ripperdoc 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ripperdoc/__init__.py +1 -1
- ripperdoc/cli/commands/context_cmd.py +3 -3
- ripperdoc/cli/ui/rich_ui.py +35 -2
- ripperdoc/core/agents.py +160 -0
- ripperdoc/core/default_tools.py +6 -0
- ripperdoc/core/providers/__init__.py +31 -15
- ripperdoc/core/providers/anthropic.py +15 -4
- ripperdoc/core/providers/base.py +63 -14
- ripperdoc/core/providers/gemini.py +415 -91
- ripperdoc/core/providers/openai.py +125 -14
- ripperdoc/core/query.py +7 -1
- ripperdoc/core/query_utils.py +1 -1
- ripperdoc/core/system_prompt.py +67 -61
- ripperdoc/core/tool.py +7 -0
- ripperdoc/tools/ask_user_question_tool.py +433 -0
- ripperdoc/tools/background_shell.py +70 -20
- ripperdoc/tools/enter_plan_mode_tool.py +223 -0
- ripperdoc/tools/exit_plan_mode_tool.py +150 -0
- ripperdoc/tools/mcp_tools.py +113 -4
- ripperdoc/tools/task_tool.py +88 -5
- ripperdoc/utils/mcp.py +49 -10
- ripperdoc/utils/message_compaction.py +3 -5
- ripperdoc/utils/token_estimation.py +33 -0
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/METADATA +3 -1
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/RECORD +29 -25
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/WHEEL +0 -0
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/entry_points.txt +0 -0
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {ripperdoc-0.2.3.dist-info → ripperdoc-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -1,10 +1,13 @@
|
|
|
1
|
-
"""Gemini provider client."""
|
|
1
|
+
"""Gemini provider client with function/tool calling support."""
|
|
2
2
|
|
|
3
3
|
from __future__ import annotations
|
|
4
4
|
|
|
5
|
+
import copy
|
|
6
|
+
import inspect
|
|
5
7
|
import os
|
|
6
8
|
import time
|
|
7
|
-
from typing import Any, Dict, List, Optional
|
|
9
|
+
from typing import Any, AsyncIterable, AsyncIterator, Dict, List, Optional, Tuple, cast
|
|
10
|
+
from uuid import uuid4
|
|
8
11
|
|
|
9
12
|
from ripperdoc.core.config import ModelProfile
|
|
10
13
|
from ripperdoc.core.providers.base import (
|
|
@@ -12,43 +15,273 @@ from ripperdoc.core.providers.base import (
|
|
|
12
15
|
ProviderClient,
|
|
13
16
|
ProviderResponse,
|
|
14
17
|
call_with_timeout_and_retries,
|
|
18
|
+
iter_with_timeout,
|
|
15
19
|
)
|
|
20
|
+
from ripperdoc.core.query_utils import _normalize_tool_args, build_tool_description
|
|
16
21
|
from ripperdoc.core.tool import Tool
|
|
17
22
|
from ripperdoc.utils.log import get_logger
|
|
23
|
+
from ripperdoc.utils.session_usage import record_usage
|
|
24
|
+
from ripperdoc.core.query_utils import estimate_cost_usd
|
|
18
25
|
|
|
19
26
|
logger = get_logger()
|
|
20
27
|
|
|
28
|
+
# Constants
|
|
29
|
+
GEMINI_SDK_IMPORT_ERROR = (
|
|
30
|
+
"Gemini client requires the 'google-genai' package. "
|
|
31
|
+
"Install it with: pip install google-genai"
|
|
32
|
+
)
|
|
33
|
+
GEMINI_MODELS_ENDPOINT_ERROR = "Gemini client is missing 'models' endpoint"
|
|
34
|
+
GEMINI_GENERATE_CONTENT_ERROR = "Gemini client is missing generate_content() method"
|
|
35
|
+
|
|
21
36
|
|
|
22
37
|
def _extract_usage_metadata(payload: Any) -> Dict[str, int]:
|
|
23
38
|
"""Best-effort token extraction from Gemini responses."""
