+
28
+ ENTER_PLAN_MODE_PROMPT = dedent(
29
+ """\
30
+ Use this tool when you encounter a complex task that requires careful planning and exploration before implementation. This tool transitions you into plan mode where you can thoroughly explore the codebase and design an implementation approach.
31
+
32
+ ## When to Use This Tool
33
+
34
+ Use EnterPlanMode when ANY of these conditions apply:
35
+
36
+ 1. **Multiple Valid Approaches**: The task can be solved in several different ways, each with trade-offs
37
+ - Example: "Add caching to the API" - could use Redis, in-memory, file-based, etc.
38
+ - Example: "Improve performance" - many optimization strategies possible
39
+
40
+ 2. **Significant Architectural Decisions**: The task requires choosing between architectural patterns
41
+ - Example: "Add real-time updates" - WebSockets vs SSE vs polling
42
+ - Example: "Implement state management" - Redux vs Context vs custom solution
43
+
44
+ 3. **Large-Scale Changes**: The task touches many files or systems
45
+ - Example: "Refactor the authentication system"
46
+ - Example: "Migrate from REST to GraphQL"
47
+
48
+ 4. **Unclear Requirements**: You need to explore before understanding the full scope
49
+ - Example: "Make the app faster" - need to profile and identify bottlenecks
50
+ - Example: "Fix the bug in checkout" - need to investigate root cause
51
+
52
+ 5. **User Input Needed**: You'll need to ask clarifying questions before starting
53
+ - If you would use {ask_tool} to clarify the approach, consider EnterPlanMode instead
54
+ - Plan mode lets you explore first, then present options with context
55
+
56
+ ## When NOT to Use This Tool
57
+
58
+ Do NOT use EnterPlanMode for:
59
+ - Simple, straightforward tasks with obvious implementation
60
+ - Small bug fixes where the solution is clear
61
+ - Adding a single function or small feature
62
+ - Tasks you're already confident how to implement
63
+ - Research-only tasks (use the Task tool with explore agent instead)
64
+
65
+ ## What Happens in Plan Mode
66
+
67
+ In plan mode, you'll:
68
+ 1. Thoroughly explore the codebase using Glob, Grep, and Read tools
69
+ 2. Understand existing patterns and architecture
70
+ 3. Design an implementation approach
71
+ 4. Present your plan to the user for approval
72
+ 5. Use {ask_tool} if you need to clarify approaches
73
+ 6. Exit plan mode with ExitPlanMode when ready to implement
74
+
75
+ ## Examples
76
+
77
+ ### GOOD - Use EnterPlanMode:
78
+ User: "Add user authentication to the app"
79
+ - This requires architectural decisions (session vs JWT, where to store tokens, middleware structure)
80
+
81
+ User: "Optimize the database queries"
82
+ - Multiple approaches possible, need to profile first, significant impact
83
+
84
+ User: "Implement dark mode"
85
+ - Architectural decision on theme system, affects many components
86
+
87
+ ### BAD - Don't use EnterPlanMode:
88
+ User: "Fix the typo in the README"
89
+ - Straightforward, no planning needed
90
+
91
+ User: "Add a console.log to debug this function"
92
+ - Simple, obvious implementation
93
+
94
+ User: "What files handle routing?"
95
+ - Research task, not implementation planning
96
+
97
+ ## Important Notes
98
+
99
+ - This tool REQUIRES user approval - they must consent to entering plan mode
100
+ - Be thoughtful about when to use it - unnecessary plan mode slows down simple tasks
101
+ - If unsure whether to use it, err on the side of starting implementation
102
+ - You can always ask the user "Would you like me to plan this out first?"
103
+ """
104
+ ).format(ask_tool=ASK_USER_QUESTION_TOOL)
105
+
106
+
107
+ PLAN_MODE_INSTRUCTIONS = dedent(
108
+ """\
109
+ In plan mode, you should:
110
+ 1. Thoroughly explore the codebase to understand existing patterns
111
+ 2. Identify similar features and architectural approaches
112
+ 3. Consider multiple approaches and their trade-offs
113
+ 4. Use AskUserQuestion if you need to clarify the approach
114
+ 5. Design a concrete implementation strategy
115
+ 6. When ready, use ExitPlanMode to present your plan for approval
116
+
117
+ Remember: DO NOT write or edit any files yet. This is a read-only exploration and planning phase."""
