returnn 1.20251027.224345__py3-none-any.whl → 1.20260113.134416__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

Files changed (43) hide show
  1. returnn/PKG-INFO +2 -2
  2. returnn/__old_mod_loader__.py +26 -2
  3. returnn/_setup_info_generated.py +2 -2
  4. returnn/config.py +1 -1
  5. returnn/datasets/lm.py +130 -42
  6. returnn/datasets/meta.py +93 -43
  7. returnn/datasets/postprocessing.py +597 -108
  8. returnn/datasets/util/vocabulary.py +90 -0
  9. returnn/frontend/_native/__init__.py +22 -0
  10. returnn/frontend/_utils.py +1 -1
  11. returnn/frontend/array_.py +48 -2
  12. returnn/frontend/attention.py +54 -20
  13. returnn/frontend/conv.py +273 -54
  14. returnn/frontend/device.py +14 -1
  15. returnn/frontend/encoder/conformer.py +20 -0
  16. returnn/frontend/encoder/transformer.py +2 -0
  17. returnn/frontend/loss.py +40 -1
  18. returnn/frontend/math_.py +54 -14
  19. returnn/native_op.cpp +80 -0
  20. returnn/sprint/cache.py +12 -13
  21. returnn/tensor/_dim_extra.py +7 -7
  22. returnn/tensor/_tensor_extra.py +10 -10
  23. returnn/tensor/utils.py +7 -4
  24. returnn/tf/frontend_layers/_backend.py +4 -3
  25. returnn/tf/layers/basic.py +15 -39
  26. returnn/tf/native_op.py +11 -58
  27. returnn/tf/network.py +1 -1
  28. returnn/tf/util/basic.py +19 -0
  29. returnn/torch/engine.py +157 -6
  30. returnn/torch/frontend/_backend.py +137 -15
  31. returnn/torch/frontend/bridge.py +61 -0
  32. returnn/torch/frontend/compile_helper.py +106 -0
  33. returnn/torch/util/exception_helper.py +7 -1
  34. returnn/util/basic.py +5 -6
  35. returnn/util/better_exchook.py +4 -0
  36. returnn/util/debug.py +12 -2
  37. returnn/util/file_cache.py +15 -1
  38. returnn/util/task_system.py +1 -1
  39. {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/METADATA +2 -2
  40. {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/RECORD +43 -42
  41. {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/LICENSE +0 -0
  42. {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/WHEEL +0 -0
  43. {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/top_level.txt +0 -0
@@ -1093,6 +1093,7 @@ def format_tb(
1093
1093
  with_color=None,
1094
1094
  with_vars=None,
1095
1095
  clear_frames=True,
1096
+ colorize=None,
1096
1097
  ):
1097
1098
  """
1098
1099
  Formats a traceback into a list of strings, each corresponding to one frame.
@@ -1110,11 +1111,14 @@ def format_tb(
1110
1111
  That will potentially fix some mem leaks regarding locals, so it can be important.
1111
1112
  Also see https://github.com/python/cpython/issues/113939.
1112
1113
  However, any further access to frame locals will not work (e.g., if you want to use a debugger afterward).
1114
+ :param colorize: for compat with Python >=3.13, currently ignored
1113
1115
  :return: list of strings, each corresponding to one frame in the traceback.
1114
1116
  Each string contains the file name, line number, function name, source code line, maybe relevant variables,
1115
1117
  etc., and a final newline.
1116
1118
  :rtype: list[str]
1117
1119
  """
1120
+ if colorize is not None and with_color is None:
1121
+ with_color = colorize
1118
1122
  color = Color(enable=with_color)
1119
1123
  output = _OutputLinesCollector(color=color)
1120
1124
 
returnn/util/debug.py CHANGED
@@ -309,6 +309,7 @@ def _get_native_signal_handler_lib_filename() -> str:
309
309
  old_signal_handler[SIGILL] = signal(SIGILL, signal_handler);
310
310
  old_signal_handler[SIGABRT] = signal(SIGABRT, signal_handler);
311
311
  old_signal_handler[SIGFPE] = signal(SIGFPE, signal_handler);
312
+ old_signal_handler[SIGUSR1] = signal(SIGUSR1, signal_handler);
312
313
  }
313
314
  """
314
315
  ),
@@ -704,7 +705,7 @@ def check_py_traces_rf_to_pt_equal(
704
705
  """
705
706
  import random
706
707
  import torch
707
- from returnn.tensor import Tensor, Dim
708
+ from returnn.tensor import Dim
708
709
  import returnn.frontend as rf
709
710
 
710
711
  # noinspection PyProtectedMember
@@ -715,9 +716,18 @@ def check_py_traces_rf_to_pt_equal(
715
716
  def _get_entry(trace, func, i, name, j):
716
717
  return trace[func][i][name][j]
717
718
 
719
+ def _get_entry_attr(trace, func, i, name, j):
720
+ name, attr = name.split(".", 1)
721
+ obj = trace[func][i][name][j]
722
+ return eval(f"{name}.{attr}", {name: obj})
723
+
718
724
  def _resolve_dim(dim: Union[Dim, str]) -> Dim:
719
725
  if isinstance(dim, Dim):
720
726
  return dim
727
+ elif isinstance(dim, str) and "." in dim:
728
+ dim = _get_entry_attr(trace_rf, *check_rf[:2], dim, -1)
729
+ assert isinstance(dim, Dim)
730
+ return dim
721
731
  elif isinstance(dim, str):
722
732
  dim = _get_entry(trace_rf, *check_rf[:2], dim, -1)
723
733
  assert isinstance(dim, Dim)
@@ -763,7 +773,7 @@ def check_py_traces_rf_to_pt_equal(
763
773
  if len(indices) > 5:
764
774
  msgs.append(" non-matching ...")