|
|
24
39
|
usage = getattr(payload, "usage_metadata", None) or getattr(payload, "usageMetadata", None)
|
|
25
40
|
if not usage:
|
|
26
41
|
usage = getattr(payload, "usage", None)
|
|
27
|
-
|
|
42
|
+
if not usage and getattr(payload, "candidates", None):
|
|
43
|
+
usage = getattr(payload.candidates[0], "usage_metadata", None)
|
|
44
|
+
|
|
45
|
+
def safe_get_int(key: str) -> int:
|
|
46
|
+
"""Safely extract integer value from usage metadata."""
|
|
47
|
+
if not usage:
|
|
48
|
+
return 0
|
|
49
|
+
value = getattr(usage, key, 0)
|
|
50
|
+
return int(value) if value else 0
|
|
51
|
+
|
|
28
52
|
return {
|
|
29
|
-
"input_tokens":
|
|
30
|
-
"output_tokens":
|
|
31
|
-
"cache_read_input_tokens":
|
|
53
|
+
"input_tokens": safe_get_int("prompt_token_count") + safe_get_int("cached_content_token_count"),
|
|
54
|
+
"output_tokens": safe_get_int("candidates_token_count"),
|
|
55
|
+
"cache_read_input_tokens": safe_get_int("cached_content_token_count"),
|
|
32
56
|
"cache_creation_input_tokens": 0,
|
|
33
57
|
}
|
|
34
58
|
|
|
35
59
|
|
|
36
|
-
def
|
|
37
|
-
parts
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
60
|
+
def _collect_parts(candidate: Any) -> List[Any]:
|
|
61
|
+
"""Return a list of parts from a candidate regardless of SDK shape."""
|
|
62
|
+
content = getattr(candidate, "content", None)
|
|
63
|
+
if content is None:
|
|
64
|
+
return []
|
|
65
|
+
if hasattr(content, "parts"):
|
|
66
|
+
return list(getattr(content, "parts", []) or [])
|
|
67
|
+
if isinstance(content, list):
|
|
68
|
+
return content
|
|
69
|
+
return []
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
def _collect_text_from_parts(parts: List[Any]) -> str:
|
|
73
|
+
texts: List[str] = []
|
|
74
|
+
for part in parts:
|
|
75
|
+
text_val = getattr(part, "text", None) or getattr(part, "content", None) or getattr(
|
|
76
|
+
part, "raw_text", None
|
|
77
|
+
)
|
|
78
|
+
if isinstance(text_val, str):
|
|
79
|
+
texts.append(text_val)
|
|
80
|
+
return "".join(texts)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def _extract_function_calls(parts: List[Any]) -> List[Dict[str, Any]]:
|
|
84
|
+
calls: List[Dict[str, Any]] = []
|
|
85
|
+
for part in parts:
|
|
86
|
+
fn_call = getattr(part, "function_call", None) or getattr(part, "functionCall", None)
|
|
87
|
+
if not fn_call:
|
|
88
|
+
continue
|
|
89
|
+
name = getattr(fn_call, "name", None) or getattr(fn_call, "function_name", None)
|
|
90
|
+
args = getattr(fn_call, "args", None) or getattr(fn_call, "arguments", None) or {}
|
|
91
|
+
call_id = getattr(fn_call, "id", None) or getattr(fn_call, "call_id", None)
|
|
92
|
+
calls.append({"name": name, "args": _normalize_tool_args(args), "id": call_id})
|
|
93
|
+
return calls
|
|
94
|
+
|
|
95
|
+
|
|
96
|
+
def _flatten_schema(schema: Dict[str, Any]) -> Dict[str, Any]:
|
|
97
|
+
"""Inline $ref entries and drop $defs/$ref for Gemini Schema compatibility.
|
|
98
|
+
|
|
99
|
+
Gemini API doesn't support JSON Schema references, so this function
|
|
100
|
+
resolves all $ref pointers by inlining the referenced definitions.
|
|
101
|
+
"""
|
|
102
|
+
definitions = copy.deepcopy(schema.get("$defs") or schema.get("definitions") or {})
|
|
103
|
+
|
|
104
|
+
def _resolve(node: Any) -> Any:
|
|
105
|
+
"""Recursively resolve $ref pointers and remove unsupported fields."""