118
+ )
119
+
120
+
121
+ class EnterPlanModeToolInput(BaseModel):
122
+ """Input for the EnterPlanMode tool.
123
+
124
+ This tool takes no input parameters - it simply requests to enter plan mode.
125
+ """
126
+
127
+ pass
128
+
129
+
130
+ class EnterPlanModeToolOutput(BaseModel):
131
+ """Output from the EnterPlanMode tool."""
132
+
133
+ message: str
134
+ entered: bool = True
135
+
136
+
137
+ class EnterPlanModeTool(Tool[EnterPlanModeToolInput, EnterPlanModeToolOutput]):
138
+ """Tool for entering plan mode for complex tasks."""
139
+
140
+ @property
141
+ def name(self) -> str:
142
+ return TOOL_NAME
143
+
144
+ async def description(self) -> str:
145
+ return (
146
+ "Requests permission to enter plan mode for complex tasks "
147
+ "requiring exploration and design"
148
+ )
149
+
150
+ @property
151
+ def input_schema(self) -> type[EnterPlanModeToolInput]:
152
+ return EnterPlanModeToolInput
153
+
154
+ async def prompt(self, safe_mode: bool = False) -> str: # noqa: ARG002
155
+ return ENTER_PLAN_MODE_PROMPT
156
+
157
+ def user_facing_name(self) -> str:
158
+ return ""
159
+
160
+ def is_read_only(self) -> bool:
161
+ return True
162
+
163
+ def is_concurrency_safe(self) -> bool:
164
+ return True
165
+
166
+ def needs_permissions(
167
+ self, input_data: Optional[EnterPlanModeToolInput] = None # noqa: ARG002
168
+ ) -> bool:
169
+ return True
170
+
171
+ async def validate_input(
172
+ self,
173
+ input_data: EnterPlanModeToolInput,
174
+ context: Optional[ToolUseContext] = None,
175
+ ) -> ValidationResult:
176
+ """Validate that this tool is not being used in an agent context."""
177
+ if context and context.agent_id:
178
+ return ValidationResult(
179
+ result=False,
180
+ message="EnterPlanMode tool cannot be used in agent contexts",
181
+ )
182
+ return ValidationResult(result=True)
183
+
184
+ def render_result_for_assistant(self, output: EnterPlanModeToolOutput) -> str:
185
+ """Render the tool output for the AI assistant."""
186
+ if not output.entered:
187
+ return "User declined to enter plan mode. Continue with normal implementation."
188
+ return f"{output.message}\n\n{PLAN_MODE_INSTRUCTIONS}"
189
+
190
+ def render_tool_use_message(
191
+ self, input_data: EnterPlanModeToolInput, verbose: bool = False # noqa: ARG002
192
+ ) -> str:
193
+ """Render the tool use message for display."""
194
+ return "Requesting to enter plan mode"
195
+
196
+ async def call(
197
+ self,
198
+ input_data: EnterPlanModeToolInput, # noqa: ARG002
199
+ context: ToolUseContext,
200
+ ) -> AsyncGenerator[ToolOutput, None]:
201
+ """Execute the tool to enter plan mode."""
202
+ if context.agent_id:
203
+ output = EnterPlanModeToolOutput(
204
+ message="EnterPlanMode tool cannot be used in agent contexts",
205
+ entered=False,
206
+ )
207
+ yield ToolResult(
208
+ data=output,
209
+ result_for_assistant=self.render_result_for_assistant(output),
210
+ )
211
+ return
212
+
213
+ output = EnterPlanModeToolOutput(
214
+ message=(
215
+ "Entered plan mode. You should now focus on exploring "
216
+ "the codebase and designing an implementation approach."
217
+ ),
218
+ entered=True,
219
+ )
220
+ yield ToolResult(
221
+ data=output,
222
+ result_for_assistant=self.render_result_for_assistant(output),
223
+ )
@@ -0,0 +1,150 @@
1
+ """Exit plan mode tool for presenting implementation plans.
2
+
3
+ This tool allows the AI to exit plan mode and present an implementation
4
+ plan to the user for approval before starting to code.