765
775
  non_matching.append("\n".join(msgs_prefix + msgs))
766
- print(f" mismatch!")
776
+ print(" mismatch!")
767
777
  for msg in msgs:
768
778
  print(msg)
769
779
 
@@ -426,7 +426,21 @@ class FileCache:
426
426
  orig_mtime_ns = os.stat(src_filename).st_mtime_ns
427
427
  FileInfo(mtime_ns=orig_mtime_ns).save(info_file_name)
428
428
 
429
- _copy_with_prealloc(src_filename, dst_tmp_filename)
429
+ try:
430
+ _copy_with_prealloc(src_filename, dst_tmp_filename)
431
+ except Exception:
432
+ # Cleanup if it was created already.
433
+ # That avoids some of the ambiguity of the existence of the .copy file.
434
+ # https://github.com/rwth-i6/returnn/issues/1785
435
+ try:
436
+ os.remove(dst_tmp_filename)
437
+ except FileNotFoundError:
438
+ pass
439
+ try:
440
+ os.remove(info_file_name)
441
+ except FileNotFoundError: # not really expected here, but safe to ignore
442
+ pass
443
+ raise
430
444
  os.rename(dst_tmp_filename, dst_filename)
431
445
 
432
446
  @staticmethod
@@ -671,7 +671,7 @@ class Pickler(_BasePickler):
671
671
  return
672
672
  # For some reason, Numpy fromstring/tostring is faster than Numpy loads/dumps.
673
673
  self.save(make_numpy_ndarray_fromstring)
674
- self.save((obj.tostring(), str(obj.dtype), obj.shape))
674
+ self.save((obj.tobytes(), str(obj.dtype), obj.shape))
675
675
  self.write(pickle.REDUCE)
676
676
 
677
677
  dispatch[numpy.ndarray] = save_ndarray
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20251027.224345
3
+ Version: 1.20260113.134416
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -36,7 +36,7 @@ Welcome to RETURNN
36
36
  `RETURNN paper 2018 <https://arxiv.org/abs/1805.05225>`_.
37
37
 
38
38
  RETURNN - RWTH extensible training framework for universal recurrent neural networks,
39
- is a Theano/TensorFlow-based implementation of modern recurrent neural network architectures.
39
+ is a PyTorch/TensorFlow-based implementation of modern recurrent neural network architectures.
40
40
  It is optimized for fast and reliable training of recurrent neural networks in a multi-GPU environment.
41
41
 
42
42
  The high-level features and goals of RETURNN are:
@@ -1,14 +1,14 @@
1
- returnn/PKG-INFO,sha256=GJaNdcwgbvQQFiUHTgzu_yvcMXGo3HTUjilKYreP16c,5215
1
+ returnn/PKG-INFO,sha256=jhNOEgbBWBglgqkHqni28aMhOK1nHC1dJlBiKkaWfX0,5216
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
- returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
4
+ returnn/__old_mod_loader__.py,sha256=-XAtilhq87CqmWmK2awbfGLoPAwjLGVu8t4QAxCw0fQ,9436
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=K1u1U6k-3ADEGhb49QEaG0HItc4bK75ha5sSatjbAB4,77
7
- returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
6
+ returnn/_setup_info_generated.py,sha256=OVoyfxrF7cQ0OBpiMfzvCidyV9ia6hJFPW-TrKd9BYE,77
7
+ returnn/config.py,sha256=JK8EjDsUdyY2c90s0KY1rLD1kesVfz6vRT0gxy_AQ5I,29142
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
10
10
  returnn/log.py,sha256=WoTDv4XDovgvgXa7iiav-nA8pb25lOEzndbnVrDLfUo,12319
11
- returnn/native_op.cpp,sha256=KcBoq875Jc7P9o77P_ZY0CLg_gCnbHV4KLksI_C5Yas,35760
11
+ returnn/native_op.cpp,sha256=itGDV05Nqg59g37qXAt-Z4c-rX7eDRQFY9efDPjaVlg,38613
12
12
  returnn/native_op.py,sha256=4_NnvfNxsM8GE_FsD6yOg6PZegqIdtJ3Sl1GdBWmFvg,244424
