returnn 1.20251027.224345__py3-none-any.whl → 1.20260113.134416__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of returnn might be problematic. Click here for more details.
- returnn/PKG-INFO +2 -2
- returnn/__old_mod_loader__.py +26 -2
- returnn/_setup_info_generated.py +2 -2
- returnn/config.py +1 -1
- returnn/datasets/lm.py +130 -42
- returnn/datasets/meta.py +93 -43
- returnn/datasets/postprocessing.py +597 -108
- returnn/datasets/util/vocabulary.py +90 -0
- returnn/frontend/_native/__init__.py +22 -0
- returnn/frontend/_utils.py +1 -1
- returnn/frontend/array_.py +48 -2
- returnn/frontend/attention.py +54 -20
- returnn/frontend/conv.py +273 -54
- returnn/frontend/device.py +14 -1
- returnn/frontend/encoder/conformer.py +20 -0
- returnn/frontend/encoder/transformer.py +2 -0
- returnn/frontend/loss.py +40 -1
- returnn/frontend/math_.py +54 -14
- returnn/native_op.cpp +80 -0
- returnn/sprint/cache.py +12 -13
- returnn/tensor/_dim_extra.py +7 -7
- returnn/tensor/_tensor_extra.py +10 -10
- returnn/tensor/utils.py +7 -4
- returnn/tf/frontend_layers/_backend.py +4 -3
- returnn/tf/layers/basic.py +15 -39
- returnn/tf/native_op.py +11 -58
- returnn/tf/network.py +1 -1
- returnn/tf/util/basic.py +19 -0
- returnn/torch/engine.py +157 -6
- returnn/torch/frontend/_backend.py +137 -15
- returnn/torch/frontend/bridge.py +61 -0
- returnn/torch/frontend/compile_helper.py +106 -0
- returnn/torch/util/exception_helper.py +7 -1
- returnn/util/basic.py +5 -6
- returnn/util/better_exchook.py +4 -0
- returnn/util/debug.py +12 -2
- returnn/util/file_cache.py +15 -1
- returnn/util/task_system.py +1 -1
- {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/METADATA +2 -2
- {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/RECORD +43 -42
- {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/LICENSE +0 -0
- {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/WHEEL +0 -0
- {returnn-1.20251027.224345.dist-info → returnn-1.20260113.134416.dist-info}/top_level.txt +0 -0
returnn/native_op.cpp
CHANGED
|
@@ -206,6 +206,14 @@ Ndarray* Ndarray_Copy(const Ndarray* self) {
|
|
|
206
206
|
|
|
207
207
|
#include "tensorflow/core/public/version.h"
|
|
208
208
|
|
|
209
|
+
#ifndef TF_MAJOR_VERSION
|
|
210
|
+
#error "TF_MAJOR_VERSION is not defined!"
|
|
211
|
+
#endif
|
|
212
|
+
|
|
213
|
+
#ifndef TF_MINOR_VERSION
|
|
214
|
+
#error "TF_MINOR_VERSION is not defined!"
|
|
215
|
+
#endif
|
|
216
|
+
|
|
209
217
|
#if (TF_MAJOR_VERSION == 1 && TF_MINOR_VERSION >= 6) || (TF_MAJOR_VERSION > 1)
|
|
210
218
|
#define TF_issue_6602_workaround 0
|
|
211
219
|
#define TWOD_LSTM_SUPPORT 1
|
|
@@ -402,6 +410,9 @@ static void tf_cuda_sgemm_batched(
|
|
|
402
410
|
|
|
403
411
|
|
|
404
412
|
#else // CUDA
|
|
413
|
+
|
|
414
|
+
#ifdef HAVE_CUSTOM_BLAS
|
|
415
|
+
|
|
405
416
|
/*
|
|
406
417
|
// matrices are in column-major form
|
|
407
418
|
int sgemm_(char *transa, char *transb,
|
|
@@ -419,6 +430,75 @@ static void tf_cuda_sgemm_batched(
|
|
|
419
430
|
sgemm_(&transa, &transb, \
|
|
420
431
|
&m_, &n_, &k_, alpha, A, &lda_, B, &ldb_, beta, C, &ldc_); \
|
|
421
432
|
}
|
|
433
|
+
|
|
434
|
+
#else // HAVE_CUSTOM_BLAS
|
|
435
|
+
|
|
436
|
+
template<typename T>
|
|
437
|
+
static void tf_cpu_sgemm(
|
|
438
|
+
OpKernelContext* context,
|
|
439
|
+
char transa_, char transb_,
|
|
440
|
+
int m, int n, int k,
|
|
441
|
+
const T* alpha_ptr, const T* a_ptr, int lda,
|
|
442
|
+
const T* b_ptr, int ldb, const T* beta_ptr,
|
|
443
|
+
T* c_ptr, int ldc)
|
|
444
|
+
{
|
|
445
|
+
if (m <= 0 || n <= 0 || k <= 0) return;
|
|
446
|
+
|
|
447
|
+
auto d = context->eigen_cpu_device();
|
|
448
|
+
const T alpha = *alpha_ptr;
|
|
449
|
+
const T beta = *beta_ptr;
|
|
450
|
+
|
|
451
|
+
bool transa = (transa_ == 'T' || transa_ == 't' || transa_ == 'C' || transa_ == 'c');
|
|
452
|
+
bool transb = (transb_ == 'T' || transb_ == 't' || transb_ == 'C' || transb_ == 'c');
|
|
453
|
+
|
|
454
|
+
// 1. Map as COLUMN-MAJOR
|
|
455
|
+
// Physical rows (height) for the Map is always the leading dimension (lda, ldb, ldc)
|
|
456
|
+
typedef Eigen::TensorMap<Eigen::Tensor<const T, 2, Eigen::ColMajor>, Eigen::Unaligned> ConstMap;
|
|
457
|
+
typedef Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::ColMajor>, Eigen::Unaligned> MutableMap;
|
|
458
|
+
|
|
459
|
+
// Logical height/width of slices before any transposition
|
|
460
|
+
int a_slice_rows = transa ? k : m;
|
|
461
|
+
int a_slice_cols = transa ? m : k;
|
|
462
|
+
int b_slice_rows = transb ? n : k;
|
|
463
|
+
int b_slice_cols = transb ? k : n;
|
|
464
|
+
|
|
465
|
+
// Map and Slice
|
|
466
|
+
auto a = ConstMap(a_ptr, lda, a_slice_cols).slice(
|
|
467
|
+
Eigen::array<Eigen::Index, 2>({0, 0}),
|
|
468
|
+
Eigen::array<Eigen::Index, 2>({(Eigen::Index)a_slice_rows, (Eigen::Index)a_slice_cols}));
|
|
469
|
+
|
|
470
|
+
auto b = ConstMap(b_ptr, ldb, b_slice_cols).slice(
|
|
471
|
+
Eigen::array<Eigen::Index, 2>({0, 0}),
|
|
472
|
+
Eigen::array<Eigen::Index, 2>({(Eigen::Index)b_slice_rows, (Eigen::Index)b_slice_cols}));
|
|
473
|
+
|
|
474
|
+
auto c = MutableMap(c_ptr, ldc, n).slice(
|
|
475
|
+
Eigen::array<Eigen::Index, 2>({0, 0}),
|
|
476
|
+
Eigen::array<Eigen::Index, 2>({(Eigen::Index)m, (Eigen::Index)n}));
|
|
477
|
+
|
|
478
|
+
// 2. Define Contraction Pairs based on Transposition
|
|
479
|
+
// Column-Major Matrix Mult: (M x K) * (K x N)
|
|
480
|
+
// Standard: Contract Axis 1 of A with Axis 0 of B
|
|
481
|
+
// If A is Transposed: A is (K x M), contract Axis 0 of A
|
|
482
|
+
// If B is Transposed: B is (N x K), contract Axis 1 of B
|
|
483
|
+
Eigen::array<Eigen::IndexPair<int>, 1> pairs;
|
|
484
|
+
pairs[0] = Eigen::IndexPair<int>(transa ? 0 : 1, transb ? 1 : 0);
|
|
485
|
+
|
|
486
|
+
// 3. Execution
|
|
487
|
+
if (alpha == T(1) && beta == T(0)) {
|
|
488
|
+
c.device(d) = a.contract(b, pairs);
|
|
489
|
+
} else if (alpha == T(1) && beta == T(1)) {
|
|
490
|
+
c.device(d) += a.contract(b, pairs);
|
|
491
|
+
} else {
|
|
492
|
+
c.device(d) = a.contract(b, pairs) * alpha + c * beta;
|
|
493
|
+
}
|
|
494
|
+
}
|
|
495
|
+
|
|
496
|
+
#define Ndarray_sgemm(\
|
|
497
|
+
transpose_A, transpose_B, \
|
|
498
|
+
m, n, k, alpha, A, lda, B, ldb, beta, C, ldc) \
|
|
499
|
+
tf_cpu_sgemm<float>(context, transpose_A, transpose_B, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
|
|
500
|
+
|
|
501
|
+
#endif // HAVE_CUSTOM_BLAS
|
|
422
502
|
#endif // CUDA
|
|
423
503
|
|
|
424
504
|
// See Context struct below.
|
returnn/sprint/cache.py
CHANGED
|
@@ -7,10 +7,9 @@ This module is about reading (maybe later also writing) the Sprint archive forma
|
|
|
7
7
|
"""
|
|
8
8
|
|
|
9
9
|
from __future__ import annotations
|
|
10
|
-
from typing import List,
|
|
10
|
+
from typing import Optional, List, Tuple, Dict
|
|
11
11
|
import sys
|
|
12
12
|
import os
|
|
13
|
-
import typing
|
|
14
13
|
import array
|
|
15
14
|
from struct import pack, unpack
|
|
16
15
|
import numpy
|
|
@@ -212,7 +211,7 @@ class FileArchive:
|
|
|
212
211
|
def __init__(self, filename, must_exists=True, encoding="ascii"):
|
|
213
212
|
self.encoding = encoding
|
|
214
213
|
|
|
215
|
-
self.ft
|
|
214
|
+
self.ft: Dict[str, FileInfo] = {}
|
|
216
215
|
if os.path.exists(filename):
|
|
217
216
|
self.allophones = []
|
|
218
217
|
self.f = open(filename, "rb")
|
|
@@ -334,8 +333,8 @@ class FileArchive:
|
|
|
334
333
|
# print(typ)
|
|
335
334
|
assert type_ == "vector-f32"
|
|
336
335
|
count = self.read_U32()
|
|
337
|
-
data
|
|
338
|
-
time_
|
|
336
|
+
data: List[Optional[numpy.ndarray]] = [None] * count
|
|
337
|
+
time_: List[Optional[numpy.ndarray]] = [None] * count
|
|
339
338
|
for i in range(count):
|
|
340
339
|
size = self.read_U32()
|
|
341
340
|
data[i] = self.read_v("f", size) # size x f32
|
|
@@ -450,7 +449,7 @@ class FileArchive:
|
|
|
450
449
|
a = array.array("b")
|
|
451
450
|
a.fromfile(self.f, comp)
|
|
452
451
|
# unpack
|
|
453
|
-
b = zlib.decompress(a.
|
|
452
|
+
b = zlib.decompress(a.tobytes(), 15 + 32)
|
|
454
453
|
# substitute self.f by an anonymous memmap file object
|
|
455
454
|
# restore original file handle after we're done
|
|
456
455
|
backup_f = self.f
|
|
@@ -575,17 +574,17 @@ class FileArchiveBundle:
|
|
|
575
574
|
:param str encoding: encoding used in the files
|
|
576
575
|
"""
|
|
577
576
|
# filename -> FileArchive
|
|
578
|
-
self.archives
|
|
577
|
+
self.archives: Dict[str, FileArchive] = {}
|
|
579
578
|
# archive content file -> FileArchive
|
|
580
|
-
self.files
|
|
579
|
+
self.files: Dict[str, FileArchive] = {}
|
|
581
580
|
self._short_seg_names = {}
|
|
582
581
|
if filename is not None:
|
|
583
582
|
self.add_bundle(filename=filename, encoding=encoding)
|
|
584
583
|
|
|
585
|
-
def add_bundle(self, filename, encoding="ascii"):
|
|
584
|
+
def add_bundle(self, filename: str, encoding: str = "ascii"):
|
|
586
585
|
"""
|
|
587
|
-
:param
|
|
588
|
-
:param
|
|
586
|
+
:param filename: bundle
|
|
587
|
+
:param encoding:
|
|
589
588
|
"""
|
|
590
589
|
file_dir = os.path.dirname(filename) or "."
|
|
591
590
|
for line in open(filename).read().splitlines():
|
|
@@ -837,7 +836,7 @@ class MixtureSet:
|
|
|
837
836
|
"""
|
|
838
837
|
a = array.array("b")
|
|
839
838
|
a.fromfile(self.f, length)
|
|
840
|
-
return a.
|
|
839
|
+
return a.tobytes().decode(encoding)
|
|
841
840
|
|
|
842
841
|
def read_f32(self):
|
|
843
842
|
"""
|
|
@@ -1003,7 +1002,7 @@ class WordBoundaries:
|
|
|
1003
1002
|
"""
|
|
1004
1003
|
a = array.array("b")
|
|
1005
1004
|
a.fromfile(self.f, length)
|
|
1006
|
-
return a.
|
|
1005
|
+
return a.tobytes().decode(encoding)
|
|
1007
1006
|
|
|
1008
1007
|
def __init__(self, filename):
|
|
1009
1008
|
"""
|
returnn/tensor/_dim_extra.py
CHANGED
|
@@ -858,7 +858,7 @@ class _DimMixin:
|
|
|
858
858
|
self._make_extra()
|
|
859
859
|
dim_order_default = self.dyn_size_ext.dims + (self,)
|
|
860
860
|
if dim_order is not None:
|
|
861
|
-
dim_order = tuple(d for d in dim_order if d in dim_order_default) # filter
|
|
861
|
+
dim_order = tuple([d for d in dim_order if d in dim_order_default]) # filter
|
|
862
862
|
else:
|
|
863
863
|
dim_order = dim_order_default
|
|
864
864
|
cache_key = (device, dim_order)
|
|
@@ -2484,16 +2484,16 @@ _BinOpStrs = {
|
|
|
2484
2484
|
|
|
2485
2485
|
def _math_get_dim_via_bin_op(dims: Sequence[Union[Dim, int]], op_kind: str) -> Dim:
|
|
2486
2486
|
dims = [d if isinstance(d, _d.Dim) else _make_constant_static_dim(d) for d in dims]
|
|
2487
|
-
if all(d.dimension is not None for d in dims):
|
|
2487
|
+
if all([d.dimension is not None for d in dims]):
|
|
2488
2488
|
op = _BinOps[op_kind]
|
|
2489
2489
|
dim_value = dims[0].dimension
|
|
2490
2490
|
for d in dims[1:]:
|
|
2491
2491
|
dim_value = op(dim_value, d.dimension)
|
|
2492
2492
|
else:
|
|
2493
2493
|
dim_value = None
|
|
2494
|
-
if all(d.is_constant_static_dim() for d in dims):
|
|
2494
|
+
if all([d.is_constant_static_dim() for d in dims]):
|
|
2495
2495
|
return _make_constant_static_dim(dim_value, kind=_get_merged_dim_kind(dims))
|
|
2496
|
-
desc = _BinOpStrs[op_kind].join(_get_description(d) for d in dims)
|
|
2496
|
+
desc = _BinOpStrs[op_kind].join([_get_description(d) for d in dims])
|
|
2497
2497
|
if op_kind.startswith("ceildiv"):
|
|
2498
2498
|
desc = f"⌈{desc}⌉"
|
|
2499
2499
|
return _d.Dim(
|
|
@@ -2676,16 +2676,16 @@ def _get_description(dim, brackets=True):
|
|
|
2676
2676
|
|
|
2677
2677
|
|
|
2678
2678
|
def _get_merged_dim_kind(dim_tags: Sequence[Dim]) -> Entity:
|
|
2679
|
-
if any(tag.is_batch_dim() for tag in dim_tags):
|
|
2679
|
+
if any([tag.is_batch_dim() for tag in dim_tags]):
|
|
2680
2680
|
return DimTypes.Batch
|
|
2681
|
-
elif any(tag.is_feature_dim() for tag in dim_tags):
|
|
2681
|
+
elif any([tag.is_feature_dim() for tag in dim_tags]):
|
|
2682
2682
|
return DimTypes.Feature
|
|
2683
2683
|
else:
|
|
2684
2684
|
return DimTypes.Spatial
|
|
2685
2685
|
|
|
2686
2686
|
|
|
2687
2687
|
def _representative_tag(terms: Sequence[Dim]) -> Optional[Dim]:
|
|
2688
|
-
if any(not term_.auto_generated for term_ in terms):
|
|
2688
|
+
if any([not term_.auto_generated for term_ in terms]):
|
|
2689
2689
|
# Always prefer non-auto-generated.
|
|
2690
2690
|
terms = [term_ for term_ in terms if not term_.auto_generated]
|
|
2691
2691
|
# First find any dynamic.
|
returnn/tensor/_tensor_extra.py
CHANGED
|
@@ -32,8 +32,8 @@ class _TensorExtra:
|
|
|
32
32
|
tensor: Tensor,
|
|
33
33
|
time_dim_axis=NotSpecified,
|
|
34
34
|
available_for_inference=True,
|
|
35
|
-
batch=None,
|
|
36
|
-
beam=None,
|
|
35
|
+
batch: Optional[BatchInfo] = None,
|
|
36
|
+
beam: Optional[SearchBeam] = None,
|
|
37
37
|
control_flow_ctx=None,
|
|
38
38
|
):
|
|
39
39
|
"""
|
|
@@ -41,8 +41,8 @@ class _TensorExtra:
|
|
|
41
41
|
:param int|None|NotSpecified time_dim_axis: where we have the time dim axis, after we added the batch-dim.
|
|
42
42
|
this is often 1. however, can be None if there is no time-dim.
|
|
43
43
|
:param bool available_for_inference: e.g. the extern data "classes" is usually not available for inference
|
|
44
|
-
:param
|
|
45
|
-
:param
|
|
44
|
+
:param batch:
|
|
45
|
+
:param beam: the batch-dim could be extended by a beam-size,
|
|
46
46
|
such that it represents the merged dims [batch, beam_size].
|
|
47
47
|
:param ControlFlowContext|None control_flow_ctx:
|
|
48
48
|
"""
|
|
@@ -668,11 +668,11 @@ class _TensorMixin(_TensorMixinBase):
|
|
|
668
668
|
if not perm:
|
|
669
669
|
return self.copy()
|
|
670
670
|
if allow_int and isinstance(perm[0], int):
|
|
671
|
-
assert all(isinstance(a, int) for a in perm), f"{self}: invalid perm {perm!r} types"
|
|
671
|
+
assert all([isinstance(a, int) for a in perm]), f"{self}: invalid perm {perm!r} types"
|
|
672
672
|
assert set(perm) == set(range(len(perm))), f"{self}: invalid perm {perm!r}"
|
|
673
673
|
return self._copy_compatible_to_dims_with_perm([self._dims[i] for i in perm], perm)
|
|
674
674
|
else:
|
|
675
|
-
assert all(isinstance(a, Dim) for a in perm), f"{self}: invalid perm {perm!r} types"
|
|
675
|
+
assert all([isinstance(a, Dim) for a in perm]), f"{self}: invalid perm {perm!r} types"
|
|
676
676
|
return self.copy_compatible_to_dims(perm)
|
|
677
677
|
|
|
678
678
|
def copy_move_axis(self, old_axis, new_axis) -> _t.Tensor:
|
|
@@ -1155,7 +1155,7 @@ class _TensorMixin(_TensorMixinBase):
|
|
|
1155
1155
|
)
|
|
1156
1156
|
|
|
1157
1157
|
assert v.batch_ndim == data.batch_ndim
|
|
1158
|
-
assert all(mapped_axes[ax] == ax for ax in range(v.batch_ndim))
|
|
1158
|
+
assert all([mapped_axes[ax] == ax for ax in range(v.batch_ndim)])
|
|
1159
1159
|
|
|
1160
1160
|
if self.version == 1:
|
|
1161
1161
|
# Ensure time_dim_axis and feature_dim_axis is same as in data
|
|
@@ -1702,7 +1702,7 @@ class _TensorMixin(_TensorMixinBase):
|
|
|
1702
1702
|
"""
|
|
1703
1703
|
:return: shape with added batch-dim. e.g. (batch,time,feat) = (None,None,128)
|
|
1704
1704
|
"""
|
|
1705
|
-
return tuple(tag.dimension for tag in self.dim_tags)
|
|
1705
|
+
return tuple([tag.dimension for tag in self.dim_tags])
|
|
1706
1706
|
|
|
1707
1707
|
# noinspection PyShadowingNames
|
|
1708
1708
|
def get_batch_shape(self, batch_dim):
|
|
@@ -3214,7 +3214,7 @@ class _TensorMixin(_TensorMixinBase):
|
|
|
3214
3214
|
if len(sources) == 1:
|
|
3215
3215
|
return sources[0].copy_template()
|
|
3216
3216
|
max_ndim = max([s.batch_ndim for s in sources])
|
|
3217
|
-
if any(src.batch for src in sources):
|
|
3217
|
+
if any([src.batch for src in sources]):
|
|
3218
3218
|
from returnn.tf.util.data import BatchInfo
|
|
3219
3219
|
|
|
3220
3220
|
common_batch = BatchInfo.get_common_batch_info([src.batch for src in sources if src.batch])
|
|
@@ -3254,7 +3254,7 @@ class _TensorMixin(_TensorMixinBase):
|
|
|
3254
3254
|
else:
|
|
3255
3255
|
axis = common.get_default_new_axis_for_dim_tag(dim_tag)
|
|
3256
3256
|
common = common.copy_add_dim_by_tag(dim_tag, unbroadcast=True, axis=axis)
|
|
3257
|
-
if all(s.batch_ndim < common.batch_ndim for s in sources):
|
|
3257
|
+
if all([s.batch_ndim < common.batch_ndim for s in sources]):
|
|
3258
3258
|
from returnn.util.basic import validate_broadcast_all_sources
|
|
3259
3259
|
|
|
3260
3260
|
validate_broadcast_all_sources(
|
returnn/tensor/utils.py
CHANGED
|
@@ -36,11 +36,14 @@ def tensor_fill_random_numpy_(
|
|
|
36
36
|
*,
|
|
37
37
|
min_val: int = 0,
|
|
38
38
|
max_val: Optional[int] = None,
|
|
39
|
-
rnd: numpy.random.RandomState,
|
|
39
|
+
rnd: Optional[numpy.random.RandomState] = None,
|
|
40
40
|
dyn_dim_max_sizes: Optional[Dict[Dim, int]] = None,
|
|
41
41
|
dyn_dim_min_sizes: Optional[Dict[Dim, int]] = None,
|
|
42
42
|
) -> bool:
|
|
43
43
|
"""fill. return whether sth was filled"""
|
|
44
|
+
if rnd is None:
|
|
45
|
+
# noinspection PyUnresolvedReferences,PyProtectedMember
|
|
46
|
+
rnd = numpy.random.mtrand._rand
|
|
44
47
|
if dyn_dim_max_sizes is None:
|
|
45
48
|
dyn_dim_max_sizes = {}
|
|
46
49
|
if dyn_dim_min_sizes is None:
|
|
@@ -59,7 +62,7 @@ def tensor_fill_random_numpy_(
|
|
|
59
62
|
continue
|
|
60
63
|
if tensor_fill_random_numpy_(
|
|
61
64
|
dim.dyn_size_ext,
|
|
62
|
-
min_val=dyn_dim_min_sizes.get(dim, 2),
|
|
65
|
+
min_val=dyn_dim_min_sizes.get(dim, min(2, dyn_dim_max_sizes.get(dim, 2))),
|
|
63
66
|
max_val=dyn_dim_max_sizes.get(dim, None),
|
|
64
67
|
rnd=rnd,
|
|
65
68
|
dyn_dim_max_sizes=dyn_dim_max_sizes,
|
|
@@ -98,8 +101,8 @@ def tensor_fill_random_numpy_(
|
|
|
98
101
|
if max_val is None:
|
|
99
102
|
max_val = rnd.randint(5, 20)
|
|
100
103
|
if x.sparse_dim and x.sparse_dim.dimension is not None:
|
|
101
|
-
max_val = x.sparse_dim.dimension
|
|
102
|
-
x.raw_tensor = rnd.randint(min_val, max_val, size=shape, dtype=x.dtype)
|
|
104
|
+
max_val = x.sparse_dim.dimension - 1
|
|
105
|
+
x.raw_tensor = rnd.randint(min_val, max_val + 1, size=shape, dtype=x.dtype)