|
|
106
|
+
if isinstance(node, dict):
|
|
107
|
+
# Handle $ref resolution
|
|
108
|
+
ref = node.get("$ref")
|
|
109
|
+
if isinstance(ref, str) and ref.startswith("#/"):
|
|
110
|
+
ref_key = ref.split("/")[-1]
|
|
111
|
+
if ref_key in definitions:
|
|
112
|
+
return _resolve(copy.deepcopy(definitions[ref_key]))
|
|
113
|
+
|
|
114
|
+
# Process remaining fields, excluding schema metadata
|
|
115
|
+
resolved: Dict[str, Any] = {}
|
|
116
|
+
for key, value in node.items():
|
|
117
|
+
if key in {"$ref", "$defs", "definitions"}:
|
|
118
|
+
continue
|
|
119
|
+
resolved[key] = _resolve(value)
|
|
120
|
+
return resolved
|
|
121
|
+
|
|
122
|
+
if isinstance(node, list):
|
|
123
|
+
return [_resolve(item) for item in node]
|
|
124
|
+
|
|
125
|
+
return node
|
|
126
|
+
|
|
127
|
+
return cast(Dict[str, Any], _resolve(copy.deepcopy(schema)))
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
def _supports_stream_arg(fn: Any) -> bool:
|
|
131
|
+
"""Return True if the callable appears to accept a 'stream' kwarg."""
|
|
132
|
+
try:
|
|
133
|
+
sig = inspect.signature(fn)
|
|
134
|
+
except (TypeError, ValueError):
|
|
135
|
+
# If we cannot inspect, avoid passing stream to prevent TypeErrors.
|
|
136
|
+
return False
|
|
137
|
+
|
|
138
|
+
for param in sig.parameters.values():
|
|
139
|
+
if param.kind == param.VAR_KEYWORD:
|
|
140
|
+
return True
|
|
141
|
+
if param.name == "stream":
|
|
142
|
+
return True
|
|
143
|
+
return False
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
async def _async_build_tool_declarations(tools: List[Tool[Any, Any]]) -> List[Dict[str, Any]]:
|
|
147
|
+
declarations: List[Dict[str, Any]] = []
|
|
148
|
+
try:
|
|
149
|
+
from google.genai import types as genai_types # type: ignore
|
|
150
|
+
except Exception: # pragma: no cover - fallback when SDK not installed
|
|
151
|
+
genai_types = None
|
|
152
|
+
|
|
153
|
+
for tool in tools:
|
|
154
|
+
description = await build_tool_description(tool, include_examples=True, max_examples=2)
|
|
155
|
+
parameters_schema = _flatten_schema(tool.input_schema.model_json_schema())
|
|
156
|
+
if genai_types:
|
|
157
|
+
declarations.append(
|
|
158
|
+
genai_types.FunctionDeclaration(
|
|
159
|
+
name=tool.name,
|
|
160
|
+
description=description,
|
|
161
|
+
parameters=genai_types.Schema(**parameters_schema),
|
|
162
|
+
)
|
|
163
|
+
)
|
|
164
|
+
else:
|
|
165
|
+
declarations.append(
|
|
166
|
+
{"name": tool.name, "description": description, "parameters": parameters_schema}
|
|
167
|
+
)
|
|
168
|
+
return declarations
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
def _convert_messages_to_genai_contents(
|
|
172
|
+
normalized_messages: List[Dict[str, Any]],
|
|
173
|
+
) -> Tuple[List[Any], Dict[str, str]]:
|
|
174
|
+
"""Map normalized OpenAI-style messages to Gemini content payloads.