5
+ """
6
+
7
+ from __future__ import annotations
8
+
9
+ from textwrap import dedent
10
+ from typing import AsyncGenerator, Optional
11
+
12
+ from pydantic import BaseModel, Field
13
+
14
+ from ripperdoc.core.tool import (
15
+ Tool,
16
+ ToolOutput,
17
+ ToolResult,
18
+ ToolUseContext,
19
+ ValidationResult,
20
+ )
21
+ from ripperdoc.utils.log import get_logger
22
+
23
+ logger = get_logger()
24
+
25
+ TOOL_NAME = "ExitPlanMode"
26
+
27
+ EXIT_PLAN_MODE_PROMPT = dedent(
28
+ """\
29
+ Use this tool when you are in plan mode and have finished writing your plan to the plan file and are ready for user approval.
30
+
31
+ ## How This Tool Works
32
+ - You should have already written your plan to the plan file specified in the plan mode system message
33
+ - This tool does NOT take the plan content as a parameter - it will read the plan from the file you wrote
34
+ - This tool simply signals that you're done planning and ready for the user to review and approve
35
+ - The user will see the contents of your plan file when they review it
36
+
37
+ ## When to Use This Tool
38
+ IMPORTANT: Only use this tool when the task requires planning the implementation steps of a task that requires writing code. For research tasks where you're gathering information, searching files, reading files or in general trying to understand the codebase - do NOT use this tool.
39
+
40
+ ## Handling Ambiguity in Plans
41
+ Before using this tool, ensure your plan is clear and unambiguous. If there are multiple valid approaches or unclear requirements:
42
+ 1. Use the AskUserQuestion tool to clarify with the user
43
+ 2. Ask about specific implementation choices (e.g., architectural patterns, which library to use)
44
+ 3. Clarify any assumptions that could affect the implementation
45
+ 4. Edit your plan file to incorporate user feedback
46
+ 5. Only proceed with ExitPlanMode after resolving ambiguities and updating the plan file
47
+
48
+ ## Examples
49
+
50
+ 1. Initial task: "Search for and understand the implementation of vim mode in the codebase" - Do not use the exit plan mode tool because you are not planning the implementation steps of a task.
51
+ 2. Initial task: "Help me implement yank mode for vim" - Use the exit plan mode tool after you have finished planning the implementation steps of the task.
52
+ 3. Initial task: "Add a new feature to handle user authentication" - If unsure about auth method (OAuth, JWT, etc.), use AskUserQuestion first, then use exit plan mode tool after clarifying the approach.
53
+ """
54
+ )
55
+
56
+
57
+ class ExitPlanModeToolInput(BaseModel):
58
+ """Input for the ExitPlanMode tool."""
59
+
60
+ plan: str = Field(
61
+ description="The plan you came up with, that you want to run by the user for approval. "
62
+ "Supports markdown. The plan should be pretty concise."
63
+ )
64
+
65
+
66
+ class ExitPlanModeToolOutput(BaseModel):
67
+ """Output from the ExitPlanMode tool."""
68
+
69
+ plan: str
70
+ is_agent: bool = False
71
+
72
+
73
+ class ExitPlanModeTool(Tool[ExitPlanModeToolInput, ExitPlanModeToolOutput]):
74
+ """Tool for exiting plan mode and presenting a plan for approval."""
75
+
76
+ @property
77
+ def name(self) -> str:
78
+ return TOOL_NAME
79
+
80
+ async def description(self) -> str:
81
+ return "Prompts the user to exit plan mode and start coding"
82
+
83
+ @property
84
+ def input_schema(self) -> type[ExitPlanModeToolInput]:
85
+ return ExitPlanModeToolInput
86
+
87
+ async def prompt(self, safe_mode: bool = False) -> str: # noqa: ARG002
88
+ return EXIT_PLAN_MODE_PROMPT
89
+
90
+ def user_facing_name(self) -> str:
91
+ return "Exit plan mode"
92
+
93
+ def is_read_only(self) -> bool:
94
+ return True
95
+
96
+ def is_concurrency_safe(self) -> bool:
97
+ return True
98
+
99
+ def needs_permissions(
100
+ self, input_data: Optional[ExitPlanModeToolInput] = None # noqa: ARG002
101
+ ) -> bool:
102
+ return True
103
+
104
+ async def validate_input(
105
+ self,
106
+ input_data: ExitPlanModeToolInput,
107
+ context: Optional[ToolUseContext] = None, # noqa: ARG002
108
+ ) -> ValidationResult:
109
+ """Validate that plan is not empty."""