13
13
  returnn/pretrain.py,sha256=MHiXJZqkQFmDVyaYsGpd_Acv20wxl7Pr6s6qJzAT2FI,22648
14
14
  returnn/datasets/__init__.py,sha256=PvDlfDOaaopIeUIt0OSvHD2eHZkdkyE-sjMXf35EH5U,390
@@ -21,13 +21,13 @@ returnn/datasets/distrib_files.py,sha256=48edqdf7YpnPJ-TOis3Mz5U9A2DSxfiYT1HCMSt
21
21
  returnn/datasets/generating.py,sha256=o9-JZ2s5QKssux6GcSaM3oivf_PE6nhSOeytRyGB7pQ,99574
22
22
  returnn/datasets/hdf.py,sha256=v5sjBenURR9Z-g7AQ9tsL84yDSye5RtbLpym3M6HSDE,67833
23
23
  returnn/datasets/huggingface.py,sha256=ls9WMR6gUcMgGksl80g0An1az5Xjya_V3ojbbbsZqrU,20047
24
- returnn/datasets/lm.py,sha256=rQ3jV43lSnlGkKu7m5jTTH7aK0BOMXQocsHfJ8OGec8,99950
24
+ returnn/datasets/lm.py,sha256=riDa7rkwOuPX53_0y9wgQ_s2A9453BX0gWGV0HX29_M,103614
25
25
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
26
- returnn/datasets/meta.py,sha256=VJ5bk8esq2-b9likNSrCsHQKiLC3Vvti5oBAxg-AsIk,99422
26
+ returnn/datasets/meta.py,sha256=hTtfwINIxP2S4JQ5IQXzvTh2MixwxzeF06pPTW36yl0,101456
27
27
  returnn/datasets/multi_proc.py,sha256=BClXq0fActi1XQa4vcMhHmhYF0Q-fnnDzlIlbBM6_DM,22614
28
28
  returnn/datasets/normalization_data.py,sha256=J3njQCMvWAbIAVPepO2L_Xdau9eWYB7Zyd6STeGzTbc,14615
29
29
  returnn/datasets/numpy_dump.py,sha256=wl8bKIKAlff2HPJPtuu5wBg3TLOf16d2wLVB4lLAwTM,5158
30
- returnn/datasets/postprocessing.py,sha256=6SfT58BxbHYO2QlGzOgIV04Zqkp-kl0B85168DQaB9A,24060
30
+ returnn/datasets/postprocessing.py,sha256=Yy7rSzpB8z6PkUTZsPE_AN9Di8FPdNn617JTCV7L-VI,42453
31
31
  returnn/datasets/raw_wav.py,sha256=M7eTHp4CTtLQf3yPTiJY-mSJYgZNxkGV9IFN9J1dq_4,9144
32
32
  returnn/datasets/sprint.py,sha256=JAs5dOmdteSOwA7YQcTF9KaTCtGfRjiyJUZClSr85pY,55502
33
33
  returnn/datasets/stereo.py,sha256=PkowC91bZWihIYuIZgyGgPcNwgq5jBvyxxu1nER-VhM,17633
@@ -35,7 +35,7 @@ returnn/datasets/text_dict.py,sha256=xOWwZc5xGVg2Ic1Ezbm-uEcj_i7ajxqRfPn_TihQbzc
35
35
  returnn/datasets/util/__init__.py,sha256=rEKhSD6fyhDiQF-x7dUQMwa29JZu72SDm7mYcCcLghY,52
36
36
  returnn/datasets/util/feature_extraction.py,sha256=axtXDb9wcNpOmyhmW3WJUj5xda29TKkKvOcGGvq7ExA,23923
37
37
  returnn/datasets/util/strings.py,sha256=pP8pmXhArkssYqmPOLuxEG9gsko891ZxrWiai86qbLE,412
38
- returnn/datasets/util/vocabulary.py,sha256=1W13FgxPVP9XSIyhkt4I7CXK5lj99zT97R-gLa_xnAU,27964
38
+ returnn/datasets/util/vocabulary.py,sha256=994cHmRI3Yy8mHL79oCMrJITRIS9su11V2zizF5__Fo,31389
39
39
  returnn/engine/__init__.py,sha256=br7hpn8i_hIBi2uTQfnN3BF9g5DREYa_mQi0_Nvlu6o,228
40
40
  returnn/engine/base.py,sha256=0n4FtB_B2H3W_9KdoLr0P7YPER-hVkbk69pwFqsqmqw,18467
41
41
  returnn/engine/batch.py,sha256=amXW8mGspuSQjo00JdisE2eOLy5Ij1weWWzkE-lXSJM,9912
@@ -80,17 +80,17 @@ returnn/frontend/_backend.py,sha256=MVZn2HSkF3tsqchYvy2QM9pA4ILdKq07kj-_AAHGUy0,
80
80
  returnn/frontend/_cache.py,sha256=Uao2xzfvVaKABk1fkxcpXzxKIGJaI9FwwlTvvoNUstk,8550
81
81
  returnn/frontend/_numpy_backend.py,sha256=fZjks7p3dgxVZ6tSDazTTgBxNjJqXjfqgw_7mA7rDEE,9066
82
82
  returnn/frontend/_random_journal.py,sha256=_ktP_mjgx8vtQQGX_DofdhewJj0aPiczefTWeemPkmo,5457
83
- returnn/frontend/_utils.py,sha256=uVQldGHyYKIyhSEmumJ04ix5eP5tjZw4CEC0w6-zhyQ,12074
84
- returnn/frontend/array_.py,sha256=ci9NnYqwDxryOoiHCNg8DbOb9yWJScVSm7FnCqgywPY,54257
85
- returnn/frontend/attention.py,sha256=GKt-Xqnz8sIyXVrE0i4VCS7J2Wu7dmoH_BA0Cu8CrXQ,45769