|
|
175
|
+
|
|
176
|
+
Returns:
|
|
177
|
+
contents: List of Content-like dicts/objects
|
|
178
|
+
tool_name_by_id: Map of tool_call_id -> function name (for pairing responses)
|
|
179
|
+
"""
|
|
180
|
+
tool_name_by_id: Dict[str, str] = {}
|
|
181
|
+
contents: List[Any] = []
|
|
182
|
+
|
|
183
|
+
# Lazy import to avoid hard dependency in tests.
|
|
184
|
+
try:
|
|
185
|
+
from google.genai import types as genai_types # type: ignore
|
|
186
|
+
except Exception: # pragma: no cover - fallback when SDK not installed
|
|
187
|
+
genai_types = None
|
|
188
|
+
|
|
189
|
+
def _mk_part_from_text(text: str) -> Any:
|
|
190
|
+
if genai_types:
|
|
191
|
+
return genai_types.Part(text=text)
|
|
192
|
+
return {"text": text}
|
|
193
|
+
|
|
194
|
+
def _mk_part_from_function_call(name: str, args: Dict[str, Any], call_id: Optional[str]) -> Any:
|
|
195
|
+
# Store mapping using actual call_id if available, otherwise generate one
|
|
196
|
+
actual_id = call_id or str(uuid4())
|
|
197
|
+
tool_name_by_id[actual_id] = name
|
|
198
|
+
if genai_types:
|
|
199
|
+
return genai_types.Part(function_call=genai_types.FunctionCall(name=name, args=args))
|
|
200
|
+
return {"function_call": {"name": name, "args": args, "id": actual_id}}
|
|
201
|
+
|
|
202
|
+
def _mk_part_from_function_response(
|
|
203
|
+
name: str, response: Dict[str, Any], call_id: Optional[str]
|
|
204
|
+
) -> Any:
|
|
205
|
+
if call_id:
|
|
206
|
+
response = {**response, "call_id": call_id}
|
|
207
|
+
if genai_types:
|
|
208
|
+
return genai_types.Part.from_function_response(name=name, response=response)
|
|
209
|
+
payload = {"function_response": {"name": name, "response": response}}
|
|
210
|
+
if call_id:
|
|
211
|
+
payload["function_response"]["id"] = call_id
|
|
212
|
+
return payload
|
|
213
|
+
|
|
214
|
+
def _mk_content(role: str, parts: List[Any]) -> Any:
|
|
215
|
+
if genai_types:
|
|
216
|
+
return genai_types.Content(role=role, parts=parts)
|
|
217
|
+
return {"role": role, "parts": parts}
|
|
218
|
+
|
|
219
|
+
for message in normalized_messages:
|
|
220
|
+
role = message.get("role") or ""
|
|
221
|
+
msg_parts: List[Any] = []
|
|
222
|
+
|
|
223
|
+
# Assistant tool calls
|
|
224
|
+
for tool_call in message.get("tool_calls") or []:
|
|
225
|
+
func = tool_call.get("function") or {}
|
|
226
|
+
name = func.get("name") or ""
|
|
227
|
+
args = _normalize_tool_args(func.get("arguments") or {})
|
|
228
|
+
call_id = tool_call.get("id")
|
|
229
|
+
msg_parts.append(_mk_part_from_function_call(name, args, call_id))
|
|
230
|
+
|
|
231
|
+
content_value = message.get("content")
|
|
232
|
+
if isinstance(content_value, str) and content_value:
|
|
233
|
+
msg_parts.append(_mk_part_from_text(content_value))
|
|
234
|
+
|
|
235
|
+
if role == "tool":
|
|
236
|
+
call_id = message.get("tool_call_id") or ""
|
|
237
|
+
name = tool_name_by_id.get(call_id, call_id or "tool_response")
|
|
238
|
+
response = {"result": content_value}
|
|
239
|
+
msg_parts.append(_mk_part_from_function_response(name, response, call_id))
|
|
240
|
+
role = "user" # Tool responses are treated as user-provided context
|
|
241
|
+
|
|
242
|
+
if not msg_parts:
|
|
243
|
+
continue
|
|
244
|
+
|
|
245
|
+
mapped_role = "user" if role == "user" else "model"
|
|
246
|
+
contents.append(_mk_content(mapped_role, msg_parts))
|
|
247
|
+
|
|
248
|
+
return contents, tool_name_by_id
|
|
48
249
|
|
|
49
250
|
|
|
50
251
|
class GeminiClient(ProviderClient):
|
|
51
|
-
"""Gemini client with streaming and
|
|
252
|
+
"""Gemini client with streaming and function calling support."""