110
+ if not input_data.plan or not input_data.plan.strip():
111
+ return ValidationResult(
112
+ result=False,
113
+ message="Plan cannot be empty",
114
+ )
115
+ return ValidationResult(result=True)
116
+
117
+ def render_result_for_assistant(self, output: ExitPlanModeToolOutput) -> str:
118
+ """Render the tool output for the AI assistant."""
119
+ return f"Exit plan mode and start coding now. Plan:\n{output.plan}"
120
+
121
+ def render_tool_use_message(
122
+ self, input_data: ExitPlanModeToolInput, verbose: bool = False # noqa: ARG002
123
+ ) -> str:
124
+ """Render the tool use message for display."""
125
+ plan = input_data.plan
126
+ snippet = f"{plan[:77]}..." if len(plan) > 80 else plan
127
+ return f"Share plan for approval: {snippet}"
128
+
129
+ async def call(
130
+ self,
131
+ input_data: ExitPlanModeToolInput,
132
+ context: ToolUseContext,
133
+ ) -> AsyncGenerator[ToolOutput, None]:
134
+ """Execute the tool to exit plan mode."""
135
+ # Invoke the exit plan mode callback if available
136
+ if context.on_exit_plan_mode:
137
+ try:
138
+ context.on_exit_plan_mode()
139
+ except Exception:
140
+ logger.debug("[exit_plan_mode_tool] Failed to call on_exit_plan_mode")
141
+
142
+ is_agent = bool(context.agent_id)
143
+ output = ExitPlanModeToolOutput(
144
+ plan=input_data.plan,
145
+ is_agent=is_agent,
146
+ )
147
+ yield ToolResult(
148
+ data=output,
149
+ result_for_assistant=self.render_result_for_assistant(output),
150
+ )
@@ -30,6 +30,7 @@ from ripperdoc.utils.mcp import (
30
30
  load_mcp_servers_async,
31
31
  shutdown_mcp_runtime,
32
32
  )
33
+ from ripperdoc.utils.token_estimation import estimate_tokens
33
34
 
34
35
 
35
36
  logger = get_logger()
@@ -40,6 +41,55 @@ except Exception: # pragma: no cover - SDK may be missing at runtime
40
41
  mcp_types = None # type: ignore[assignment]
41
42
  logger.exception("[mcp_tools] MCP SDK unavailable during import")
42
43
 
44
+ DEFAULT_MAX_MCP_OUTPUT_TOKENS = 25_000
45
+ MIN_MCP_OUTPUT_TOKENS = 1_000
46
+ DEFAULT_MCP_WARNING_FRACTION = 0.8
47
+
48
+
49
+ def _get_mcp_token_limits() -> tuple[int, int]:
50
+ """Compute warning and hard limits for MCP output size."""
51
+ max_tokens = os.getenv("RIPPERDOC_MCP_MAX_OUTPUT_TOKENS")
52
+ try:
53
+ max_tokens_int = int(max_tokens) if max_tokens else DEFAULT_MAX_MCP_OUTPUT_TOKENS
54
+ except (TypeError, ValueError):
55
+ max_tokens_int = DEFAULT_MAX_MCP_OUTPUT_TOKENS
56
+ max_tokens_int = max(MIN_MCP_OUTPUT_TOKENS, max_tokens_int)
57
+
58
+ warn_env = os.getenv("RIPPERDOC_MCP_WARNING_TOKENS")
59
+ try:
60
+ warn_tokens_int = int(warn_env) if warn_env else int(max_tokens_int * DEFAULT_MCP_WARNING_FRACTION)
61
+ except (TypeError, ValueError):
62
+ warn_tokens_int = int(max_tokens_int * DEFAULT_MCP_WARNING_FRACTION)
63
+ warn_tokens_int = max(MIN_MCP_OUTPUT_TOKENS, min(warn_tokens_int, max_tokens_int))
64
+ return warn_tokens_int, max_tokens_int
65
+
66
+
67
+ def _evaluate_mcp_output_size(
68
+ result_text: Optional[str],
69
+ server_name: str,
70
+ tool_name: str,
71
+ ) -> tuple[Optional[str], Optional[str], int]:
72
+ """Return (warning, error, token_estimate) for an MCP result text."""