83
+ returnn/frontend/_utils.py,sha256=LTwYQJBT9XjRdC2kVvHy29eUN5qARNSLGMJk90a8PjI,12076
84
+ returnn/frontend/array_.py,sha256=2VQYtlB6OiKdpkU9H_w_jIUrb7mlxizz7KKOHjnYaeo,56795
85
+ returnn/frontend/attention.py,sha256=bFD9Ei6GxSi-BC1OfueDyTIE-51a3dKKZOWdSIbz7l8,46633
86
86
  returnn/frontend/backend.py,sha256=iQ9w4xl8Ea7bgpb0VUaCKq50rV5Bl2E5J8Rhd-oqD_c,883
87
87
  returnn/frontend/build_from_dict.py,sha256=rfWa2rjjhIR_kIQED_nMrygrQBunS6unegzWTLVbC98,3017
88
88
  returnn/frontend/cond.py,sha256=gh6wg0aSbAJQfKRv4BQAu-EfPWtWPLFjgc8IaPPFmwg,1023
89
89
  returnn/frontend/const.py,sha256=A5fP9w6Akv56d89pPvdoZaXvC9ZTYcexepnS9O2clOc,3945
90
90
  returnn/frontend/container.py,sha256=wF3OlQN7WlOVmmdapUth_Unha3DVf6h1B7okBJAuJDA,8011
91
91
  returnn/frontend/control_flow_ctx.py,sha256=v17CsNwRnZYe8GdMtGJt2ftibfxMCGK1i0l-GX5ILu0,699
92
- returnn/frontend/conv.py,sha256=4Mrq7MFc0f7SJ8g-wJEv4Lg3Stmju-fMwD09qKv6CuQ,32174
93
- returnn/frontend/device.py,sha256=Sjara0EmFLhu9O55cN_p6OwU0NgdNCCQjyAuQhiWpGw,1437
92
+ returnn/frontend/conv.py,sha256=RbVyFGspn40VNT1B-KWWaDBBUhd7VFhKTN-V_SrwPlU,39514
93
+ returnn/frontend/device.py,sha256=gX7zPRZrnhjMgpgg6aACtE7Lg6qYlzerYbeCTiRhxhw,1665
94
94
  returnn/frontend/dims.py,sha256=_HDU-Kxn3pApicFkm0F4Fs-ZAuF1gKXG8rroQHCFQQI,13073
95
95
  returnn/frontend/dropout.py,sha256=TjqZCKDIOBeHr14-NCemOm9m3p84LxQuPH1DvRAYg88,5028
96
96
  returnn/frontend/dtype.py,sha256=Ooc5BrcNrTp6XShuFEV9g5V6-niuy4ImP_Lt_Qgq3jE,1886
@@ -101,8 +101,8 @@ returnn/frontend/init.py,sha256=bVB7bpghaY8DI_HL0mkB_9z95onWnIX2zlW4hlMYnRw,7494
101
101
  returnn/frontend/label_smoothing.py,sha256=lxmaowNr61sCMzMewqHhu1r0CcklYfhLXlFnBu8DeAU,5676
102
102
  returnn/frontend/linear.py,sha256=xRUjnkD3MTWDezSaYATBYJQ2fa1RhKMNrTuhC54hhVs,2252
103
103
  returnn/frontend/loop.py,sha256=t-z6ke1X03I2aPUEqLYmVZWyMzfW3IedFvKUGc-TCX8,16160
104
- returnn/frontend/loss.py,sha256=uSvou2MPd13JiLAg_OIQ3AyyLvD3RHjMEVgFEN0gKqU,7440
105
- returnn/frontend/math_.py,sha256=A_RkZ5lH2uXMchfPIH3itraWtMNNCVckQHHpf7aIIZQ,17295
104
+ returnn/frontend/loss.py,sha256=aSKzjhjIikeNJqzcUBBlaBTXILuAoW6wrmsExGtJJBY,8572
105
+ returnn/frontend/math_.py,sha256=wIWYtjcIEV_QXNJiNT1lYsVRQdNLxtBbTYiAPr_OR3Y,18442
106
106
  returnn/frontend/matmul.py,sha256=xkueyxzSDz8MsYaWxPSjmV2Yy-tcaiOQDXbFt1IQM2A,1944
107
107
  returnn/frontend/module.py,sha256=nt35I9xyHuH42qobLHGUFoNI5-mVieAtA36SqK6NhpY,11065
108
108
  returnn/frontend/nested.py,sha256=PKsKWHwE2SI19DjZ9vRI8q4-ywIGMK3-TTUuqdXrVlM,15592
@@ -120,7 +120,7 @@ returnn/frontend/state.py,sha256=EePdrx6PtWL4mJ2XZmGlh5dl4nq6G9wZpqP4hdDEzfY,293
120
120
  returnn/frontend/stepwise_scheduler.py,sha256=fMOTR7npGCDXrXDmSQ4VwmudoHEbY3Yr-QGyjFdQJSc,927
121
121
  returnn/frontend/tensor_array.py,sha256=Ej7CHtvpY0yBROlAk5vFe3CTXh-iAuqu9qcXS3Qxt2I,4328
122
122
  returnn/frontend/types.py,sha256=r-QsxPQyFSr9WwCRzqTn_X5jQLbjthrtjHavY8XIDmk,1099
123
- returnn/frontend/_native/__init__.py,sha256=fVjazAujt0rdICXZL-GgW1sjFeL1HB4NPuy2m5rmMsc,6480
123
+ returnn/frontend/_native/__init__.py,sha256=VVK0x6Z7OZa3Sb4QDSz9sRrBhX8FfYdvrwhAg4W9-cc,6839
124
124
  returnn/frontend/_native/backend.cpp,sha256=MeHczHypwj_ncntOxRqanK8SqGyV9Eq1X0cpMWb_WII,4768
125
125