|
|
253
|
+
|
|
254
|
+
def __init__(self, client_factory: Optional[Any] = None) -> None:
|
|
255
|
+
self._client_factory = client_factory
|
|
256
|
+
|
|
257
|
+
async def _client(self, model_profile: ModelProfile) -> Any:
|
|
258
|
+
if self._client_factory is not None:
|
|
259
|
+
client = self._client_factory
|
|
260
|
+
if inspect.iscoroutinefunction(client):
|
|
261
|
+
return await client()
|
|
262
|
+
if inspect.isawaitable(client):
|
|
263
|
+
return await client # type: ignore[return-value]
|
|
264
|
+
if callable(client):
|
|
265
|
+
result = client()
|
|
266
|
+
return await result if inspect.isawaitable(result) else result
|
|
267
|
+
return client
|
|
268
|
+
|
|
269
|
+
try:
|
|
270
|
+
from google import genai # type: ignore
|
|
271
|
+
except Exception as exc: # pragma: no cover - import guard
|
|
272
|
+
raise RuntimeError(GEMINI_SDK_IMPORT_ERROR) from exc
|
|
273
|
+
|
|
274
|
+
client_kwargs: Dict[str, Any] = {}
|
|
275
|
+
api_key = model_profile.api_key or os.getenv("GEMINI_API_KEY") or os.getenv("GOOGLE_API_KEY")
|
|
276
|
+
if api_key:
|
|
277
|
+
client_kwargs["api_key"] = api_key
|
|
278
|
+
if model_profile.api_base:
|
|
279
|
+
from google.genai import types as genai_types # type: ignore
|
|
280
|
+
|
|
281
|
+
client_kwargs["http_options"] = genai_types.HttpOptions(
|
|
282
|
+
base_url=model_profile.api_base
|
|
283
|
+
)
|
|
284
|
+
return genai.Client(**client_kwargs)
|
|
52
285
|
|
|
53
286
|
async def call(
|
|
54
287
|
self,
|
|
@@ -63,95 +296,185 @@ class GeminiClient(ProviderClient):
|
|
|
63
296
|
request_timeout: Optional[float],
|
|
64
297
|
max_retries: int,
|
|
65
298
|
) -> ProviderResponse:
|
|
299
|
+
start_time = time.time()
|
|
300
|
+
|
|
66
301
|
try:
|
|
67
|
-
|
|
68
|
-
except Exception as exc:
|
|
69
|
-
msg = (
|
|
70
|
-
|
|
71
|
-
"Install it to enable Gemini support."
|
|
72
|
-
)
|
|
73
|
-
logger.warning(msg, extra={"error": str(exc)})
|
|
302
|
+
client = await self._client(model_profile)
|
|
303
|
+
except Exception as exc:
|
|
304
|
+
msg = str(exc)
|
|
305
|
+
logger.warning("[gemini_client] Initialization failed", extra={"error": msg})
|
|
74
306
|
return ProviderResponse(
|
|
75
307
|
content_blocks=[{"type": "text", "text": msg}],
|
|
76
308
|
usage_tokens={},
|
|
77
309
|
cost_usd=0.0,
|
|
78
|
-
duration_ms=
|
|
310
|
+
duration_ms=(time.time() - start_time) * 1000,
|
|
79
311
|
)
|
|
80
312
|
|
|
313
|
+
declarations: List[Dict[str, Any]] = []
|
|
81
314
|
if tools and tool_mode != "text":
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
315
|
+
declarations = await _async_build_tool_declarations(tools)
|
|
316
|
+
|
|
317
|
+
contents, _ = _convert_messages_to_genai_contents(normalized_messages)
|
|
318
|
+
|
|
319
|
+
config: Dict[str, Any] = {"system_instruction": system_prompt}
|
|
320
|
+
if model_profile.max_tokens:
|
|
321
|
+
config["max_output_tokens"] = model_profile.max_tokens
|
|
322
|
+
if declarations:
|
|
323
|
+
try:
|
|
324
|
+
from google.genai import types as genai_types # type: ignore
|
|
325
|
+
|
|
326
|
+
config["tools"] = [genai_types.Tool(function_declarations=declarations)]
|
|
327
|
+
except Exception: # pragma: no cover - fallback when SDK not installed
|
|
328
|
+
config["tools"] = [{"function_declarations": declarations}]
|
|
329
|
+
|
|
330
|
+
generate_kwargs: Dict[str, Any] = {
|
|
331
|
+
"model": model_profile.model,
|
|
332
|
+
"contents": contents,
|
|
333
|
+
"config": config,
|
|
334
|
+
}
|
|
335
|
+
usage_tokens: Dict[str, int] = {}
|
|
336
|
+
collected_text: List[str] = []
|
|
337
|
+
function_calls: List[Dict[str, Any]] = []
|
|
338
|
+
|
|
339
|
+
async def _call_generate(streaming: bool) -> Any:
|
|
340
|
+
models_api = getattr(client, "models", None) or getattr(
|
|
341
|
+
getattr(client, "aio", None), "models", None
|
|
342
|
+
)
|
|
343
|
+
if models_api is None:
|
|
344
|
+
raise RuntimeError(GEMINI_MODELS_ENDPOINT_ERROR)
|
|
345
|
+
|
|
346
|
+
generate_fn = getattr(models_api, "generate_content", None)
|
|
347
|
+
stream_fn = getattr(models_api, "generate_content_stream", None) or getattr(
|
|
348
|
+
models_api, "stream_generate_content", None
|
|
85
349
|
)
|
|
350
|
+
|
|
351
|
+
if streaming:
|
|
352
|
+
if stream_fn:
|
|
353
|
+
result = stream_fn(**generate_kwargs)
|
|
354
|
+
if inspect.isawaitable(result):
|
|
355
|
+
return await result
|
|
356
|
+
return result
|
|
357
|
+
|
|
358
|
+
if generate_fn is None:
|
|
359
|
+
raise RuntimeError(GEMINI_GENERATE_CONTENT_ERROR)
|
|
360
|
+
|
|
361
|
+
if _supports_stream_arg(generate_fn):
|
|
362
|
+
gen_kwargs: Dict[str, Any] = dict(generate_kwargs)
|
|
363
|
+
gen_kwargs["stream"] = True
|
|
364
|
+
result = generate_fn(**gen_kwargs)
|
|
365
|
+
if inspect.isawaitable(result):
|
|
366
|
+
return await result
|
|
367
|
+
return result
|
|
368
|
+
|
|
369
|
+
# Fallback: non-streaming generate; wrap to keep downstream iterator usage
|
|
370
|
+
result = generate_fn(**generate_kwargs)
|
|
371
|
+
if inspect.isawaitable(result):
|
|
372
|
+
result = await result
|
|
373
|
+
|
|
374
|
+
async def _single_chunk_stream() -> AsyncIterator[Any]:
|
|
375
|
+
yield result
|
|
376
|
+
|
|
377
|
+
return _single_chunk_stream()
|
|
378
|
+
|
|
379
|
+
if generate_fn is None:
|
|
380
|
+
raise RuntimeError(GEMINI_GENERATE_CONTENT_ERROR)
|
|
381
|
+
|
|
382
|
+
result = generate_fn(**generate_kwargs)
|
|
383
|
+
if inspect.isawaitable(result):
|
|
384
|
+
return await result
|
|
385
|
+
return result
|
|
386
|
+
|
|
387
|
+
try:
|
|
388
|
+
if stream:
|
|
389
|
+
stream_resp = await _call_generate(streaming=True)
|
|
390
|
+
|
|
391
|
+
# Normalize streams into an async iterator to avoid StopIteration surfacing through
|
|
392
|
+
# asyncio executors and to handle sync iterables.
|
|
393
|
+
def _to_async_iter(obj: Any) -> AsyncIterator[Any]:
|
|
394
|
+
"""Convert various iterable types to async generator."""
|
|
395
|
+
if inspect.isasyncgen(obj) or hasattr(obj, "__aiter__"):
|
|
396
|
+
async def _wrap_async() -> AsyncIterator[Any]:
|
|
397
|
+
async for item in obj:
|
|
398
|
+
yield item
|
|
399
|
+
|
|
400
|
+
return _wrap_async()
|
|
401
|
+
if hasattr(obj, "__iter__"):
|
|
402
|
+
async def _wrap_sync() -> AsyncIterator[Any]:
|
|
403
|
+
for item in obj:
|
|
404
|
+
yield item
|
|
405
|
+
|
|
406
|
+
return _wrap_sync()
|
|
407
|
+
|
|
408
|
+
async def _single() -> AsyncIterator[Any]:
|
|
409
|
+
yield obj
|
|
410
|
+
|
|
411
|
+
return _single()
|
|
412
|
+
|
|
413
|
+
stream_iter = _to_async_iter(stream_resp)
|
|
414
|
+
|
|
415
|
+
async for chunk in iter_with_timeout(stream_iter, request_timeout):
|
|
416
|
+
candidates = getattr(chunk, "candidates", None) or []
|
|
417
|
+
for candidate in candidates:
|
|
418
|
+
parts = _collect_parts(candidate)
|
|
419
|
+
if progress_callback:
|
|
420
|
+
text_delta = _collect_text_from_parts(parts)
|
|
421
|
+
if text_delta:
|
|
422
|
+
try:
|
|
423
|
+
await progress_callback(text_delta)
|
|
424
|
+
except Exception:
|
|
425
|
+
logger.exception("[gemini_client] Stream callback failed")
|
|
426
|
+
collected_text.append(_collect_text_from_parts(parts))
|
|
427
|
+
function_calls.extend(_extract_function_calls(parts))
|
|
428
|
+
usage_tokens = _extract_usage_metadata(chunk) or usage_tokens
|
|
429
|
+
else:
|
|
430
|
+
# Use retry logic for non-streaming calls
|
|
431
|
+
response = await call_with_timeout_and_retries(
|
|
432
|
+
lambda: _call_generate(streaming=False),
|
|
433
|
+
request_timeout,
|
|
434
|
+
max_retries,
|
|
435
|
+
)
|
|
436
|
+
candidates = getattr(response, "candidates", None) or []
|
|
437
|
+
if candidates:
|
|
438
|
+
parts = _collect_parts(candidates[0])
|
|
439
|
+
collected_text.append(_collect_text_from_parts(parts))
|
|
440
|
+
function_calls.extend(_extract_function_calls(parts))
|
|
441
|
+
else:
|
|
442
|
+
# Fallback: try to read text directly
|
|
443
|
+
collected_text.append(getattr(response, "text", "") or "")
|
|
444
|
+
usage_tokens = _extract_usage_metadata(response)
|
|
445
|
+
except Exception as exc:
|
|
446
|
+
logger.exception("[gemini_client] Error during call", extra={"error": str(exc)})
|
|
86
447
|
return ProviderResponse(
|
|
87
|
-
content_blocks=[{"type": "text", "text":
|
|
448
|
+
content_blocks=[{"type": "text", "text": f"Gemini call failed: {exc}"}],
|
|
88
449
|
usage_tokens={},
|
|
89
450
|
cost_usd=0.0,
|
|
90
|
-
duration_ms=
|
|
451
|
+
duration_ms=(time.time() - start_time) * 1000,
|
|
91
452
|
)
|
|
92
453
|
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
454
|
+
content_blocks: List[Dict[str, Any]] = []
|
|
455
|
+
combined_text = "".join(collected_text).strip()
|
|
456
|
+
if combined_text:
|
|
457
|
+
content_blocks.append({"type": "text", "text": combined_text})
|
|
97
458
|
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
459
|
+
for call in function_calls:
|
|
460
|
+
if not call.get("name"):
|
|
461
|
+
continue
|
|
462
|
+
content_blocks.append(
|
|
463
|
+
{
|
|
464
|
+
"type": "tool_use",
|
|
465
|
+
"tool_use_id": call.get("id") or str(uuid4()),
|
|
466
|
+
"name": call["name"],
|
|
467
|
+
"input": call.get("args") or {},
|
|
468
|
+
}
|
|
103
469
|
)
|
|
104
|
-
content = msg.get("content") if isinstance(msg, dict) else getattr(msg, "content", "")
|
|
105
|
-
if isinstance(content, list):
|
|
106
|
-
for item in content:
|
|
107
|
-
text_val = (
|
|
108
|
-
getattr(item, "text", None)
|
|
109
|
-
or item.get("text", "") # type: ignore[union-attr]
|
|
110
|
-
if isinstance(item, dict)
|
|
111
|
-
else ""
|
|
112
|
-
)
|
|
113
|
-
if text_val:
|
|
114
|
-
prompt_parts.append(f"{role}: {text_val}")
|
|
115
|
-
elif isinstance(content, str):
|
|
116
|
-
prompt_parts.append(f"{role}: {content}")
|
|
117
|
-
full_prompt = "\n".join(part for part in prompt_parts if part)
|
|
118
|
-
|
|
119
|
-
model = genai.GenerativeModel(model_profile.model)
|
|
120
|
-
collected_text: List[str] = []
|
|
121
|
-
start_time = time.time()
|
|
122
|
-
|
|
123
|
-
async def _stream_request() -> Dict[str, Dict[str, int]]:
|
|
124
|
-
stream_resp = model.generate_content(full_prompt, stream=True)
|
|
125
|
-
usage_tokens: Dict[str, int] = {}
|
|
126
|
-
for chunk in stream_resp:
|
|
127
|
-
text_delta = _collect_text_parts(chunk)
|
|
128
|
-
if text_delta:
|
|
129
|
-
collected_text.append(text_delta)
|
|
130
|
-
if progress_callback:
|
|
131
|
-
try:
|
|
132
|
-
await progress_callback(text_delta)
|
|
133
|
-
except Exception:
|
|
134
|
-
logger.exception("[gemini_client] Stream callback failed")
|
|
135
|
-
usage_tokens = _extract_usage_metadata(chunk) or usage_tokens
|
|
136
|
-
return {"usage": usage_tokens}
|
|
137
|
-
|
|
138
|
-
async def _non_stream_request() -> Any:
|
|
139
|
-
return model.generate_content(full_prompt)
|
|
140
|
-
|
|
141
|
-
response: Any = await call_with_timeout_and_retries(
|
|
142
|
-
_stream_request if stream and progress_callback else _non_stream_request,
|
|
143
|
-
request_timeout,
|
|
144
|
-
max_retries,
|
|
145
|
-
)
|
|
146
470
|
|
|
147
471
|
duration_ms = (time.time() - start_time) * 1000
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
else [{"type": "text", "text": _collect_text_parts(response)}]
|
|
472
|
+
cost_usd = estimate_cost_usd(model_profile, usage_tokens) if usage_tokens else 0.0
|
|
473
|
+
record_usage(
|
|
474
|
+
model_profile.model,
|
|
475
|
+
duration_ms=duration_ms,
|
|
476
|
+
cost_usd=cost_usd,
|
|
477
|
+
**(usage_tokens or {}),
|
|
155
478
|
)
|
|
156
479
|
|
|
157
480
|
logger.info(
|
|
@@ -161,11 +484,12 @@ class GeminiClient(ProviderClient):
|
|
|
161
484
|
"duration_ms": round(duration_ms, 2),
|
|
162
485
|
"tool_mode": tool_mode,
|
|
163
486
|
"stream": stream,
|
|
487
|
+
"function_call_count": len(function_calls),
|
|
164
488
|
},
|
|
165
489
|
)
|
|
166
490
|
|
|
167
491
|
return ProviderResponse(
|
|
168
|
-
content_blocks=content_blocks,
|
|
492
|
+
content_blocks=content_blocks or [{"type": "text", "text": ""}],
|
|
169
493
|
usage_tokens=usage_tokens,
|
|
170
494
|
cost_usd=cost_usd,
|
|
171
495
|
duration_ms=duration_ms,
|