73
+ warn_tokens, max_tokens = _get_mcp_token_limits()
74
+ token_estimate = estimate_tokens(result_text or "")
75
+
76
+ if token_estimate > max_tokens:
77
+ error_text = (
78
+ f"MCP response from {server_name}:{tool_name} is ~{token_estimate:,} tokens, "
79
+ f"which exceeds the configured limit of {max_tokens}. "
80
+ "Refine the request (pagination/filtering) or raise RIPPERDOC_MCP_MAX_OUTPUT_TOKENS."
81
+ )
82
+ return None, error_text, token_estimate
83
+
84
+ warning_text = None
85
+ if result_text and token_estimate >= warn_tokens:
86
+ line_count = result_text.count("\n") + 1
87
+ warning_text = (
88
+ f"WARNING: Large MCP response (~{token_estimate:,} tokens, {line_count:,} lines). "
89
+ "This can fill the context quickly; consider pagination or filters."
90
+ )
91
+ return warning_text, None, token_estimate
92
+
43
93
 
44
94
  def _content_block_to_text(block: Any) -> str:
45
95
  block_type = getattr(block, "type", None) or (
@@ -370,6 +420,9 @@ class ReadMcpResourceOutput(BaseModel):
370
420
  uri: str
371
421
  content: Optional[str] = None
372
422
  contents: List[ResourceContentPart] = Field(default_factory=list)
423
+ token_estimate: Optional[int] = None
424
+ warning: Optional[str] = None
425
+ is_error: bool = False
373
426
 
374
427
 
375
428
  class McpToolCallOutput(BaseModel):
@@ -382,6 +435,8 @@ class McpToolCallOutput(BaseModel):
382
435
  content_blocks: Optional[List[Any]] = None
383
436
  structured_content: Optional[dict] = None
384
437
  is_error: bool = False
438
+ token_estimate: Optional[int] = None
439
+ warning: Optional[str] = None
385
440
 
386
441
 
387
442
  class ReadMcpResourceTool(Tool[ReadMcpResourceInput, ReadMcpResourceOutput]):
@@ -552,9 +607,35 @@ class ReadMcpResourceTool(Tool[ReadMcpResourceInput, ReadMcpResourceOutput]):
552
607
  read_result: Any = ReadMcpResourceOutput(
553
608
  server=input_data.server, uri=input_data.uri, content=content_text, contents=parts
554
609
  )
610
+ assistant_text = self.render_result_for_assistant(read_result) # type: ignore[arg-type]
611
+ warning_text, error_text, token_estimate = _evaluate_mcp_output_size(
612
+ assistant_text, input_data.server, f"resource:{input_data.uri}"
613
+ )
614
+
615
+ if error_text:
616
+ limited_result = ReadMcpResourceOutput(
617
+ server=input_data.server,
618
+ uri=input_data.uri,
619
+ content=None,
620
+ contents=[],
621
+ token_estimate=token_estimate,
622
+ warning=None,
623
+ is_error=True,
624
+ )
625
+ yield ToolResult(data=limited_result, result_for_assistant=error_text)
626
+ return
627
+
628
+ annotated_result = read_result.model_copy(
629
+ update={"token_estimate": token_estimate, "warning": warning_text}
630
+ )
631
+
632
+ final_text = assistant_text or ""
633
+ if not final_text and warning_text:
634
+ final_text = warning_text
635
+
555
636
  yield ToolResult(
556
- data=read_result,
557
- result_for_assistant=self.render_result_for_assistant(read_result), # type: ignore[arg-type]
637
+ data=annotated_result,
638
+ result_for_assistant=final_text, # type: ignore[arg-type]
558
639
  )
559
640
 
560
641
 
@@ -715,9 +796,37 @@ class DynamicMcpTool(Tool[BaseModel, McpToolCallOutput]):
715
796
  structured_content=structured,
716
797
  is_error=getattr(call_result, "isError", False),
717
798
  )
799
+ base_result_text = self.render_result_for_assistant(output)
800
+ warning_text, error_text, token_estimate = _evaluate_mcp_output_size(
801
+ base_result_text, self.server_name, self.tool_info.name
802
+ )
803
+
804
+ if error_text:
805
+ limited_output = McpToolCallOutput(
806
+ server=self.server_name,
807
+ tool=self.tool_info.name,
808
+ content=None,
809
+ text=None,
810
+ content_blocks=None,
811
+ structured_content=None,
812
+ is_error=True,
813
+ token_estimate=token_estimate,
814
+ warning=None,
815
+ )
816
+ yield ToolResult(data=limited_output, result_for_assistant=error_text)