  returnn/frontend/_native/backend.hpp,sha256=Wq80dcEzXfRNxGOXFnIgHllkiv1rDi3KpHK-xxJsSDI,791
126
126
  returnn/frontend/_native/module.cpp,sha256=9BCUoDTZDJ6hlXp4pUus1BlN7-oxcRy6tK9ctyCkwk0,15709
@@ -139,24 +139,24 @@ returnn/frontend/decoder/__init__.py,sha256=A-koKyPVlXp_V_2bk6GKZ1Xfv4rYIcfxGMXQ
139
139
  returnn/frontend/decoder/transformer.py,sha256=64Z1IY_WcDuj8Ti73BGwbT_grrEpxBl5mIsBZkqJzHQ,24650
140
140
  returnn/frontend/encoder/__init__.py,sha256=0QGLlujRIKx3zBREeShza_-xhGIxj73zbd7t-g1m-ho,17
141
141
  returnn/frontend/encoder/base.py,sha256=A759EwCYAmSi-kzXz1vaTjR2l59TvNGQlzaNdp3UOKs,2109
142
- returnn/frontend/encoder/conformer.py,sha256=rWulygolesbYkLw9naSxwygaZhWqKpHKEVj-1AQbel0,21351
142
+ returnn/frontend/encoder/conformer.py,sha256=I1OeaU2P7lm-N_ODS_P4BVQaplJR4Ies1Yd7Lr9mdFw,22225
143
143
  returnn/frontend/encoder/conformer_v2.py,sha256=vAYdT8m2Zzg3IIZZafeccClFHU1_c9T-EgBOsHadQPA,7701
144
144
  returnn/frontend/encoder/e_branchformer.py,sha256=SZdhpb90FaQdpzgvSOtFPLbLCa0NdycbB5Z4vMoY4TM,12279
145
- returnn/frontend/encoder/transformer.py,sha256=Jj0mF1D2MohOk-9sGYdsLtVW_86fwoq4pKWCdPMvPR8,11580
145
+ returnn/frontend/encoder/transformer.py,sha256=0-ku9A8r_w3USQd0aAQ0fdPvFILNWcGaGZ7g3SE-Xjo,11656
146
146
  returnn/import_/__init__.py,sha256=L2dKxWCcn0fz_7H7OS-zw5i5Yrljjjh_d61dEcFP_JY,243
147
147
  returnn/import_/common.py,sha256=0cmvyd7NtMLH55IskEoSDtkcMwChxLhauV2UZ4mK68I,8148
148
148
  returnn/import_/git.py,sha256=IXBVOybQAHf5OlMfVY6oZ-7eiDYPG0OR7MyDJKcVHSM,13961
149
149
  returnn/import_/import_.py,sha256=q_NQRbfK5TsALakUxixE0SCqDccfGh6wkquCmJ-3s6w,798
150
150
  returnn/sprint/__init__.py,sha256=bKRS04_tJdp-z6Rmv4Fm3hGD9M3UVRcXtvcS8VG12KA,64
151
- returnn/sprint/cache.py,sha256=sYWQJHHvdcXDXl_SNraEsl3X8yS0F4eZjFHiuDhHkjQ,35069
151
+ returnn/sprint/cache.py,sha256=9QxVIUoDXo2WGkenof7vuh8vqBXShf0Dr4twiLsygaQ,34976
152
152
  returnn/sprint/control.py,sha256=FFjpvoktLgp4ETxaMVKrwiegnAQLW5lD_VF4OG3ttUw,31133
153
153
  returnn/sprint/error_signals.py,sha256=FvXscTpbLWKRKsK3slPT6QfU5FytLUNblB7Ogup_L7k,23348
154
154
  returnn/sprint/extern_interface.py,sha256=l-v1X-Yg0UpTFe7Y3c4FwWOqpSNuv9Oy5EzqlKWUMlE,12055
155
155
  returnn/sprint/interface.py,sha256=1j5SB0V8hSW8A5song9ciZtcBnZoKKfNipk9ezOIMuA,36491
156
156
  returnn/tensor/README.md,sha256=X6BqcRLrPLPnwF9yR69uqIFrMnNluj9pBkOPHwNgzuo,501
157
157
  returnn/tensor/__init__.py,sha256=on6j5PEOQpck50UcsR4nJzJSDmoVy34z1Oq4efv6Ax0,154
158
- returnn/tensor/_dim_extra.py,sha256=tHE3N6hUKqbzedJ8RNhn9aJHxvhTQuI9JckCLsPbKKI,116776
159
- returnn/tensor/_tensor_extra.py,sha256=1UPNisRAbljkvfMcrEXaPAF-2Dz7AdgC3jAKVVAnAO8,165084
158
+ returnn/tensor/_dim_extra.py,sha256=8HLTvgEnThCp7GdtB714Tvs4ad939jZmhpS3qab03sU,116790
159
+ returnn/tensor/_tensor_extra.py,sha256=ClwZBfaOavDtapXYpYRhDTGE85bzvRqox5mF_OnEHds,165112
160
160
  returnn/tensor/_tensor_mixin_base.py,sha256=H5z86I0NejxrSgMH1c5oXQzBqS6L9HpvP4y7oegBaSc,643
161
161
  returnn/tensor/_tensor_op_overloads.py,sha256=HklwuTBjy7mH_665VKaCUdu-oC3aa7Uz1ZQiCz4jeZc,5448
162
162
  returnn/tensor/control_flow_ctx.py,sha256=L9e32AfYDUDgsEDHL07thSFyYFqwhyVSqzE_bM03Y4M,5252
@@ -164,7 +164,7 @@ returnn/tensor/dim.py,sha256=652DlcSe6o6l5OyY5xt9Yigij_Xry-ToG9AemMX3roY,4208
164
164
  returnn/tensor/marked_dim.py,sha256=Ae2hQIb5QixRU2gDhQEm0tmYt8TmomWoGERB414jR8o,1884
