reflectorch 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of reflectorch might be problematic. Click here for more details.

Files changed (83) hide show
  1. reflectorch/__init__.py +23 -0
  2. reflectorch/data_generation/__init__.py +130 -0
  3. reflectorch/data_generation/dataset.py +196 -0
  4. reflectorch/data_generation/likelihoods.py +86 -0
  5. reflectorch/data_generation/noise.py +371 -0
  6. reflectorch/data_generation/priors/__init__.py +66 -0
  7. reflectorch/data_generation/priors/base.py +61 -0
  8. reflectorch/data_generation/priors/exp_subprior_sampler.py +304 -0
  9. reflectorch/data_generation/priors/independent_priors.py +201 -0
  10. reflectorch/data_generation/priors/multilayer_models.py +311 -0
  11. reflectorch/data_generation/priors/multilayer_structures.py +110 -0
  12. reflectorch/data_generation/priors/no_constraints.py +212 -0
  13. reflectorch/data_generation/priors/parametric_models.py +767 -0
  14. reflectorch/data_generation/priors/parametric_subpriors.py +354 -0
  15. reflectorch/data_generation/priors/params.py +258 -0
  16. reflectorch/data_generation/priors/sampler_strategies.py +306 -0
  17. reflectorch/data_generation/priors/scaler_mixin.py +65 -0
  18. reflectorch/data_generation/priors/subprior_sampler.py +377 -0
  19. reflectorch/data_generation/priors/utils.py +124 -0
  20. reflectorch/data_generation/process_data.py +47 -0
  21. reflectorch/data_generation/q_generator.py +232 -0
  22. reflectorch/data_generation/reflectivity/__init__.py +56 -0
  23. reflectorch/data_generation/reflectivity/abeles.py +81 -0
  24. reflectorch/data_generation/reflectivity/kinematical.py +58 -0
  25. reflectorch/data_generation/reflectivity/memory_eff.py +92 -0
  26. reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
  27. reflectorch/data_generation/reflectivity/smearing.py +123 -0
  28. reflectorch/data_generation/scale_curves.py +118 -0
  29. reflectorch/data_generation/smearing.py +67 -0
  30. reflectorch/data_generation/utils.py +154 -0
  31. reflectorch/extensions/__init__.py +6 -0
  32. reflectorch/extensions/jupyter/__init__.py +12 -0
  33. reflectorch/extensions/jupyter/callbacks.py +40 -0
  34. reflectorch/extensions/matplotlib/__init__.py +11 -0
  35. reflectorch/extensions/matplotlib/losses.py +38 -0
  36. reflectorch/inference/__init__.py +22 -0
  37. reflectorch/inference/inference_model.py +734 -0
  38. reflectorch/inference/multilayer_fitter.py +171 -0
  39. reflectorch/inference/multilayer_inference_model.py +193 -0
  40. reflectorch/inference/preprocess_exp/__init__.py +7 -0
  41. reflectorch/inference/preprocess_exp/attenuation.py +36 -0
  42. reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
  43. reflectorch/inference/preprocess_exp/footprint.py +81 -0
  44. reflectorch/inference/preprocess_exp/interpolation.py +16 -0
  45. reflectorch/inference/preprocess_exp/normalize.py +21 -0
  46. reflectorch/inference/preprocess_exp/preprocess.py +121 -0
  47. reflectorch/inference/record_time.py +43 -0
  48. reflectorch/inference/sampler_solution.py +56 -0
  49. reflectorch/inference/scipy_fitter.py +171 -0
  50. reflectorch/inference/torch_fitter.py +87 -0
  51. reflectorch/ml/__init__.py +37 -0
  52. reflectorch/ml/basic_trainer.py +286 -0
  53. reflectorch/ml/callbacks.py +86 -0
  54. reflectorch/ml/dataloaders.py +27 -0
  55. reflectorch/ml/loggers.py +38 -0
  56. reflectorch/ml/schedulers.py +246 -0
  57. reflectorch/ml/trainers.py +126 -0
  58. reflectorch/ml/utils.py +9 -0
  59. reflectorch/models/__init__.py +22 -0
  60. reflectorch/models/activations.py +50 -0
  61. reflectorch/models/encoders/__init__.py +27 -0
  62. reflectorch/models/encoders/conv_encoder.py +211 -0
  63. reflectorch/models/encoders/conv_res_net.py +119 -0
  64. reflectorch/models/encoders/fno.py +127 -0
  65. reflectorch/models/encoders/transformers.py +56 -0
  66. reflectorch/models/networks/__init__.py +18 -0
  67. reflectorch/models/networks/mlp_networks.py +256 -0
  68. reflectorch/models/networks/residual_net.py +131 -0
  69. reflectorch/paths.py +33 -0
  70. reflectorch/runs/__init__.py +35 -0
  71. reflectorch/runs/config.py +31 -0
  72. reflectorch/runs/slurm_utils.py +99 -0
  73. reflectorch/runs/train.py +85 -0
  74. reflectorch/runs/utils.py +300 -0
  75. reflectorch/test_config.py +4 -0
  76. reflectorch/train.py +4 -0
  77. reflectorch/train_on_cluster.py +4 -0
  78. reflectorch/utils.py +74 -0
  79. reflectorch-1.0.0.dist-info/LICENSE.txt +621 -0
  80. reflectorch-1.0.0.dist-info/METADATA +115 -0
  81. reflectorch-1.0.0.dist-info/RECORD +83 -0
  82. reflectorch-1.0.0.dist-info/WHEEL +5 -0
  83. reflectorch-1.0.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,115 @@
1
+ Metadata-Version: 2.1
2
+ Name: reflectorch
3
+ Version: 1.0.0
4
+ Summary: A Pytorch-based package for the analysis of reflectometry data
5
+ Author-email: Vladimir Starostin <vladimir.starostin@uni-tuebingen.de>, Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>
6
+ Maintainer-email: Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>, Alexander Hinderhofer <alexander.hinderhofer@uni-tuebingen.de>
7
+ Project-URL: Source, https://github.com/schreiber-lab/reflectorch/
8
+ Project-URL: Issues, https://github.com/schreiber-lab/reflectorch/issues
9
+ Project-URL: Documentation, https://schreiber-lab.github.io/reflectorch/
10
+ Keywords: reflectometry,machine learning
11
+ Classifier: Programming Language :: Python :: 3
12
+ Classifier: Operating System :: OS Independent
13
+ Classifier: Environment :: GPU :: NVIDIA CUDA
14
+ Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
15
+ Classifier: Development Status :: 4 - Beta
16
+ Classifier: Topic :: Scientific/Engineering :: Physics
17
+ Classifier: Intended Audience :: Science/Research
18
+ Requires-Python: >=3.7
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE.txt
21
+ Requires-Dist: numpy <2.0,>=1.18.1
22
+ Requires-Dist: torch >=1.8.1
23
+ Requires-Dist: scipy
24
+ Requires-Dist: tqdm
25
+ Requires-Dist: PyYAML
26
+ Requires-Dist: click
27
+ Requires-Dist: matplotlib
28
+ Requires-Dist: ipywidgets
29
+ Requires-Dist: torchinfo
30
+ Requires-Dist: huggingface-hub
31
+ Provides-Extra: build
32
+ Requires-Dist: build ; extra == 'build'
33
+ Requires-Dist: twine ; extra == 'build'
34
+ Provides-Extra: docs
35
+ Requires-Dist: jupyter-book ; extra == 'docs'
36
+ Requires-Dist: sphinx ; extra == 'docs'
37
+ Provides-Extra: tests
38
+ Requires-Dist: pytest ; extra == 'tests'
39
+ Requires-Dist: pytest-cov ; extra == 'tests'
40
+
41
+ # Reflectorch
42
+
43
+ [![PyTorch](https://img.shields.io/badge/PyTorch-%23EE4C2C.svg?style=for-the-badge&logo=PyTorch&logoColor=white)](https://pytorch.org/)
44
+ [![NumPy](https://img.shields.io/badge/numpy-%23013243.svg?style=for-the-badge&logo=numpy&logoColor=white)](https://numpy.org/)
45
+ [![SciPy](https://img.shields.io/badge/SciPy-%230C55A5.svg?style=for-the-badge&logo=scipy&logoColor=%white)](https://scipy.org/)
46
+ [![Matplotlib](https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=for-the-badge&logo=Matplotlib&logoColor=black)](https://matplotlib.org/)
47
+ [![YAML](https://img.shields.io/badge/yaml-%23ffffff.svg?style=for-the-badge&logo=yaml&logoColor=151515)](https://yaml.org/)
48
+ [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-%23FFD700.svg?style=for-the-badge&logo=huggingface&logoColor=black)](https://huggingface.co/valentinsingularity/reflectivity)
49
+
50
+ [![License: GPLv3](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0)
51
+ [![Python version](https://img.shields.io/badge/python-3.7%7C3.8%7C3.9%7C3.10%7C3.11%7C3.12-blue.svg)](https://www.python.org/)
52
+ ![CI workflow status](https://github.com/schreiber-lab/reflectorch/actions/workflows/ci.yml/badge.svg)
53
+ ![Repos size](https://img.shields.io/github/repo-size/schreiber-lab/reflectorch)
54
+ [![Jupyter Book Documentation](https://jupyterbook.org/badge.svg)](https://schreiber-lab.github.io/reflectorch/)
55
+ <!-- [![Code style: Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff) -->
56
+
57
+
58
+ **Reflectorch** is a machine learning Python package for the analysis of X-ray and neutron reflectometry data based on Pytorch (written by [Vladimir Starostin](https://github.com/StarostinV/) & [Valentin Munteanu](https://github.com/valentinsingularity)). It provides functionality for the fast simulation of reflectometry curves on the GPU, customizable setup of the physical parameterization model and neural network architecture via YAML configuration files, and prior-aware training of neural networks as described in our paper [Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge](https://doi.org/10.1107/S1600576724002115).
59
+
60
+ ## Installation
61
+
62
+ **Reflectorch** can be installed either from [![PyPi](https://img.shields.io/badge/PyPi-3776AB.svg?style=flat&logo=pypi&logoColor=white)](https://pypi.org/project/reflectorch/) via ``pip`` or from [![conda-forge](https://img.shields.io/badge/conda--forge-44A833.svg?style=flat&logo=conda-forge&logoColor=white)](https://anaconda.org/conda-forge/reflectorch/) via ``conda``:
63
+
64
+ ```bash
65
+ pip install reflectorch
66
+ ```
67
+
68
+ or
69
+
70
+ ```bash
71
+ conda install -c conda-forge reflectorch
72
+ ```
73
+
74
+ Additionally, one can clone the entire Github repository and install the package in editable mode:
75
+
76
+ ```bash
77
+ git clone https://github.com/schreiber-lab/reflectorch.git
78
+ pip install -e .
79
+ ```
80
+
81
+ For development purposes, the package can be installed together with the optional dependencies for building the distribution, testing and documentation:
82
+
83
+ ```bash
84
+ git clone https://github.com/schreiber-lab/reflectorch.git
85
+ pip install -e .[tests,docs,build]
86
+ ```
87
+
88
+ Users with Nvidia **GPU**s need to additionally install **Pytorch with CUDA support** corresponding to their hardware and operating system according to the instructions from the [Pytorch website](https://pytorch.org/get-started/locally/)
89
+
90
+ ## Get started
91
+
92
+ ![](https://img.shields.io/badge/Documentation%20Page-%23FFDD33.svg?style=flat&logo=read-the-docs&logoColor=black) The full documentation of the package, containing tutorials and the API reference, was built with [Jupyter Book](https://jupyterbook.org/) and [Sphinx](https://www.sphinx-doc.org) and it is hosted at the address: [https://schreiber-lab.github.io/reflectorch/](https://schreiber-lab.github.io/reflectorch/).
93
+
94
+ ![](https://img.shields.io/badge/Interactive%20Notebook-%23F9AB00.svg?style=flat&logo=google-colab&logoColor=black) We provide an interactive Google Colab notebook for exploring the basic functionality of the package: [![Explore reflectorch in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1rf_M8S_5kYvUoK0-9-AYal_fO3oFl7ck?usp=sharing)<br>
95
+
96
+ ![](https://img.shields.io/badge/Hugging%20Face-%23FFD700.svg?style=flat&logo=huggingface&logoColor=black) Configuration files and the corresponding pretrained model weights are hosted on Huggingface: [https://huggingface.co/valentinsingularity/reflectivity](https://huggingface.co/valentinsingularity/reflectivity).
97
+
98
+ ![](https://img.shields.io/badge/Docker-2496ED.svg?style=flat&logo=docker&logoColor=white) Docker images for reflectorch *will* be hosted on Dockerhub.
99
+
100
+ ## Citation
101
+ If you find our work useful in your research, please cite:
102
+ ```
103
+ @Article{Munteanu2024,
104
+ author = {Munteanu, Valentin and Starostin, Vladimir and Greco, Alessandro and Pithan, Linus and Gerlach, Alexander and Hinderhofer, Alexander and Kowarik, Stefan and Schreiber, Frank},
105
+ journal = {Journal of Applied Crystallography},
106
+ title = {Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge},
107
+ year = {2024},
108
+ issn = {1600-5767},
109
+ month = mar,
110
+ number = {2},
111
+ volume = {57},
112
+ doi = {10.1107/s1600576724002115},
113
+ publisher = {International Union of Crystallography (IUCr)},
114
+ }
115
+ ```
@@ -0,0 +1,83 @@
1
+ reflectorch/__init__.py,sha256=Xs-ZhOJ1D_yluLD98aj6Pr2ssy-tDFwtCnIIukDFOW4,895
2
+ reflectorch/paths.py,sha256=8xAtonoxLxfwnZF4rriUPidPaaz9pNvOEibFXiXu9yc,973
3
+ reflectorch/test_config.py,sha256=1T7pMJ-WYLEu-4WtYMQxcJrqXvgdpvJ1yi2qINd0kNA,99
4
+ reflectorch/train.py,sha256=-c8ac1fpjrCiEwnAaXg_rcBNl1stO1V5p5afx_78xHs,87
5
+ reflectorch/train_on_cluster.py,sha256=aG3_g5_rzL8iL1tvtdY9ueJTo1f2Pn8lGJgudrrRknU,109
6
+ reflectorch/utils.py,sha256=TIRilK7px-AAw3MWNmhBPC8dzq7RI5YbkNbEcqDvrNs,2152
7
+ reflectorch/data_generation/__init__.py,sha256=7lbWlxj4tMuhgTzz_lFgrRkYp2AVJm262ZLoJx_Riyw,3512
8
+ reflectorch/data_generation/dataset.py,sha256=O8R_RaRBXFYfvsI3co67fDeclEG1pMO50RXZTIPUf_4,7432
9
+ reflectorch/data_generation/likelihoods.py,sha256=mXplS5nwoH4sAeHqp3ciEf--GMA3ulPsnxasix0HMn0,3021
10
+ reflectorch/data_generation/noise.py,sha256=cZDTYPlteIclEhnRcV5DNKG64cvz-Q4VHiWGGdZkeDk,16318
11
+ reflectorch/data_generation/process_data.py,sha256=0kpVWqkpDkCDEybIu2uMYdr-ytfT0sVWKfY-BbXVo9c,1339
12
+ reflectorch/data_generation/q_generator.py,sha256=8_TLXamHF-5Lsr1g3WgAd6gcNuQgXPZ9hSJNazY247A,8688
13
+ reflectorch/data_generation/scale_curves.py,sha256=vMiyq9Y3S5nFaf5RA9g_Id96lrcr4D_O0s_Amz_3fWM,4243
14
+ reflectorch/data_generation/smearing.py,sha256=UqcWBATSyvds-P_Soq0hUfBipe3VJstBE88m_v0z-rc,2929
15
+ reflectorch/data_generation/utils.py,sha256=aBICDneVaZhlEqCyMJAzuDXbCe0kLUyJ_9VHxUTBrao,5766
16
+ reflectorch/data_generation/priors/__init__.py,sha256=5tN-0V8GduS8N1riZ6sDUXp_Wr7WM6840tlka4SsFqU,2100
17
+ reflectorch/data_generation/priors/base.py,sha256=y7e6AWxbMekw5MHtW_h3_VhmzcGS4T6hnhqso4p2MDA,1864
18
+ reflectorch/data_generation/priors/exp_subprior_sampler.py,sha256=WPjc7aGLr_qJiiNHA1yfKPd1EHJKcmOIixkbhhy7QKg,11710
19
+ reflectorch/data_generation/priors/independent_priors.py,sha256=T4_uvX74iHScPGa5u_-fvdwurUu97AuRssfDL3tYxKY,7400
20
+ reflectorch/data_generation/priors/multilayer_models.py,sha256=lAf-HJPbIDnbD1ecDTvx03TfA4jLN5tTLbwaBCiYgWM,7763
21
+ reflectorch/data_generation/priors/multilayer_structures.py,sha256=nGVoMstkn--0kdKlT5o3VsGZ0dHUdMoeSXeI9t9V61Q,3852
22
+ reflectorch/data_generation/priors/no_constraints.py,sha256=jLzsKXyQFHW2dtKViCpJpEbNjk2njjWpOaUxD8Hc3wE,7451
23
+ reflectorch/data_generation/priors/parametric_models.py,sha256=vaAGcm9Ky-coidNliE4R1YvoqCcbNwEwJVCwwmkKI4E,25139
24
+ reflectorch/data_generation/priors/parametric_subpriors.py,sha256=hSuSlZO1KPVAftgYzdsF6CtSDGV709v_DFjcPNKzc0g,14511
25
+ reflectorch/data_generation/priors/params.py,sha256=fND4ZNlplNertLHvIimfW0KKc2uWtPTUpwygCRskIu4,8397
26
+ reflectorch/data_generation/priors/sampler_strategies.py,sha256=afqXbwTd5DkNgRwTTUh7esHdhf-PaEJFzsxT6I5ctEE,13048
27
+ reflectorch/data_generation/priors/scaler_mixin.py,sha256=gI64v2KOZugSJWaLKASR34fn6qVFl-aoeVA1BR5yXNg,2648
28
+ reflectorch/data_generation/priors/subprior_sampler.py,sha256=6kaLIvJ_dSNfPCAbOzW1vyYKU3zQ6Qdnuu8nMRFkEoQ,14928
29
+ reflectorch/data_generation/priors/utils.py,sha256=-iCLSkb_MrDIvmfEZKxpWMJDwj9PtZGP8LwbbM9JYos,3995
30
+ reflectorch/data_generation/reflectivity/__init__.py,sha256=whto-vWKjWt3ZziqajgJ5M2RLZWXavSZpJLvyYcuom4,2280
31
+ reflectorch/data_generation/reflectivity/abeles.py,sha256=4G42f1XPcu6hvYbvV3HCfivHx7oRYq_a6AzHyGK_UeM,2091
32
+ reflectorch/data_generation/reflectivity/kinematical.py,sha256=tNmh1aYHA9-eFxnY-hJZBbctkpC89tht4o9rxbDBMdU,1475
33
+ reflectorch/data_generation/reflectivity/memory_eff.py,sha256=OzPZJoFupRdlz8Qchndz0A5aYhO33yU_yYMdnVxgsNg,2997
34
+ reflectorch/data_generation/reflectivity/numpy_implementations.py,sha256=QBzn4yVnOdlkHeeR-ZFPS115GnLdO9lMTGO2d3YhG9I,3177
35
+ reflectorch/data_generation/reflectivity/smearing.py,sha256=XVtFfQFT-Ouyl8wa_IKc0p8ZZg8PCNtZIqe_RFy6E6E,3983
36
+ reflectorch/extensions/__init__.py,sha256=XeuLafCqNwwmfWTcJgbuzCzpiypBG7ZatbIZrT9TvBA,159
37
+ reflectorch/extensions/jupyter/__init__.py,sha256=inEXUpeVWeAhkW5nkW_dASBzsAlv4htvj7GIS7svIGk,231
38
+ reflectorch/extensions/jupyter/callbacks.py,sha256=piDR4ax6JFSOPyqfkk-nxrhyWYdMrxgC8ocoaJbbbu8,1233
39
+ reflectorch/extensions/matplotlib/__init__.py,sha256=8II5pU8015VrMjFI8szCKBP1zjz0dFAzBn7smNQzGuA,263
40
+ reflectorch/extensions/matplotlib/losses.py,sha256=TqcyrFrls1N6RXotFyXDF64Xz6nJGg7n5XMSXFdeRtQ,845
41
+ reflectorch/inference/__init__.py,sha256=8KDIazaanBhAdtGg9AXc29SBfO5rO4Q0_BeBy0H6G54,729
42
+ reflectorch/inference/inference_model.py,sha256=QvnQDRRcZByHDJh84T5W8O3X_aJLZI6AmlskE6BaBlU,36265
43
+ reflectorch/inference/multilayer_fitter.py,sha256=0CxDpLOEp1terR4N39yFlxhvA8qAbHf_01NbmvYadck,5510
44
+ reflectorch/inference/multilayer_inference_model.py,sha256=hH_-dJGdMOox8GHXdM_nODXDlNgh_v449xW5FmklRdo,7575
45
+ reflectorch/inference/record_time.py,sha256=3er-aoR8Sd_Kc4qNwUmRqkEz4FYhVxdi1ARnBohybzM,1140
46
+ reflectorch/inference/sampler_solution.py,sha256=DeJM3EXEb6S5EiASj3mmdNI-Y07Cr5UzzA5oq-vEB-Q,2288
47
+ reflectorch/inference/scipy_fitter.py,sha256=339M33OdmfgOpifJGLYk4KVcnnNJrY6_aH7Lz6Vtt24,5404
48
+ reflectorch/inference/torch_fitter.py,sha256=j1NzkzLCmQ4H6LfIi82LsSBmIdunnWzm3kbGx-hqvDs,3391
49
+ reflectorch/inference/preprocess_exp/__init__.py,sha256=bR6H-xgBD96z4P9P1T2ECnWvalrimdMTfTNArIWPLy0,383
50
+ reflectorch/inference/preprocess_exp/attenuation.py,sha256=UKDfUjCKKMgAuEs5Ttyo0KEQmpvHZI52UgVflh7T81A,1518
51
+ reflectorch/inference/preprocess_exp/cut_with_q_ratio.py,sha256=CbtwIw7iJNkoVxqTHKzONBgGFwOsCUyFoTIQ8XMLTfY,1149
52
+ reflectorch/inference/preprocess_exp/footprint.py,sha256=xc409M5X-QW0Ce_6dEZdj8NkOY1vd0LaGpPQFxiOOR0,2625
53
+ reflectorch/inference/preprocess_exp/interpolation.py,sha256=o2v-mlfRYzeaaikeQVeY7EA7j-K42dMfT12oN3mk51k,694
54
+ reflectorch/inference/preprocess_exp/normalize.py,sha256=09v7nZdtw6SnW_67xFrPnqzOA5AtFBGarjK4Pfn4VoE,695
55
+ reflectorch/inference/preprocess_exp/preprocess.py,sha256=pyyq8fSvcm1bWAShzGHYnKOc55Rofh4FIw1AC7Smq-U,5111
56
+ reflectorch/ml/__init__.py,sha256=wdItiY13KD6PlCrHnHVcdpQOgTB5iUSj_qn4BZFM_uU,908
57
+ reflectorch/ml/basic_trainer.py,sha256=Kr-oVAlmZjkL9MuJDxHAKA_1tTqUvX-3Q2BETWWlsmE,9806
58
+ reflectorch/ml/callbacks.py,sha256=YxA_VUlfsE9Uh9MotPe2tXq6rbCyoG52LfI3e_YQy3w,2902
59
+ reflectorch/ml/dataloaders.py,sha256=IvKmsH5gX_b-00KRFeL-x3keEfBcvYkQFWGWd8Caj-I,1073
60
+ reflectorch/ml/loggers.py,sha256=XC7KwqHDTSr_2iWyBatOQO6EuFtK1bvwUVBcoA-D7fg,904
61
+ reflectorch/ml/schedulers.py,sha256=xIloPpmCSnB35YniyzcDZoXHJFMT_rz0CWh2xiXnDak,10207
62
+ reflectorch/ml/trainers.py,sha256=36R_oU33UHoebd7F1eNVlQ1GdhJXeGMgWsg-RrId2Mg,5014
63
+ reflectorch/ml/utils.py,sha256=VfgWVjnXTrvw8eIMhFJXEaf7gkmp3rTUHrZvy42b_2k,232
64
+ reflectorch/models/__init__.py,sha256=4k6JTr4XOhxtchCIlkcYNW51CmdIPsVAGfAwuhhTgYI,521
65
+ reflectorch/models/activations.py,sha256=LDiIxCnLFb8r_TRBZSt6vdOZmexCWAGa5DfE_SotUL8,1431
66
+ reflectorch/models/encoders/__init__.py,sha256=9PT31292CtfXlm1jucd7-2h69M_2vQNYQeaFX0lM2EM,702
67
+ reflectorch/models/encoders/conv_encoder.py,sha256=Ns5df_baTh-7lu-xRaO_jnnar1apsXGKNDfbaFIHv0U,7812
68
+ reflectorch/models/encoders/conv_res_net.py,sha256=_TYbF9GMThOtYuGmiyzIkClbq8wwRA251IFzUlxMwdU,3497
69
+ reflectorch/models/encoders/fno.py,sha256=s_S7hnpLE7iGfyvnQ-QvTh0rKO5KFiy5tUYau4sJbvI,4693
70
+ reflectorch/models/encoders/transformers.py,sha256=hfgGr2HiTj7DvaQnm_5RU_osPxVZn-L0r5OGqF8ZJZ4,1610
71
+ reflectorch/models/networks/__init__.py,sha256=_NBjIl4QNLAuzBb2IaOIGG37iWwGzVQwuQhbcP9lxpI,450
72
+ reflectorch/models/networks/mlp_networks.py,sha256=C7py6qCBVaYYt0FMEf8gbT4lndArKpUYYgTN1001-T8,11614
73
+ reflectorch/models/networks/residual_net.py,sha256=msDJaDw7qL9ebEW1Avw6Qw0lgni68AMgF4kXiJKzeaQ,4637
74
+ reflectorch/runs/__init__.py,sha256=2BcdMJul5yd726p8w4iqlKhygAAxiu1zu0MKDe96bWk,816
75
+ reflectorch/runs/config.py,sha256=6aEub3NV0jmoREdegV7S3Nz-5o1xPZnmPpNgYfMpdys,963
76
+ reflectorch/runs/slurm_utils.py,sha256=T5vsWrcduq_N9mS9XAXjAbx7PHcYiiiwjdS0iiXh_TI,2759
77
+ reflectorch/runs/train.py,sha256=NaHMUYApjOCeajyS5UMQkeCVyxVtroohXK5ceHNLOkM,2719
78
+ reflectorch/runs/utils.py,sha256=8hFWDmPTvfIrrk9v-nVCVyV3-_lzm0HvV_qWtjtAlBQ,9541
79
+ reflectorch-1.0.0.dist-info/LICENSE.txt,sha256=cViXfxVDYN2EpVmuwYsza3QontIBgVpYKvVOUHfz8J0,33071
80
+ reflectorch-1.0.0.dist-info/METADATA,sha256=GPeHmapPYQZ2kq3DHiCJirbp-L1R0dwZ_Xwjvp3fFCs,7204
81
+ reflectorch-1.0.0.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
82
+ reflectorch-1.0.0.dist-info/top_level.txt,sha256=2EyIWrt4SeZ3hNadLXvEVpPFhyoZ4An7YflP4y_E3Fc,12
83
+ reflectorch-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (70.3.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ reflectorch