817
+ return
818
+
819
+ annotated_output = output.model_copy(
820
+ update={"token_estimate": token_estimate, "warning": warning_text}
821
+ )
822
+
823
+ final_text = base_result_text or ""
824
+ if not final_text and warning_text:
825
+ final_text = warning_text
826
+
718
827
  yield ToolResult(
719
- data=output,
720
- result_for_assistant=self.render_result_for_assistant(output),
828
+ data=annotated_output,
829
+ result_for_assistant=final_text,
721
830
  )
722
831
  except Exception as exc: # pragma: no cover - runtime errors
723
832
  output = McpToolCallOutput(
@@ -10,6 +10,9 @@ from pydantic import BaseModel, Field
10
10
  from ripperdoc.core.agents import (
11
11
  AgentDefinition,
12
12
  AgentLoadResult,
13
+ FILE_EDIT_TOOL_NAME,
14
+ GREP_TOOL_NAME,
15
+ VIEW_TOOL_NAME,
13
16
  clear_agent_cache,
14
17
  load_agent_definitions,
15
18
  resolve_agent_tools,
@@ -70,12 +73,92 @@ class TaskTool(Tool[TaskToolInput, TaskToolOutput]):
70
73
  del safe_mode
71
74
  clear_agent_cache()
72
75
  agents: AgentLoadResult = load_agent_definitions()
73
- agent_lines = "\n".join(summarize_agent(agent) for agent in agents.active_agents)
76
+
77
+ agent_lines: List[str] = []
78
+ for agent in agents.active_agents:
79
+ properties = (
80
+ "Properties: access to current context; "
81
+ if getattr(agent, "fork_context", False)
82
+ else ""
83
+ )
84
+ tools_label = "All tools"
85
+ if getattr(agent, "tools", None):
86
+ tools_label = (
87
+ "All tools" if "*" in agent.tools else ", ".join(agent.tools)
88
+ )
89
+ agent_lines.append(
90
+ f"- {agent.agent_type}: {agent.when_to_use} ({properties}Tools: {tools_label})"
91
+ )
92
+
93
+ agent_block = "\n".join(agent_lines) or "- general-purpose (built-in)"
94
+
95
+ task_tool_name = self.name
96
+ file_read_tool_name = VIEW_TOOL_NAME
97
+ search_tool_name = GREP_TOOL_NAME
98
+ code_tool_name = FILE_EDIT_TOOL_NAME
99
+ background_fetch_tool_name = task_tool_name
100
+
74
101
  return (
75
- "Use this tool to delegate a well-scoped task to a subagent. "
76
- "Always set subagent_type to one of the available agent types below. "
77
- "Provide a detailed prompt so the agent can work autonomously and return a single, concise report.\n\n"
78
- f"Available agents:\n{agent_lines or '- general-purpose (built-in)'}"
102
+ f"Launch a new agent to handle complex, multi-step tasks autonomously. \n\n"
103
+ f"The {task_tool_name} tool launches specialized agents (subprocesses) that autonomously handle complex tasks. Each agent type has specific capabilities and tools available to it.\n\n"
104
+ f"Available agent types and the tools they have access to:\n"
105
+ f"{agent_block}\n\n"
106
+ f"When using the {task_tool_name} tool, you must specify a subagent_type parameter to select which agent type to use.\n\n"
107
+ f"When NOT to use the {task_tool_name} tool:\n"
108
+ f"- If you want to read a specific file path, use the {file_read_tool_name} or {search_tool_name} tool instead of the {task_tool_name} tool, to find the match more quickly\n"
109
+ f'- If you are searching for a specific class definition like "class Foo", use the {search_tool_name} tool instead, to find the match more quickly\n'
110
+ f"- If you are searching for code within a specific file or set of 2-3 files, use the {file_read_tool_name} tool instead of the {task_tool_name} tool, to find the match more quickly\n"
111
+ "- Other tasks that are not related to the agent descriptions above\n"
112
+ "\n"
113
+ "\n"
114
+ "Usage notes:\n"
115
+ "- Launch multiple agents concurrently whenever possible, to maximize performance; to do that, use a single message with multiple tool uses\n"
116
+ "- When the agent is done, it will return a single message back to you. The result returned by the agent is not visible to the user. To show the user the result, you should send a text message back to the user with a concise summary of the result.\n"