165
165
  returnn/tensor/tensor.py,sha256=IIHbDu0D_aX8U4LKTm5ThD_fuoGhn98B9EyvVBsPJ3E,9083
166
166
  returnn/tensor/tensor_dict.py,sha256=-20YPbXfRDE9WurkfQM-Mw6H8ouaBGL_90SDmK0b4cw,7534
167
- returnn/tensor/utils.py,sha256=B6_XyNTXPIyLxWk061Qo-Md8_DnINGdVwpXJF6pahBk,9772
167
+ returnn/tensor/utils.py,sha256=GoA4J7Cm8Q1e-NjkGEvCPMOqa4-KdCUjyGLnGTAPlDk,9957
168
168
  returnn/tf/__init__.py,sha256=X4g2LFCFTl0uiybMRkfBY8AYkgMa6HX0vVxxTk0nMiE,88
169
169
  returnn/tf/compat.py,sha256=NkAkdlR37m2d9qh3i33sIfEGilOaFBeCofAQpQwnZpY,1632
170
170
  returnn/tf/data_pipeline.py,sha256=iNkNHv5PiGcudlajG8eO336rPD3hya5kWMDrjhWa4jA,36632
@@ -172,13 +172,13 @@ returnn/tf/distributed.py,sha256=PCLspuNg4XP4ZX3Q444IlohUJEy0Dc8rp8YlmDqVbEc,151
172
172
  returnn/tf/engine.py,sha256=nhAMSEVUIf6Onm8jaRkT2CuY5XbOV5CEeWyOMUk67kY,146610
173
173
  returnn/tf/horovod.py,sha256=Dpv_3wZxB8q8Gqk6xah4iJ4vKGKWWg1-7PPhpSMPlec,5404
174
174
  returnn/tf/hyper_param_tuning.py,sha256=IfVRYYz-oSwOa2E7-vwh-pnWL4j-StHHbSYv7VbvcPE,31619
175
- returnn/tf/native_op.py,sha256=jieVDsDzF3cPsxncfy7lMheWf076FRbAE3L0P3TjwiY,79691
176
- returnn/tf/network.py,sha256=9kB82cTpdTtRW0mObYE7rAb_YRRwSfPYkkUZKRuXxio,224656
175
+ returnn/tf/native_op.py,sha256=LuwPj-0lMBDZeP9q79cI1FuIYudnMavUlKsTQWMrkl4,77382
176
+ returnn/tf/network.py,sha256=ZBo5qXOZHBJLjv2E8y9APeiRIpz5KEQdc6GN3rl6LBM,224668
177
177
  returnn/tf/sprint.py,sha256=Yqjh0-6sCWHpdDPQCzHKx7TwQCOjJyjfd0KHtnYdd-8,5471
178
178
  returnn/tf/updater.py,sha256=RcvoGnjBcObbLfLHH_mDRSY2lTeLyNoAFsZpHUiIgRY,72036
179
179
  returnn/tf/frontend_layers/README.md,sha256=P4vVl_EK-4jT55m40mq-K4Nr9yFY0tJR5fmDzTHSDFE,1096
180
180
  returnn/tf/frontend_layers/__init__.py,sha256=MGUn7rv6fOefbtkX-5pq6fC1T6Y5h0oh1uOPSEcv1_I,506
181
- returnn/tf/frontend_layers/_backend.py,sha256=ZHfmVD8uN0yeyqXFPxYxpnfBbjIpGQl9ykKKW9hxdD0,47537
181
+ returnn/tf/frontend_layers/_backend.py,sha256=_YYQ-lV2srx-DwKIiaKacYkINOisPIstaPzzC7eRsaY,47652
182
182
  returnn/tf/frontend_layers/_utils.py,sha256=ijByaDOqPDod5mZC9EoTkt8PHBEODXHsWbkwDOF9XW4,4205
183
183
  returnn/tf/frontend_layers/cond.py,sha256=bGd_g2tzpKXO218Xk-so59vFPJF-jF_ZvoZIU-1qBzw,14832
184
184
  returnn/tf/frontend_layers/config_entry_points.py,sha256=t01RWOiaZohzuqPXX-MLV0P5yCOfE0dz-9dZ77_pK4c,5751
@@ -194,13 +194,13 @@ returnn/tf/frontend_low_level/__init__.py,sha256=34469k3KzMUIGowxReOZnbf6WdTjxY7
194
194
  returnn/tf/frontend_low_level/_backend.py,sha256=Hv838I2eyOP2qVNWs5DJxseyxUbAET2lm0ZZcbW_CsE,24991
195
195
  returnn/tf/layers/__init__.py,sha256=Ngu-X84nWFgz7ndDu88DqoZ-5lUMMTQWH4g7N8pSoCg,72
196
196
  returnn/tf/layers/base.py,sha256=sUxEfh6WxaHWHG7O3cfxB6gG6YpEHkFKUJVayKvTBSI,152968
197
- returnn/tf/layers/basic.py,sha256=PMYNoMq8qH41QhWhJPg5Uc409GZHkcnecouorg9sqJY,615466
197
+ returnn/tf/layers/basic.py,sha256=jKzfRhBJgt5_tgIATde2kdza5u3aCqACx7BFyClngno,614277
198
198
  returnn/tf/layers/rec.py,sha256=3f6M_5aAMPvx7aAHdPV3VSFRHf7tjpp8lrXSzmk1I5c,548435
199
199
  returnn/tf/layers/segmental_model.py,sha256=wUyDZGr-eTVIIQWcsHLML0wtOxuWn_NFKOIrUKQcvoI,21515
200
200
  returnn/tf/layers/signal_processing.py,sha256=vRlkN7k7otk9_Qdv0qr_l6V0VT5Q6dO2MxwZWb2HH2M,52693
201
201
  returnn/tf/layers/variable.py,sha256=G1dIEoq0iQsXp-uOAUPTaBKHSOQfx7Sn-spD8MRv0HM,11446
202
202
  returnn/tf/util/__init__.py,sha256=mEg5jNVbQBLO2TGwO4Ff2F5qQN5_Zg4hAAQfX5taeec,92
203
- returnn/tf/util/basic.py,sha256=HWoRCkiPsMY0z9l0boB1NW0xqubVw-W8cZTZFHphNoc,303027
203
+ returnn/tf/util/basic.py,sha256=ezK-XBKQcscVKmCL43wsieiUZntHUVOZwhDZtVItOqg,304088
204
204
  returnn/tf/util/data.py,sha256=AlSa0r_IaXtjKG1q1vxUybFazpjt4lUX8LYq0STJv-w,29471
205
205
  returnn/tf/util/gradient_checkpoint.py,sha256=_1NGAmNZ5NiGhFYVRWvBV5yejt-EZWbbvxNWHbESp5Q,7426
206
206
  returnn/tf/util/ken_lm.py,sha256=R60UAoywriuDIeQ2Hk3Vm_waf2Hxxc88ofzEw6X6Sd4,17313
@@ -208,7 +208,7 @@ returnn/tf/util/open_fst.py,sha256=sZRDw4TbxvhGqpGdUJWy1ebvlZm4_RPhygpRw9uLAOQ,1
208
208
  returnn/torch/README.md,sha256=jzJ2FpOHW02vxN69yKaV97C9LI-hmvjBglKfdZXIDdc,85
209
209
  returnn/torch/__init__.py,sha256=MHEUyNHB20Vy89uKAqZoj6FxJKF1Gq3HW-i6ra1pNcI,24
210
210
  returnn/torch/distributed.py,sha256=_lyJR71HIoCHpMi5GztGM7YwrX54Am8zSkjnDkE1Lbk,7524
211
- returnn/torch/engine.py,sha256=Lj_Go3Q5oHOVrHdNcz_6YLjODsiGUsJVMbU0EzSDByk,79677
211
+ returnn/torch/engine.py,sha256=JnoGrAakIUIsSXVEIVIXqTOVcDYJASVoRNZQrOPNrdA,85368
212
212
  returnn/torch/updater.py,sha256=nNd1mBPQyvIB096BEFi0KKmRI-U3jnRETzb743p2B9c,32064
213
213
  returnn/torch/data/__init__.py,sha256=6cLNEi8KoGI12PF6akN7mI_mtjlx-0hcQAfMYoExwik,132
214
214
  returnn/torch/data/extern_data.py,sha256=5al706ZaYtHWLp5VH2vS-rW69YXP3NHyOFRKY0WY714,7810
@@ -217,9 +217,10 @@ returnn/torch/data/queued_data_iter.py,sha256=PoOsGHdHVZjTmcyfq_ZOw--P6hyfTdmAWI
217
217
  returnn/torch/data/returnn_dataset_wrapper.py,sha256=fMahf05G0SPYm6HxSQpVm8JhsIHons-i1Ce4aQv4IjM,8332
218
218
  returnn/torch/data/tensor_utils.py,sha256=-Teqi--LLbt6q_5mDRdoHZHmPgSdC83W706ukif_YiU,1284
219
219
  returnn/torch/frontend/__init__.py,sha256=AA48HZnC17ASuKA0EWy8loZ-Bib_yUtqF4T1wYvjst4,62
220
- returnn/torch/frontend/_backend.py,sha256=2otTWQwS-PGRJImGqUAikChP3JcOv_KHgPAQX4VycJg,103382
220
+ returnn/torch/frontend/_backend.py,sha256=wsmalFnT_p2NDADL8N-6AHHCyv2yBe8nKM-0tKAh1cs,108888
221
221
  returnn/torch/frontend/_rand.py,sha256=1JgIkV2XmpgJD86zXZ-NCAe-QuoP2swr6NaS1oz3Qa8,1830
222
- returnn/torch/frontend/bridge.py,sha256=c_mVBCBo29sjm8Bhxarv00szwGPgxjwoIqAHOmceGQw,7842
222
+ returnn/torch/frontend/bridge.py,sha256=RBtAIlYWn_AC-GaHWperrOncPjMLWAOrU30pWk2789A,9775
223
+ returnn/torch/frontend/compile_helper.py,sha256=ax8ax5mjC8PDHtwTQzHYWUNRoKjZMuYHF6me9VdxiSY,2969
223
224
  returnn/torch/frontend/raw_ops.py,sha256=lF0h-KtYYsdaaqQADylVZp9qzPskOOXA4MfmYDyx5IU,296
224
225
  returnn/torch/optim/README.md,sha256=0iH5FiKb7iDrVK5n8V6yCh4ciCFG2YSbyh7lPneT5ik,360
225
226
  returnn/torch/optim/__init__.py,sha256=yxdbnOkXAHzZ_t6cHi6zn5x_DQNlLZJ-KxZByHTIg1U,29
@@ -229,18 +230,18 @@ returnn/torch/util/__init__.py,sha256=AOXYUjzPm0XrzFJCPAXo9Jj_FvqD1XH3FfKtho80Vl
229
230
  returnn/torch/util/array_.py,sha256=ell3VZvn01SLtF9Pw2fvPzFNO-XDQ7tSB9VCrVSKmSA,2556
230
231
  returnn/torch/util/debug_inf_nan.py,sha256=fmzSSTJJyLf7i5yDWRHLeDI0gxvadeqLE8RxMuSHx_4,6398
231
232
  returnn/torch/util/diagnose_gpu.py,sha256=_yswLmwR8Q2rCsv2jI5FUQNBT__453jBmiWYwazdu20,6808
232
- returnn/torch/util/exception_helper.py,sha256=_SqxTD5F-GDY2eR4uRALyUTJwt0ytcbJGB_w38RJMBA,4320
233
+ returnn/torch/util/exception_helper.py,sha256=54IzlsXYp6E_rEEWIpgppkFid9stb-2PZVRU8d5mFNE,4497
233
234
  returnn/torch/util/gradient_checkpoint.py,sha256=iLy-FB65DC8O6LxzmMvFjnSdpIVpko87ppIvRKAbtpQ,27995
234
235
  returnn/torch/util/module.py,sha256=MXHIrF9Isu575DDJIa81212ULKwdqu1oOLxDVZecVSk,1693
235
236
  returnn/torch/util/scaled_gradient.py,sha256=C5e79mpqtxdtw08OTSy413TSBSlOertRisc-ioiFIaU,3191
236
237
  returnn/util/__init__.py,sha256=UIG1qw4idqhW71BV60ha7h9PktxvEVcBIu0lYRossK8,336
237
- returnn/util/basic.py,sha256=MBbyYddO0aJj8Xcb9RbQ5VeunC7htc9IGex09eao67o,143323
238
- returnn/util/better_exchook.py,sha256=39yvRecluDgYhViwSkaQ8crJ_cBWI63KeEGuK4RKe5w,70843
238
+ returnn/util/basic.py,sha256=Pa2cAdvOJMKK7gR3heAVTol-zYVbThr9b9slVVAaH3M,143273
239
+ returnn/util/better_exchook.py,sha256=hOKazwv2q2-d0XMfxkJXMbLZyNTtraV3jPHplFcrMsg,71014
239
240
  returnn/util/bpe.py,sha256=LWFhICZsEOnMwNws0lybPNzKRX6rSr8yKCvP65vjl9Y,19656
240
241
  returnn/util/collect_outputs_dict.py,sha256=CjpsftoMgmvyE4wNKTO6F-QQ_44QHXcOZIXMUMQVZ-8,2637
241
- returnn/util/debug.py,sha256=wuRzdg9zB84WWCGyTjmRR_zYypu8gXxlc0nZ6si9OC8,28224
242
+ returnn/util/debug.py,sha256=Ndq5nz-tMEG9ZNwZTbgOkQYB9JSvAwF8r0o53Gf2EbM,28653
242
243
  returnn/util/debug_helpers.py,sha256=0EINLK4uLtoSt5_kHs1M2NIFpMd0S7i4c4rx90U4fJk,2914
243
- returnn/util/file_cache.py,sha256=Wyx9u1P59PAo4HouVPh6uaGQeFIXGZHshDyvcRn4YlM,28786
244
+ returnn/util/file_cache.py,sha256=8xE4zMQi38g7ZIGwNohd13_CgjzpIs18ILxFCKttzxE,29439
244
245
  returnn/util/fsa.py,sha256=k2lJ8tyf_g44Xk1EPVLwDwpP4spoMTqIigDVOWocQHY,59177
245
246
  returnn/util/literal_py_to_pickle.py,sha256=3dnjWPeeiDT2xp4bRDgIf9yddx7b1AG7mOKEn_jiSl8,2173
246
247
  returnn/util/lru_cache.py,sha256=7Q5H3a8b07E8e1iB7PA9jCpRnxMJZOFS2KO07cy0gqk,11446
@@ -252,11 +253,11 @@ returnn/util/py-to-pickle.cpp,sha256=ByU4cwy5MGEihaoYiRo1sSsJfYn10_riDwVqSHRLwp8
252
253
  returnn/util/py_ext_mod_compiler.py,sha256=I1w9laIPqJbQGb2lFp-3llBjORS-217ZGIbPCp6PIes,1708
253
254
  returnn/util/result_with_reason.py,sha256=6jS7caYrZADrb8o-CpQnTfskZb3fTNMcKU-JlnIh6Kg,359
254
255
  returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
255
- returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
256
+ returnn/util/task_system.py,sha256=7Dz7Nvi_1-o5pDv9OZYdAnlJw6OSvgbYUmQ72P0Fgkw,26002
256
257
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
257
258
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
258
- returnn-1.20251027.224345.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
259
- returnn-1.20251027.224345.dist-info/METADATA,sha256=GJaNdcwgbvQQFiUHTgzu_yvcMXGo3HTUjilKYreP16c,5215
260
- returnn-1.20251027.224345.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
261
- returnn-1.20251027.224345.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
262
- returnn-1.20251027.224345.dist-info/RECORD,,
259
+ returnn-1.20260113.134416.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
260
+ returnn-1.20260113.134416.dist-info/METADATA,sha256=jhNOEgbBWBglgqkHqni28aMhOK1nHC1dJlBiKkaWfX0,5216
261
+ returnn-1.20260113.134416.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
262
+ returnn-1.20260113.134416.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
263
+ returnn-1.20260113.134416.dist-info/RECORD,,