|
|
103
106
|
elif x.dtype == "bool":
|
|
104
107
|
x.raw_tensor = rnd.randint(0, 2, size=shape, dtype=x.dtype)
|
|
105
108
|
elif x.dtype.startswith("float"):
|
|
@@ -944,7 +944,6 @@ class ReturnnLayersBackend(Backend[Layer]):
|
|
|
944
944
|
"""
|
|
945
945
|
assert mask.dtype == "bool"
|
|
946
946
|
assert set(mask.dims) == set(dims)
|
|
947
|
-
assert set(mask.dims).issubset(set(tensor.dims))
|
|
948
947
|
if not out_dim:
|
|
949
948
|
out_dim = Dim(None, name="mask")
|
|
950
949
|
return (
|
|
@@ -1067,14 +1066,16 @@ class ReturnnLayersBackend(Backend[Layer]):
|
|
|
1067
1066
|
s = filter_size[i].dimension if not strides else strides[i]
|
|
1068
1067
|
if filter_size[i].dimension == s == 1 or (s == 1 and padding.lower() == "same"):
|
|
1069
1068
|
out_spatial_dims[i] = in_spatial_dims[i]
|
|
1070
|
-
|
|
1069
|
+
assert all(size.is_static() for size in filter_size)
|
|
1070
|
+
layer_dict: Dict[str, Any] = {
|
|
1071
1071
|
"class": "transposed_conv",
|
|
1072
1072
|
"from": source,
|
|
1073
1073
|
"in_dim": in_dim,
|
|
1074
1074
|
"in_spatial_dims": in_spatial_dims,
|
|
1075
1075
|
"out_dim": out_dim,
|
|
1076
1076
|
"out_spatial_dims": out_spatial_dims,
|
|
1077
|
-
"filter_size": filter_size,
|
|
1077
|
+
"filter_size": [size.dimension for size in filter_size],
|
|
1078
|
+
"filter_perm": list(filter_size) + [out_dim, in_dim],
|
|
1078
1079
|
"padding": padding,
|
|
1079
1080
|
}
|
|
1080
1081
|
if remove_padding:
|
returnn/tf/layers/basic.py
CHANGED
|
@@ -2741,7 +2741,7 @@ class BooleanMaskLayer(LayerBase):
|
|
|
2741
2741
|
tensor = self.sources[0].output
|
|
2742
2742
|
remaining_dims = [d for d in tensor.dims if d not in dims]
|
|
2743
2743
|
tensor_templ = tensor.copy_template_new_dim_tags(tuple(dims) + tuple(remaining_dims))
|
|
2744
|
-
tensor = tensor.copy_compatible_to(tensor_templ,
|
|
2744
|
+
tensor = tensor.copy_compatible_to(tensor_templ, unbroadcast=True)
|
|
2745
2745
|
mask_templ = mask.output.copy_template_new_dim_tags(new_dim_tags=tuple(dims))
|
|
2746
2746
|
mask_ = mask.output.copy_compatible_to(mask_templ, add_dims=False)
|
|
2747
2747
|
self.output.raw_tensor = tf.boolean_mask(tensor.raw_tensor, mask=mask_.raw_tensor)
|
|
@@ -7371,7 +7371,7 @@ class TransposedConvLayer(_ConcatInputLayer):
|
|
|
7371
7371
|
"""
|
|
7372
7372
|
from returnn.tf.util.basic import get_initializer, get_activation_function, get_shape
|
|
7373
7373
|
|
|
7374
|
-
super(TransposedConvLayer, self).__init__(**kwargs)
|
|
7374
|
+
super(TransposedConvLayer, self).__init__(in_dim=in_dim, **kwargs)
|
|
7375
7375
|
out_dim # noqa # via get_out_data_from_opts
|
|
7376
7376
|
assert not self.input_data.sparse
|
|
7377
7377
|
assert self.input_data.have_batch_axis()
|
|
@@ -7516,7 +7516,10 @@ class TransposedConvLayer(_ConcatInputLayer):
|
|
|
7516
7516
|
):
|
|
7517
7517
|
"""
|
|
7518
7518
|
Determines output length of a transposed convolution given input length.
|
|
7519
|
-
|
|
7519
|
+
|
|
7520
|
+
Copied from TF/Keras conv_utils.deconv_output_length
|
|
7521
|
+
(https://github.com/tensorflow/tensorflow/blob/5912f51d580551e5cee2cfde4cb882594b4d3e60/tensorflow/python/keras/utils/conv_utils.py#L140),
|
|
7522
|
+
adapted with simplification.
|
|
7520
7523
|
|
|
7521
7524
|
Also see :func:`ConvLayer.calc_out_dim`.
|
|
7522
7525
|
|
|
@@ -7533,44 +7536,17 @@ class TransposedConvLayer(_ConcatInputLayer):
|
|
|
7533
7536
|
"""
|
|
7534
7537
|
if out_dim and out_dim.is_dim_known():
|
|
7535
7538
|
return out_dim.get_dim_value()
|
|
7536
|
-
assert padding in {"same", "valid", "full"}
|
|
7537
|
-
|
|
7538
|
-
# Get the dilated kernel size
|
|
7539
|
-
filter_size = filter_size + (filter_size - 1) * (dilation - 1)
|
|
7540
7539
|
|
|
7541
|
-
|
|
7542
|
-
input_length = input_length * stride
|
|
7540
|
+
import returnn.frontend as rf
|
|
7543
7541
|
|
|
7544
|
-
|
|
7545
|
-
|
|
7546
|
-
|
|
7547
|
-
|
|
7548
|
-
|
|
7549
|
-
|
|
7550
|
-
|
|
7551
|
-
|
|
7552
|
-
if isinstance(input_length, Dim):
|
|
7553
|
-
length = input_length - (stride + filter_size - 2)
|
|
7554
|
-
else:
|
|
7555
|
-
length = tf_util.simplify_add(input_length, -(stride + filter_size - 2))
|
|
7556
|
-
elif padding == "same":
|
|
7557
|
-
length = input_length
|
|
7558
|
-
else:
|
|
7559
|
-
raise Exception("invalid padding %r" % (padding,))
|
|
7560
|
-
else: # output_padding
|
|
7561
|
-
if padding == "same":
|
|
7562
|
-
pad = filter_size // 2
|
|
7563
|
-
elif padding == "valid":
|
|
7564
|
-
pad = 0
|
|
7565
|
-
elif padding == "full":
|
|
7566
|
-
pad = filter_size - 1
|
|
7567
|
-
else:
|
|
7568
|
-
raise Exception("invalid padding %r" % (padding,))
|
|
7569
|
-
if isinstance(input_length, Dim):
|
|
7570
|
-
length = input_length + (-stride + filter_size - 2 * pad + output_padding)
|
|
7571
|
-
else:
|
|
7572
|
-
length = tf_util.simplify_add(input_length, -stride + filter_size - 2 * pad + output_padding)
|
|
7573
|
-
return length
|
|
7542
|
+
return rf.calc_transposed_conv_out_length(
|
|
7543
|
+
input_length,
|
|
7544
|
+
filter_size=filter_size,
|
|
7545
|
+
padding=padding,
|
|
7546
|
+
output_padding=output_padding,
|
|
7547
|
+
stride=stride,
|
|
7548
|
+
dilation_rate=dilation,
|
|
7549
|
+
)
|
|
7574
7550
|
|
|
7575
7551
|
@classmethod
|
|
7576
7552
|
def get_out_data_from_opts(
|
returnn/tf/native_op.py
CHANGED
|
@@ -528,77 +528,30 @@ class OpMaker:
|
|
|
528
528
|
def _make_mod(self):
|
|
529
529
|
if self.cache_key in self.mod_cache:
|
|
530
530
|
return self.mod_cache[self.cache_key]
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
#
|
|
534
|
-
#
|
|
535
|
-
#
|
|
536
|
-
#
|
|
537
|
-
#
|
|
538
|
-
# In other cases, it's probably needed, but it's not so clear which lib has the
|
|
539
|
-
# right symbols (e.g. the `sgemm_` symbol).
|
|
531
|
+
|
|
532
|
+
# Note about BLAS / matmul:
|
|
533
|
+
# Earlier, we assumed that TensorFlow/Eigen used BLAS internally,
|
|
534
|
+
# and our code directly called BLAS sgemm_, so we needed to link directly to BLAS.
|
|
535
|
+
# Now, by default, we use the underlying Eigen library,
|
|
536
|
+
# which is the same code path that TF also uses for CPU matmul.
|
|
537
|
+
# Only if an explicit BLAS library is specified, we use that instead.
|
|
540
538
|
ld_flags = []
|
|
541
|
-
|
|
539
|
+
c_macro_defines = {}
|
|
542
540
|
|
|
543
541
|
if self.blas_lib is not None and os.path.exists(self.blas_lib):
|
|
544
542
|
path = os.path.dirname(self.blas_lib)
|
|
545
543
|
if path == "":
|
|
546
544
|
path = "."
|
|
547
545
|
ld_flags += ["-L%s" % path, "-l:%s" % os.path.basename(self.blas_lib)]
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
from returnn.util.basic import find_sgemm_libs_from_runtime
|
|
551
|
-
|
|
552
|
-
libs = find_sgemm_libs_from_runtime()
|
|
553
|
-
if libs:
|
|
554
|
-
numpy_libs = [fn for fn in libs if "/numpy/.libs/" in fn]
|
|
555
|
-
if numpy_libs:
|
|
556
|
-
# Prefer Numpy; move to front.
|
|
557
|
-
libs = numpy_libs + [fn for fn in libs if fn not in numpy_libs]
|
|
558
|
-
if self.blas_lib is not None:
|
|
559
|
-
libs = [lib for lib in libs if self.blas_lib in lib]
|
|
560
|
-
for fn in libs:
|
|
561
|
-
ld_flags += ["-L%s" % os.path.dirname(fn), "-l:%s" % os.path.basename(fn)]
|
|
562
|
-
have_blas_lib = True
|
|
563
|
-
if not have_blas_lib and self.search_for_numpy_blas:
|
|
564
|
-
# Find related Numpy libs.
|
|
565
|
-
# Numpy usually comes with OpenBlas, and Numpy is probably loaded anyway.
|
|
566
|
-
# Even do this before the other libs below, as it is likely
|
|
567
|
-
# that this OpenBlas lib is correctly initialized already.
|
|
568
|
-
import numpy
|
|
569
|
-
|
|
570
|
-
numpy_dir = os.path.dirname(numpy.__file__)
|
|
571
|
-
if os.path.exists("%s/.libs" % numpy_dir):
|
|
572
|
-
ld_flags += ["-L%s/.libs" % numpy_dir]
|
|
573
|
-
from glob import glob
|
|
574
|
-
|
|
575
|
-
for f in glob("%s/.libs/*.so" % numpy_dir):
|
|
576
|
-
f = os.path.basename(f)
|
|
577
|
-
if self.blas_lib is not None and self.blas_lib not in f:
|
|
578
|
-
continue
|
|
579
|
-
if f.startswith("lib"):
|
|
580
|
-
f = f[3:]
|
|
581
|
-
if f.endswith(".so"):
|
|
582
|
-
f = f[:-3]
|
|
583
|
-
ld_flags += ["-l%s" % f]
|
|
584
|
-
have_blas_lib = True
|
|
585
|
-
if not have_blas_lib and self.search_for_system_blas:
|
|
586
|
-
# Try to just link against blas/f77blas
|
|
587
|
-
# (both can potentially have the symbol) if it finds the lib.
|
|
588
|
-
if find_lib("blas"):
|
|
589
|
-
ld_flags += ["-lblas"]
|
|
590
|
-
have_blas_lib = True
|
|
591
|
-
if find_lib("f77blas"):
|
|
592
|
-
ld_flags += ["-lf77blas"]
|
|
593
|
-
have_blas_lib = True
|
|
594
|
-
if not have_blas_lib:
|
|
595
|
-
print("WARNING: OpMaker: no BLAS lib found")
|
|
546
|
+
c_macro_defines["HAVE_CUSTOM_BLAS"] = "1"
|
|
547
|
+
|
|
596
548
|
comp = tf_util.OpCodeCompiler(
|
|
597
549
|
base_name=self.name,
|
|
598
550
|
code_version=self.description.code_version,
|
|
599
551
|
code=self._make_code(),
|
|
600
552
|
include_deps=[self.support_native_op_cpp_filename],
|
|
601
553
|
ld_flags=ld_flags,
|
|
554
|
+
c_macro_defines=c_macro_defines,
|
|
602
555
|
use_cuda_if_available=self.with_cuda,
|
|
603
556
|
log_stream=self.log_stream,
|
|
604
557
|
**dict(self.compiler_opts),
|
returnn/tf/network.py
CHANGED
|
@@ -4428,7 +4428,7 @@ def help_on_tf_exception(
|
|
|
4428
4428
|
data = extern_data.data[data_key]
|
|
4429
4429
|
info += ", %s" % data
|
|
4430
4430
|
print(" %r: %s" % (key, info), file=file)
|
|
4431
|
-
if data and data.sparse:
|
|
4431
|
+
if data is not None and data.sparse:
|
|
4432
4432
|
if v_minmax[0] < 0 or v_minmax[1] >= data.dim:
|
|
4433
4433
|
print(" WARNING, invalid label for data", data, file=file)
|
|
4434
4434
|
elif feed_dict is None:
|
returnn/tf/util/basic.py
CHANGED
|
@@ -2784,6 +2784,10 @@ class CudaEnv:
|
|
|
2784
2784
|
self.cuda_path = None
|
|
2785
2785
|
if self.verbose_find_cuda:
|
|
2786
2786
|
print("CUDA disabled via env DISABLE_CUDA.")
|
|
2787
|
+
elif os.environ.get("CUDA_VISIBLE_DEVICES", None) in ["", "-1"]:
|
|
2788
|
+
self.cuda_path = None
|
|
2789
|
+
if self.verbose_find_cuda:
|
|
2790
|
+
print(f"CUDA disabled via env CUDA_VISIBLE_DEVICES={os.environ['CUDA_VISIBLE_DEVICES']!r}.")
|
|
2787
2791
|
else:
|
|
2788
2792
|
self.cuda_path = self._find_cuda_path()
|
|
2789
2793
|
if self.verbose_find_cuda:
|
|
@@ -3020,6 +3024,21 @@ class OpCodeCompiler(NativeCodeCompiler):
|
|
|
3020
3024
|
ld_flags += tf.sysconfig.get_link_flags()
|
|
3021
3025
|
elif have_min_tf_version((1, 4)):
|
|
3022
3026
|
ld_flags += ["-L%s" % tf.sysconfig.get_lib(), "-ltensorflow_framework"]
|
|
3027
|
+
if have_min_tf_version((2, 20)):
|
|
3028
|
+
# TF 2.20 removed TF_MAJOR_VERSION and co from version.h,
|
|
3029
|
+
# and one is supposed to define these macros externally.
|
|
3030
|
+
# Also, release_version.h was added to define TF_VERSION_STRING based on this (if needed).
|
|
3031
|
+
# https://github.com/tensorflow/tensorflow/commit/c8f0e0620e5678d0f165a07e64114024a966ab7f
|
|
3032
|
+
major, minor, patch = tf.__version__.split(".", 2)
|
|
3033
|
+
patch, suffix = patch.split("-", 1) if "-" in patch else (patch, "")
|
|
3034
|
+
c_macro_defines.update(
|
|
3035
|
+
{
|
|
3036
|
+
"TF_MAJOR_VERSION": major,
|
|
3037
|
+
"TF_MINOR_VERSION": minor,
|
|
3038
|
+
"TF_PATCH_VERSION": patch,
|
|
3039
|
+
"TF_VERSION_SUFFIX": suffix,
|
|
3040
|
+
}
|
|
3041
|
+
)
|
|
3023
3042
|
use_cxx11_abi = getattr(getattr(tf, "sysconfig", tf), "CXX11_ABI_FLAG", getattr(tf, "CXX11_ABI_FLAG", False))
|
|
3024
3043
|
super(OpCodeCompiler, self).__init__(
|
|
3025
3044
|
include_paths=include_paths,
|