117
+ f"- You can optionally run agents in the background using the run_in_background parameter. When an agent runs in the background, you will need to use {background_fetch_tool_name} to retrieve its results once it's done. You can continue to work while background agents run - When you need their results to continue you can use {background_fetch_tool_name} in blocking mode to pause and wait for their results.\n"
118
+ "- Agents can be resumed using the `resume` parameter by passing the agent ID from a previous invocation. When resumed, the agent continues with its full previous context preserved. When NOT resuming, each invocation starts fresh and you should provide a detailed task description with all necessary context.\n"
119
+ "- When the agent is done, it will return a single message back to you along with its agent ID. You can use this ID to resume the agent later if needed for follow-up work.\n"
120
+ "- Provide clear, detailed prompts so the agent can work autonomously and return exactly the information you need.\n"
121
+ '- Agents with "access to current context" can see the full conversation history before the tool call. When using these agents, you can write concise prompts that reference earlier context (e.g., "investigate the error discussed above") instead of repeating information. The agent will receive all prior messages and understand the context.\n'
122
+ "- The agent's outputs should generally be trusted\n"
123
+ "- Clearly tell the agent whether you expect it to write code or just to do research (search, file reads, web fetches, etc.), since it is not aware of the user's intent\n"
124
+ "- If the agent description mentions that it should be used proactively, then you should try your best to use it without the user having to ask for it first. Use your judgement.\n"
125
+ f'- If the user specifies that they want you to run agents "in parallel", you MUST send a single message with multiple {task_tool_name} tool use content blocks. For example, if you need to launch both a code-reviewer agent and a test-runner agent in parallel, send a single message with both tool calls.\n'
126
+ "\n"
127
+ "Example usage:\n"
128
+ "\n"
129
+ "<example_agent_descriptions>\n"
130
+ '"code-reviewer": use this agent after you are done writing a signficant piece of code\n'
131
+ '"greeting-responder": use this agent when to respond to user greetings with a friendly joke\n'
132
+ "</example_agent_description>\n"
133
+ "\n"
134
+ "<example>\n"
135
+ 'user: "Please write a function that checks if a number is prime"\n'
136
+ "assistant: Sure let me write a function that checks if a number is prime\n"
137
+ f"assistant: First let me use the {code_tool_name} tool to write a function that checks if a number is prime\n"
138
+ f"assistant: I'm going to use the {code_tool_name} tool to write the following code:\n"
139
+ "<code>\n"
140
+ "function isPrime(n) {\n"
141
+ " if (n <= 1) return false\n"
142
+ " for (let i = 2; i * i <= n; i++) {\n"
143
+ " if (n % i === 0) return false\n"
144
+ " }\n"
145
+ " return true\n"
146
+ "}\n"
147
+ "</code>\n"
148
+ "<commentary>\n"
149
+ "Since a signficant piece of code was written and the task was completed, now use the code-reviewer agent to review the code\n"
150
+ "</commentary>\n"
151
+ "assistant: Now let me use the code-reviewer agent to review the code\n"
152
+ f"assistant: Uses the {task_tool_name} tool to launch the code-reviewer agent \n"
153
+ "</example>\n"
154
+ "\n"
155
+ "<example>\n"
156
+ 'user: "Hello"\n'
157
+ "<commentary>\n"
158
+ "Since the user is greeting, use the greeting-responder agent to respond with a friendly joke\n"
159
+ "</commentary>\n"
160
+ f'assistant: "I\'m going to use the {task_tool_name} tool to launch the greeting-responder agent\"\n'
161
+ "</example>"
79
162
  )
80
163
 
81
164
  def is_read_only(self) -> bool: