reflectorch 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of reflectorch might be problematic. Click here for more details.
- reflectorch/__init__.py +23 -0
- reflectorch/data_generation/__init__.py +130 -0
- reflectorch/data_generation/dataset.py +196 -0
- reflectorch/data_generation/likelihoods.py +86 -0
- reflectorch/data_generation/noise.py +371 -0
- reflectorch/data_generation/priors/__init__.py +66 -0
- reflectorch/data_generation/priors/base.py +61 -0
- reflectorch/data_generation/priors/exp_subprior_sampler.py +304 -0
- reflectorch/data_generation/priors/independent_priors.py +201 -0
- reflectorch/data_generation/priors/multilayer_models.py +311 -0
- reflectorch/data_generation/priors/multilayer_structures.py +110 -0
- reflectorch/data_generation/priors/no_constraints.py +212 -0
- reflectorch/data_generation/priors/parametric_models.py +767 -0
- reflectorch/data_generation/priors/parametric_subpriors.py +354 -0
- reflectorch/data_generation/priors/params.py +258 -0
- reflectorch/data_generation/priors/sampler_strategies.py +306 -0
- reflectorch/data_generation/priors/scaler_mixin.py +65 -0
- reflectorch/data_generation/priors/subprior_sampler.py +377 -0
- reflectorch/data_generation/priors/utils.py +124 -0
- reflectorch/data_generation/process_data.py +47 -0
- reflectorch/data_generation/q_generator.py +232 -0
- reflectorch/data_generation/reflectivity/__init__.py +56 -0
- reflectorch/data_generation/reflectivity/abeles.py +81 -0
- reflectorch/data_generation/reflectivity/kinematical.py +58 -0
- reflectorch/data_generation/reflectivity/memory_eff.py +92 -0
- reflectorch/data_generation/reflectivity/numpy_implementations.py +120 -0
- reflectorch/data_generation/reflectivity/smearing.py +123 -0
- reflectorch/data_generation/scale_curves.py +118 -0
- reflectorch/data_generation/smearing.py +67 -0
- reflectorch/data_generation/utils.py +154 -0
- reflectorch/extensions/__init__.py +6 -0
- reflectorch/extensions/jupyter/__init__.py +12 -0
- reflectorch/extensions/jupyter/callbacks.py +40 -0
- reflectorch/extensions/matplotlib/__init__.py +11 -0
- reflectorch/extensions/matplotlib/losses.py +38 -0
- reflectorch/inference/__init__.py +22 -0
- reflectorch/inference/inference_model.py +734 -0
- reflectorch/inference/multilayer_fitter.py +171 -0
- reflectorch/inference/multilayer_inference_model.py +193 -0
- reflectorch/inference/preprocess_exp/__init__.py +7 -0
- reflectorch/inference/preprocess_exp/attenuation.py +36 -0
- reflectorch/inference/preprocess_exp/cut_with_q_ratio.py +31 -0
- reflectorch/inference/preprocess_exp/footprint.py +81 -0
- reflectorch/inference/preprocess_exp/interpolation.py +16 -0
- reflectorch/inference/preprocess_exp/normalize.py +21 -0
- reflectorch/inference/preprocess_exp/preprocess.py +121 -0
- reflectorch/inference/record_time.py +43 -0
- reflectorch/inference/sampler_solution.py +56 -0
- reflectorch/inference/scipy_fitter.py +171 -0
- reflectorch/inference/torch_fitter.py +87 -0
- reflectorch/ml/__init__.py +37 -0
- reflectorch/ml/basic_trainer.py +286 -0
- reflectorch/ml/callbacks.py +86 -0
- reflectorch/ml/dataloaders.py +27 -0
- reflectorch/ml/loggers.py +38 -0
- reflectorch/ml/schedulers.py +246 -0
- reflectorch/ml/trainers.py +126 -0
- reflectorch/ml/utils.py +9 -0
- reflectorch/models/__init__.py +22 -0
- reflectorch/models/activations.py +50 -0
- reflectorch/models/encoders/__init__.py +27 -0
- reflectorch/models/encoders/conv_encoder.py +211 -0
- reflectorch/models/encoders/conv_res_net.py +119 -0
- reflectorch/models/encoders/fno.py +127 -0
- reflectorch/models/encoders/transformers.py +56 -0
- reflectorch/models/networks/__init__.py +18 -0
- reflectorch/models/networks/mlp_networks.py +256 -0
- reflectorch/models/networks/residual_net.py +131 -0
- reflectorch/paths.py +33 -0
- reflectorch/runs/__init__.py +35 -0
- reflectorch/runs/config.py +31 -0
- reflectorch/runs/slurm_utils.py +99 -0
- reflectorch/runs/train.py +85 -0
- reflectorch/runs/utils.py +300 -0
- reflectorch/test_config.py +4 -0
- reflectorch/train.py +4 -0
- reflectorch/train_on_cluster.py +4 -0
- reflectorch/utils.py +74 -0
- reflectorch-1.0.0.dist-info/LICENSE.txt +621 -0
- reflectorch-1.0.0.dist-info/METADATA +115 -0
- reflectorch-1.0.0.dist-info/RECORD +83 -0
- reflectorch-1.0.0.dist-info/WHEEL +5 -0
- reflectorch-1.0.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: reflectorch
|
|
3
|
+
Version: 1.0.0
|
|
4
|
+
Summary: A Pytorch-based package for the analysis of reflectometry data
|
|
5
|
+
Author-email: Vladimir Starostin <vladimir.starostin@uni-tuebingen.de>, Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>
|
|
6
|
+
Maintainer-email: Valentin Munteanu <valentin.munteanu@uni-tuebingen.de>, Alexander Hinderhofer <alexander.hinderhofer@uni-tuebingen.de>
|
|
7
|
+
Project-URL: Source, https://github.com/schreiber-lab/reflectorch/
|
|
8
|
+
Project-URL: Issues, https://github.com/schreiber-lab/reflectorch/issues
|
|
9
|
+
Project-URL: Documentation, https://schreiber-lab.github.io/reflectorch/
|
|
10
|
+
Keywords: reflectometry,machine learning
|
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
|
12
|
+
Classifier: Operating System :: OS Independent
|
|
13
|
+
Classifier: Environment :: GPU :: NVIDIA CUDA
|
|
14
|
+
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
|
15
|
+
Classifier: Development Status :: 4 - Beta
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
17
|
+
Classifier: Intended Audience :: Science/Research
|
|
18
|
+
Requires-Python: >=3.7
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
License-File: LICENSE.txt
|
|
21
|
+
Requires-Dist: numpy <2.0,>=1.18.1
|
|
22
|
+
Requires-Dist: torch >=1.8.1
|
|
23
|
+
Requires-Dist: scipy
|
|
24
|
+
Requires-Dist: tqdm
|
|
25
|
+
Requires-Dist: PyYAML
|
|
26
|
+
Requires-Dist: click
|
|
27
|
+
Requires-Dist: matplotlib
|
|
28
|
+
Requires-Dist: ipywidgets
|
|
29
|
+
Requires-Dist: torchinfo
|
|
30
|
+
Requires-Dist: huggingface-hub
|
|
31
|
+
Provides-Extra: build
|
|
32
|
+
Requires-Dist: build ; extra == 'build'
|
|
33
|
+
Requires-Dist: twine ; extra == 'build'
|
|
34
|
+
Provides-Extra: docs
|
|
35
|
+
Requires-Dist: jupyter-book ; extra == 'docs'
|
|
36
|
+
Requires-Dist: sphinx ; extra == 'docs'
|
|
37
|
+
Provides-Extra: tests
|
|
38
|
+
Requires-Dist: pytest ; extra == 'tests'
|
|
39
|
+
Requires-Dist: pytest-cov ; extra == 'tests'
|
|
40
|
+
|
|
41
|
+
# Reflectorch
|
|
42
|
+
|
|
43
|
+
[](https://pytorch.org/)
|
|
44
|
+
[](https://numpy.org/)
|
|
45
|
+
[](https://scipy.org/)
|
|
46
|
+
[](https://matplotlib.org/)
|
|
47
|
+
[](https://yaml.org/)
|
|
48
|
+
[](https://huggingface.co/valentinsingularity/reflectivity)
|
|
49
|
+
|
|
50
|
+
[](https://www.gnu.org/licenses/gpl-3.0)
|
|
51
|
+
[](https://www.python.org/)
|
|
52
|
+

|
|
53
|
+

|
|
54
|
+
[](https://schreiber-lab.github.io/reflectorch/)
|
|
55
|
+
<!-- [](https://github.com/astral-sh/ruff) -->
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
**Reflectorch** is a machine learning Python package for the analysis of X-ray and neutron reflectometry data based on Pytorch (written by [Vladimir Starostin](https://github.com/StarostinV/) & [Valentin Munteanu](https://github.com/valentinsingularity)). It provides functionality for the fast simulation of reflectometry curves on the GPU, customizable setup of the physical parameterization model and neural network architecture via YAML configuration files, and prior-aware training of neural networks as described in our paper [Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge](https://doi.org/10.1107/S1600576724002115).
|
|
59
|
+
|
|
60
|
+
## Installation
|
|
61
|
+
|
|
62
|
+
**Reflectorch** can be installed either from [](https://pypi.org/project/reflectorch/) via ``pip`` or from [](https://anaconda.org/conda-forge/reflectorch/) via ``conda``:
|
|
63
|
+
|
|
64
|
+
```bash
|
|
65
|
+
pip install reflectorch
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
or
|
|
69
|
+
|
|
70
|
+
```bash
|
|
71
|
+
conda install -c conda-forge reflectorch
|
|
72
|
+
```
|
|
73
|
+
|
|
74
|
+
Additionally, one can clone the entire Github repository and install the package in editable mode:
|
|
75
|
+
|
|
76
|
+
```bash
|
|
77
|
+
git clone https://github.com/schreiber-lab/reflectorch.git
|
|
78
|
+
pip install -e .
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
For development purposes, the package can be installed together with the optional dependencies for building the distribution, testing and documentation:
|
|
82
|
+
|
|
83
|
+
```bash
|
|
84
|
+
git clone https://github.com/schreiber-lab/reflectorch.git
|
|
85
|
+
pip install -e .[tests,docs,build]
|
|
86
|
+
```
|
|
87
|
+
|
|
88
|
+
Users with Nvidia **GPU**s need to additionally install **Pytorch with CUDA support** corresponding to their hardware and operating system according to the instructions from the [Pytorch website](https://pytorch.org/get-started/locally/)
|
|
89
|
+
|
|
90
|
+
## Get started
|
|
91
|
+
|
|
92
|
+
 The full documentation of the package, containing tutorials and the API reference, was built with [Jupyter Book](https://jupyterbook.org/) and [Sphinx](https://www.sphinx-doc.org) and it is hosted at the address: [https://schreiber-lab.github.io/reflectorch/](https://schreiber-lab.github.io/reflectorch/).
|
|
93
|
+
|
|
94
|
+
 We provide an interactive Google Colab notebook for exploring the basic functionality of the package: [](https://colab.research.google.com/drive/1rf_M8S_5kYvUoK0-9-AYal_fO3oFl7ck?usp=sharing)<br>
|
|
95
|
+
|
|
96
|
+
 Configuration files and the corresponding pretrained model weights are hosted on Huggingface: [https://huggingface.co/valentinsingularity/reflectivity](https://huggingface.co/valentinsingularity/reflectivity).
|
|
97
|
+
|
|
98
|
+
 Docker images for reflectorch *will* be hosted on Dockerhub.
|
|
99
|
+
|
|
100
|
+
## Citation
|
|
101
|
+
If you find our work useful in your research, please cite:
|
|
102
|
+
```
|
|
103
|
+
@Article{Munteanu2024,
|
|
104
|
+
author = {Munteanu, Valentin and Starostin, Vladimir and Greco, Alessandro and Pithan, Linus and Gerlach, Alexander and Hinderhofer, Alexander and Kowarik, Stefan and Schreiber, Frank},
|
|
105
|
+
journal = {Journal of Applied Crystallography},
|
|
106
|
+
title = {Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge},
|
|
107
|
+
year = {2024},
|
|
108
|
+
issn = {1600-5767},
|
|
109
|
+
month = mar,
|
|
110
|
+
number = {2},
|
|
111
|
+
volume = {57},
|
|
112
|
+
doi = {10.1107/s1600576724002115},
|
|
113
|
+
publisher = {International Union of Crystallography (IUCr)},
|
|
114
|
+
}
|
|
115
|
+
```
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
reflectorch/__init__.py,sha256=Xs-ZhOJ1D_yluLD98aj6Pr2ssy-tDFwtCnIIukDFOW4,895
|
|
2
|
+
reflectorch/paths.py,sha256=8xAtonoxLxfwnZF4rriUPidPaaz9pNvOEibFXiXu9yc,973
|
|
3
|
+
reflectorch/test_config.py,sha256=1T7pMJ-WYLEu-4WtYMQxcJrqXvgdpvJ1yi2qINd0kNA,99
|
|
4
|
+
reflectorch/train.py,sha256=-c8ac1fpjrCiEwnAaXg_rcBNl1stO1V5p5afx_78xHs,87
|
|
5
|
+
reflectorch/train_on_cluster.py,sha256=aG3_g5_rzL8iL1tvtdY9ueJTo1f2Pn8lGJgudrrRknU,109
|
|
6
|
+
reflectorch/utils.py,sha256=TIRilK7px-AAw3MWNmhBPC8dzq7RI5YbkNbEcqDvrNs,2152
|
|
7
|
+
reflectorch/data_generation/__init__.py,sha256=7lbWlxj4tMuhgTzz_lFgrRkYp2AVJm262ZLoJx_Riyw,3512
|
|
8
|
+
reflectorch/data_generation/dataset.py,sha256=O8R_RaRBXFYfvsI3co67fDeclEG1pMO50RXZTIPUf_4,7432
|
|
9
|
+
reflectorch/data_generation/likelihoods.py,sha256=mXplS5nwoH4sAeHqp3ciEf--GMA3ulPsnxasix0HMn0,3021
|
|
10
|
+
reflectorch/data_generation/noise.py,sha256=cZDTYPlteIclEhnRcV5DNKG64cvz-Q4VHiWGGdZkeDk,16318
|
|
11
|
+
reflectorch/data_generation/process_data.py,sha256=0kpVWqkpDkCDEybIu2uMYdr-ytfT0sVWKfY-BbXVo9c,1339
|
|
12
|
+
reflectorch/data_generation/q_generator.py,sha256=8_TLXamHF-5Lsr1g3WgAd6gcNuQgXPZ9hSJNazY247A,8688
|
|
13
|
+
reflectorch/data_generation/scale_curves.py,sha256=vMiyq9Y3S5nFaf5RA9g_Id96lrcr4D_O0s_Amz_3fWM,4243
|
|
14
|
+
reflectorch/data_generation/smearing.py,sha256=UqcWBATSyvds-P_Soq0hUfBipe3VJstBE88m_v0z-rc,2929
|
|
15
|
+
reflectorch/data_generation/utils.py,sha256=aBICDneVaZhlEqCyMJAzuDXbCe0kLUyJ_9VHxUTBrao,5766
|
|
16
|
+
reflectorch/data_generation/priors/__init__.py,sha256=5tN-0V8GduS8N1riZ6sDUXp_Wr7WM6840tlka4SsFqU,2100
|
|
17
|
+
reflectorch/data_generation/priors/base.py,sha256=y7e6AWxbMekw5MHtW_h3_VhmzcGS4T6hnhqso4p2MDA,1864
|
|
18
|
+
reflectorch/data_generation/priors/exp_subprior_sampler.py,sha256=WPjc7aGLr_qJiiNHA1yfKPd1EHJKcmOIixkbhhy7QKg,11710
|
|
19
|
+
reflectorch/data_generation/priors/independent_priors.py,sha256=T4_uvX74iHScPGa5u_-fvdwurUu97AuRssfDL3tYxKY,7400
|
|
20
|
+
reflectorch/data_generation/priors/multilayer_models.py,sha256=lAf-HJPbIDnbD1ecDTvx03TfA4jLN5tTLbwaBCiYgWM,7763
|
|
21
|
+
reflectorch/data_generation/priors/multilayer_structures.py,sha256=nGVoMstkn--0kdKlT5o3VsGZ0dHUdMoeSXeI9t9V61Q,3852
|
|
22
|
+
reflectorch/data_generation/priors/no_constraints.py,sha256=jLzsKXyQFHW2dtKViCpJpEbNjk2njjWpOaUxD8Hc3wE,7451
|
|
23
|
+
reflectorch/data_generation/priors/parametric_models.py,sha256=vaAGcm9Ky-coidNliE4R1YvoqCcbNwEwJVCwwmkKI4E,25139
|
|
24
|
+
reflectorch/data_generation/priors/parametric_subpriors.py,sha256=hSuSlZO1KPVAftgYzdsF6CtSDGV709v_DFjcPNKzc0g,14511
|
|
25
|
+
reflectorch/data_generation/priors/params.py,sha256=fND4ZNlplNertLHvIimfW0KKc2uWtPTUpwygCRskIu4,8397
|
|
26
|
+
reflectorch/data_generation/priors/sampler_strategies.py,sha256=afqXbwTd5DkNgRwTTUh7esHdhf-PaEJFzsxT6I5ctEE,13048
|
|
27
|
+
reflectorch/data_generation/priors/scaler_mixin.py,sha256=gI64v2KOZugSJWaLKASR34fn6qVFl-aoeVA1BR5yXNg,2648
|
|
28
|
+
reflectorch/data_generation/priors/subprior_sampler.py,sha256=6kaLIvJ_dSNfPCAbOzW1vyYKU3zQ6Qdnuu8nMRFkEoQ,14928
|
|
29
|
+
reflectorch/data_generation/priors/utils.py,sha256=-iCLSkb_MrDIvmfEZKxpWMJDwj9PtZGP8LwbbM9JYos,3995
|
|
30
|
+
reflectorch/data_generation/reflectivity/__init__.py,sha256=whto-vWKjWt3ZziqajgJ5M2RLZWXavSZpJLvyYcuom4,2280
|
|
31
|
+
reflectorch/data_generation/reflectivity/abeles.py,sha256=4G42f1XPcu6hvYbvV3HCfivHx7oRYq_a6AzHyGK_UeM,2091
|
|
32
|
+
reflectorch/data_generation/reflectivity/kinematical.py,sha256=tNmh1aYHA9-eFxnY-hJZBbctkpC89tht4o9rxbDBMdU,1475
|
|
33
|
+
reflectorch/data_generation/reflectivity/memory_eff.py,sha256=OzPZJoFupRdlz8Qchndz0A5aYhO33yU_yYMdnVxgsNg,2997
|
|
34
|
+
reflectorch/data_generation/reflectivity/numpy_implementations.py,sha256=QBzn4yVnOdlkHeeR-ZFPS115GnLdO9lMTGO2d3YhG9I,3177
|
|
35
|
+
reflectorch/data_generation/reflectivity/smearing.py,sha256=XVtFfQFT-Ouyl8wa_IKc0p8ZZg8PCNtZIqe_RFy6E6E,3983
|
|
36
|
+
reflectorch/extensions/__init__.py,sha256=XeuLafCqNwwmfWTcJgbuzCzpiypBG7ZatbIZrT9TvBA,159
|
|
37
|
+
reflectorch/extensions/jupyter/__init__.py,sha256=inEXUpeVWeAhkW5nkW_dASBzsAlv4htvj7GIS7svIGk,231
|
|
38
|
+
reflectorch/extensions/jupyter/callbacks.py,sha256=piDR4ax6JFSOPyqfkk-nxrhyWYdMrxgC8ocoaJbbbu8,1233
|
|
39
|
+
reflectorch/extensions/matplotlib/__init__.py,sha256=8II5pU8015VrMjFI8szCKBP1zjz0dFAzBn7smNQzGuA,263
|
|
40
|
+
reflectorch/extensions/matplotlib/losses.py,sha256=TqcyrFrls1N6RXotFyXDF64Xz6nJGg7n5XMSXFdeRtQ,845
|
|
41
|
+
reflectorch/inference/__init__.py,sha256=8KDIazaanBhAdtGg9AXc29SBfO5rO4Q0_BeBy0H6G54,729
|
|
42
|
+
reflectorch/inference/inference_model.py,sha256=QvnQDRRcZByHDJh84T5W8O3X_aJLZI6AmlskE6BaBlU,36265
|
|
43
|
+
reflectorch/inference/multilayer_fitter.py,sha256=0CxDpLOEp1terR4N39yFlxhvA8qAbHf_01NbmvYadck,5510
|
|
44
|
+
reflectorch/inference/multilayer_inference_model.py,sha256=hH_-dJGdMOox8GHXdM_nODXDlNgh_v449xW5FmklRdo,7575
|
|
45
|
+
reflectorch/inference/record_time.py,sha256=3er-aoR8Sd_Kc4qNwUmRqkEz4FYhVxdi1ARnBohybzM,1140
|
|
46
|
+
reflectorch/inference/sampler_solution.py,sha256=DeJM3EXEb6S5EiASj3mmdNI-Y07Cr5UzzA5oq-vEB-Q,2288
|
|
47
|
+
reflectorch/inference/scipy_fitter.py,sha256=339M33OdmfgOpifJGLYk4KVcnnNJrY6_aH7Lz6Vtt24,5404
|
|
48
|
+
reflectorch/inference/torch_fitter.py,sha256=j1NzkzLCmQ4H6LfIi82LsSBmIdunnWzm3kbGx-hqvDs,3391
|
|
49
|
+
reflectorch/inference/preprocess_exp/__init__.py,sha256=bR6H-xgBD96z4P9P1T2ECnWvalrimdMTfTNArIWPLy0,383
|
|
50
|
+
reflectorch/inference/preprocess_exp/attenuation.py,sha256=UKDfUjCKKMgAuEs5Ttyo0KEQmpvHZI52UgVflh7T81A,1518
|
|
51
|
+
reflectorch/inference/preprocess_exp/cut_with_q_ratio.py,sha256=CbtwIw7iJNkoVxqTHKzONBgGFwOsCUyFoTIQ8XMLTfY,1149
|
|
52
|
+
reflectorch/inference/preprocess_exp/footprint.py,sha256=xc409M5X-QW0Ce_6dEZdj8NkOY1vd0LaGpPQFxiOOR0,2625
|
|
53
|
+
reflectorch/inference/preprocess_exp/interpolation.py,sha256=o2v-mlfRYzeaaikeQVeY7EA7j-K42dMfT12oN3mk51k,694
|
|
54
|
+
reflectorch/inference/preprocess_exp/normalize.py,sha256=09v7nZdtw6SnW_67xFrPnqzOA5AtFBGarjK4Pfn4VoE,695
|
|
55
|
+
reflectorch/inference/preprocess_exp/preprocess.py,sha256=pyyq8fSvcm1bWAShzGHYnKOc55Rofh4FIw1AC7Smq-U,5111
|
|
56
|
+
reflectorch/ml/__init__.py,sha256=wdItiY13KD6PlCrHnHVcdpQOgTB5iUSj_qn4BZFM_uU,908
|
|
57
|
+
reflectorch/ml/basic_trainer.py,sha256=Kr-oVAlmZjkL9MuJDxHAKA_1tTqUvX-3Q2BETWWlsmE,9806
|
|
58
|
+
reflectorch/ml/callbacks.py,sha256=YxA_VUlfsE9Uh9MotPe2tXq6rbCyoG52LfI3e_YQy3w,2902
|
|
59
|
+
reflectorch/ml/dataloaders.py,sha256=IvKmsH5gX_b-00KRFeL-x3keEfBcvYkQFWGWd8Caj-I,1073
|
|
60
|
+
reflectorch/ml/loggers.py,sha256=XC7KwqHDTSr_2iWyBatOQO6EuFtK1bvwUVBcoA-D7fg,904
|
|
61
|
+
reflectorch/ml/schedulers.py,sha256=xIloPpmCSnB35YniyzcDZoXHJFMT_rz0CWh2xiXnDak,10207
|
|
62
|
+
reflectorch/ml/trainers.py,sha256=36R_oU33UHoebd7F1eNVlQ1GdhJXeGMgWsg-RrId2Mg,5014
|
|
63
|
+
reflectorch/ml/utils.py,sha256=VfgWVjnXTrvw8eIMhFJXEaf7gkmp3rTUHrZvy42b_2k,232
|
|
64
|
+
reflectorch/models/__init__.py,sha256=4k6JTr4XOhxtchCIlkcYNW51CmdIPsVAGfAwuhhTgYI,521
|
|
65
|
+
reflectorch/models/activations.py,sha256=LDiIxCnLFb8r_TRBZSt6vdOZmexCWAGa5DfE_SotUL8,1431
|
|
66
|
+
reflectorch/models/encoders/__init__.py,sha256=9PT31292CtfXlm1jucd7-2h69M_2vQNYQeaFX0lM2EM,702
|
|
67
|
+
reflectorch/models/encoders/conv_encoder.py,sha256=Ns5df_baTh-7lu-xRaO_jnnar1apsXGKNDfbaFIHv0U,7812
|
|
68
|
+
reflectorch/models/encoders/conv_res_net.py,sha256=_TYbF9GMThOtYuGmiyzIkClbq8wwRA251IFzUlxMwdU,3497
|
|
69
|
+
reflectorch/models/encoders/fno.py,sha256=s_S7hnpLE7iGfyvnQ-QvTh0rKO5KFiy5tUYau4sJbvI,4693
|
|
70
|
+
reflectorch/models/encoders/transformers.py,sha256=hfgGr2HiTj7DvaQnm_5RU_osPxVZn-L0r5OGqF8ZJZ4,1610
|
|
71
|
+
reflectorch/models/networks/__init__.py,sha256=_NBjIl4QNLAuzBb2IaOIGG37iWwGzVQwuQhbcP9lxpI,450
|
|
72
|
+
reflectorch/models/networks/mlp_networks.py,sha256=C7py6qCBVaYYt0FMEf8gbT4lndArKpUYYgTN1001-T8,11614
|
|
73
|
+
reflectorch/models/networks/residual_net.py,sha256=msDJaDw7qL9ebEW1Avw6Qw0lgni68AMgF4kXiJKzeaQ,4637
|
|
74
|
+
reflectorch/runs/__init__.py,sha256=2BcdMJul5yd726p8w4iqlKhygAAxiu1zu0MKDe96bWk,816
|
|
75
|
+
reflectorch/runs/config.py,sha256=6aEub3NV0jmoREdegV7S3Nz-5o1xPZnmPpNgYfMpdys,963
|
|
76
|
+
reflectorch/runs/slurm_utils.py,sha256=T5vsWrcduq_N9mS9XAXjAbx7PHcYiiiwjdS0iiXh_TI,2759
|
|
77
|
+
reflectorch/runs/train.py,sha256=NaHMUYApjOCeajyS5UMQkeCVyxVtroohXK5ceHNLOkM,2719
|
|
78
|
+
reflectorch/runs/utils.py,sha256=8hFWDmPTvfIrrk9v-nVCVyV3-_lzm0HvV_qWtjtAlBQ,9541
|
|
79
|
+
reflectorch-1.0.0.dist-info/LICENSE.txt,sha256=cViXfxVDYN2EpVmuwYsza3QontIBgVpYKvVOUHfz8J0,33071
|
|
80
|
+
reflectorch-1.0.0.dist-info/METADATA,sha256=GPeHmapPYQZ2kq3DHiCJirbp-L1R0dwZ_Xwjvp3fFCs,7204
|
|
81
|
+
reflectorch-1.0.0.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
|
|
82
|
+
reflectorch-1.0.0.dist-info/top_level.txt,sha256=2EyIWrt4SeZ3hNadLXvEVpPFhyoZ4An7YflP4y_E3Fc,12
|
|
83
|
+
reflectorch-1.0.0.dist-info/RECORD,,
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
reflectorch
|